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Modern Optimization Techniques 1. Unconstrained Optimization

Unconstrained Optimization Problems

An unconstrained optimization problem has the form:

minimize f0(x)

Where:

I f0 : Rn → R is convex, twice differentiable

I An optimal x∗ exists and f (x∗) is attained and finite
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Modern Optimization Techniques 1. Unconstrained Optimization

1st-order condition
1st-order condition: a differentiable function f is convex iff

I dom f is a convex set
I for all x, y ∈ dom f

f (y) ≥ f (x) +∇f (x)T (y − x)

f (x)

x
x

(x, f (x))

h(y) = f (x) +∇f (x)T (y − x)
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Modern Optimization Techniques 1. Unconstrained Optimization

Optimality condition
f0 is differentiable if dom f0 is open and the gradient exists:

∇f0(x) =

(
∂f (x)

∂x1
,
∂f (x)

∂x2
, . . . ,

∂f (x)

∂xn

)

x∗ is (localy) optimal iff:

∇f0(x) = 0 f (x)

x
x

(x, f (x))
h(y) = f (x)
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Modern Optimization Techniques 1. Unconstrained Optimization

Methods for Unconstrained Optimization

I Start with an initial solution: x0

I Generate a sequence of points: xt with

f0(xt)→ f0(x∗)

1: procedure UnconstrainedMinimization
input: f0

2: Get initial point x0

3: t ← 1
4: repeat
5: xt ← NextPoint(xt−1)
6: t ← t + 1
7: until convergence
8: return xt , f0(xt)
9: end procedure
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Modern Optimization Techniques 1. Unconstrained Optimization

Convergence Criterion

I May depend on the optimization method

I Intuitively, one would use something like

‖xt − x?‖22 < ε

I Since x? is unknown: ‖xt − xt−1‖22 < ε
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Modern Optimization Techniques 1. Unconstrained Optimization

Descent Methods

The next point is generated as:

xt+1 := xt + µ∆xt

Using:

I A step size µ

I A direction ∆x such that

f0(xt + µ∆xt) < f0(xt)

1: procedure DescentMethod
input: f0

2: Get initial point x
3: t ← 0
4: repeat
5: Get Update Direction ∆x
6: Get Step Size µ
7: xt+1 ← xt + µ∆xt

8: t ← t + 1
9: until convergence

10: return x, f0(x)
11: end procedure
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Modern Optimization Techniques 1. Unconstrained Optimization

Descent Methods

I The descent algorithms differ in how they define the search direction
∆x

I The Step Size can be computed in various ways:

I Fixed value

I Line search

I Various algorithm dependent heuristics
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Modern Optimization Techniques 2. Line search

Line search

Line Search is a practical method for computing the step lenght in descent
algorithms

It solves the following problem for the variable µ:

arg min
µ>0

f0(x + µ∆x)

Many variants of the line search:

I Exact throught derivation with respect to µ

I Approximative: e.g. Backtracking
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Modern Optimization Techniques 2. Line search

Line Search

Exact

I Used if the problem can be solved analytically or with a low cost

Backtracking

I Only aproximative

I Guarantees that the new function value is lower than an specific
bound
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Modern Optimization Techniques 2. Line search

Backtracking Line Search

1: procedure BackTrackingLineSearch
input: f0, search direction ∆x, at x, a ∈ (0, 0.5), b ∈ (0, 1)

2: µ← 1
3: while f0(x + µ∆x) > f0(x) + aµ∇f0(x)T∆x do
4: µ← bµ
5: end while
6: return µ
7: end procedure
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Modern Optimization Techniques 3. Gradient Descent

Gradient Descent

I The gradient of a function f : R→ Rn in x shows the direction in
which the function is maximally growing at point x

I Gradient Descent is a descent algorithm that searches in the opposite
direction of the gradient

∆x = −∇f0(x)
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Modern Optimization Techniques 3. Gradient Descent

Gradient Descent

1: procedure
GradientDescent
input: f0

2: Get initial point x
3: repeat
4: Get Step Size µ
5: x := x− µ∇f0(x)
6: until convergence
7: return x, f0(x)
8: end procedure
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Modern Optimization Techniques 3. Gradient Descent

Gradient Descent - Considerations

I Stopping criterion: ||∇f0(x)||2 ≤ ε

I Simple and straightforward

I Usually slow convergence

I Works only well for convex problems, otherwise gets stuck in local
minima

I Rarely used on practice
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Modern Optimization Techniques 3. Gradient Descent

Gradient Descent Example
Task:

minimize x2

I µ = 0.3

I −∇f0(x) = −2x

Initial point: x0 = −1.5

x0 = −1.5

x = −1.5− 0.3 · (2 · −1.5)

x = −0.6

x = −0.6

x = −0.6− 0.3 · (2 · −0.6)

x = −0.24

x = −0.24

x = −0.24− 0.3 · (2 · −0.24)

x = −0.0384

x = −0.0384

x = −0.0384− 0.3 · (2 · −0.0384)

x = −0.01536

x

f (x)
f0(x) = x2

x = −1.5x = −0.6x = −0.24x = −0.0384x = −0.01536
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Modern Optimization Techniques 3. Gradient Descent

Considerations about the Step Size

I Crucial for the convergence of the algorithm

I Step size too low =⇒ slow convergence

I Step size too high =⇒ divergence!
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Modern Optimization Techniques 3. Gradient Descent

Gradient Descent Example - A perfect Step Size

Task:

minimize x2

I µ = 0.5

I −∇f0(x) = −2x

Initial point: x0 = −1.5

x0 = −1.5

x = −1.5− 0.5 · (2 · −1.5)

x = 0

x

f (x)
f0(x) = x2

x = −1.5 x = 0
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Modern Optimization Techniques 3. Gradient Descent

Gradient Descent Example - Too High Step Size
Task:

minimize x2

I µ = 1.5

I −∇f0(x) = −2x

Initial point: x0 = −1.5

x0 = −1.5

x = −1.5− 1.5 · (2 · −1.5)

x = 3

x0 = 3

x = 3− 1.5 · (2 · 3)

x = −6

x

f (x)
f0(x) = x2

x = −1.5 x = 3
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Modern Optimization Techniques 3. Gradient Descent

A More practical example

We do not want to always minimize parabolas so let us discuss a more
practical example:

Linear Regression!

I have m many data instances a ∈ Rn with n many features / predictors

I want to learn a linear model parametrized by a vector β ∈ Rn to
predict a real value y ∈ R
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Modern Optimization Techniques 3. Gradient Descent

Practical Example: Household Spending

If we have data about m households, we can represent it as:

Am,n =


1 a1,1 a1,2 a1,3 a1,4
1 a2,1 a2,2 a2,3 a2,4
...

...
...

...
...

1 am,1 am,2 am,3 am,4

 y =


y1
y2
...
ym


We can model the household consumption is a linear combination of the
household features with parameters β:

ŷi = βTai = β01 + β1ai ,1 + β2ai ,2 + β3ai ,3 + β4ai ,4
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Modern Optimization Techniques 3. Gradient Descent

Practical Example: Household Spending

We have: 
1 a1,1 a1,2 a1,3 a1,4
1 a2,1 a2,2 a2,3 a2,4
...

...
...

...
...

1 am,1 am,2 am,3 am,4

 ·

β0
β1
β2
β3
β4

 ≈

y1
y2
...
ym


We want to find parameters β such that the measured error of the
predictions is minimal:

m∑
i=1

(βTai − yi )
2 + λ

n∑
j=1

β2j = ‖Aβ − y‖22 + λ‖β‖22

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Gradient Descent 20 / 24



Modern Optimization Techniques 3. Gradient Descent

Linear Regression
Let us look at the function to optimize:

L(β,A, y) + λReg(β) =
m∑
i=1

(β>ai − yi )
2 + λ‖β‖22

=
m∑
i=1

 n∑
j=1

βjaij − yi

2

+ λ

n∑
j=1

β2j

Then we can compute the gradient component wise:

∂

∂βk
L(β,A, y) + λReg(β) =

∂

∂βk

m∑
i=1

(
n∑

j=1

βjaij − yi )
2 + λ

n∑
j=1

β2j

=
m∑
i=1

2 ·

 n∑
j=1

βjaij − yi

 · aik + 2λβk
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Modern Optimization Techniques 3. Gradient Descent

Linear Regression

We obtain the update for every component of β as

βt+1
k = βtk − µ∇β(L(β,A, y) + λReg(β))

= βtk − µ

2
m∑
i=1

·

 n∑
j=1

βjaij − yi

 · aik + 2λβtk


I see that

(∑n
j=1 βjaij − yi

)
is actually the error of the model on the

i-th instance

I error is the same for all k, can be precomputed
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Modern Optimization Techniques 3. Gradient Descent

Linear Regression

1: procedure Learn Linear Regression Model
input: Data A, Labels y , inital parameters β0, Step Size µ,
Regularization constant λ, precision ε

2: repeat

3: Compute Error: ei =
(∑n

j=1 βjaij − yi

)
4: for k = 1, . . . , n do
5: βt+1

k = βtk − µ (
∑m

i=1 eiaik + λβtk)
6: end for
7: t = t + 1
8: until ‖∇βL(β,A, y)‖22 ≤ ε
9: return β, L(β,A, y)

10: end procedure
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Modern Optimization Techniques 3. Gradient Descent

Outlook

We will see in the next lectures:

I Stochastic Gradient Descent
I Gradient is only computed on one instance, not on all

I Coordinate Descent
I β is optimized in each coordinate

I Newton’s Method
I involves second order derivatives (curvature) information

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Gradient Descent 24 / 24


	1. Unconstrained Optimization
	2. Line search
	3. Gradient Descent

