
Modern Optimization Techniques

Modern Optimization Techniques

Lucas Rego Drumond

Information Systems and Machine Learning Lab (ISMLL)
Institute of Computer Science

University of Hildesheim, Germany

Stochastic Gradient Descent

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Stochastic Gradient Descent 1 / 32



Modern Optimization Techniques

Outline

1. Unconstrained Optimization

2. Stochastic Gradient Descent

3. Choosing the right step size

4. Stochastic Gradient Descent on Practice

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Stochastic Gradient Descent 1 / 32



Modern Optimization Techniques 1. Unconstrained Optimization

Outline

1. Unconstrained Optimization

2. Stochastic Gradient Descent

3. Choosing the right step size

4. Stochastic Gradient Descent on Practice

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Stochastic Gradient Descent 1 / 32



Modern Optimization Techniques 1. Unconstrained Optimization

Gradient Descent

1: procedure GradientDescent
input: f0

2: Get initial point x
3: repeat
4: Get Step Size µ
5: x := x− µ∇f0(x)
6: until convergence
7: return x, f0(x)
8: end procedure
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Modern Optimization Techniques 2. Stochastic Gradient Descent

Practical Example: Household Spending

Suppose we have the following data about different households:

I Number of workers in the household (a1)

I Household composition (a2)

I Region (a3)

I Gross normal weekly household income (a4)

I Weekly household spending (y)

We want to creat a model of the weekly household spending
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Modern Optimization Techniques 2. Stochastic Gradient Descent

Practical Example: Household Spending

If we have data about m households, we can represent it as:

Am,n =


1 a1,2 . . . a1,n
1 a2,2 . . . a2,n
...

...
...

...
1 am,2 . . . am,n

 y =


y1
y2
...
ym


We can model the household consumption is a linear combination of the
household features with parameters x:

ŷi = xTai = x01 + x1ai ,1 + x2ai ,2 + x3ai ,3 + x4ai ,4
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Modern Optimization Techniques 2. Stochastic Gradient Descent

Least Square Problem Revisited

The following least square problem

minimize ||Ax− y||22

Can be rewritten as

minimize
m∑
i=1

(xTai − yi )
2

Am,n =


1 a1,1 a1,2 a1,3 a1,4
1 a2,1 a2,2 a2,3 a2,4
...

...
...

...
...

1 am,1 am,2 am,3 am,4

 y =


y1
y2
...
ym


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Modern Optimization Techniques 2. Stochastic Gradient Descent

The Gradient Descent update rule
For the problem

minimize
m∑
i=1

(xTai − yi )
2

The the gradient ∇f0(x) of the objective function is:

∇xf0(x) = 2
m∑
i=1

(xTai − yi )ai

The Gradient Descent update rule is then:

x→ x− µ

(
2

m∑
i=1

(xTai − yi )ai

)
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Modern Optimization Techniques 2. Stochastic Gradient Descent

The Gradient Descent update rule

We need to “see“ all the data before updating x

x→ x− µ

(
2

m∑
i=1

(xTai − yi )ai

)

Can we make any progress before iterating over all the data?
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Modern Optimization Techniques 2. Stochastic Gradient Descent

Decomposing the objective function
The objective function

f0(x) =
m∑
i=1

(xTai − yi )
2

Can be expressed as a function of the objective on each data point (a, y):

g(x, i) = (xTai − yi )
2

So that

f0(x) =
m∑
i=1

g(x, i)
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Modern Optimization Techniques 2. Stochastic Gradient Descent

A simpler update rule

Now that we have

f0(x) =
m∑
i=1

g(x, i)

We can define the following update rule

I Pick a random instance i ∼ Uniform(1,m)

I Update x

x→ x + µ (−∇xg(x, i))

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Stochastic Gradient Descent 8 / 32



Modern Optimization Techniques 2. Stochastic Gradient Descent

Stochastic Gradient Descent (SGD)

1: procedure StochasticGradiendDescent
input: f0, µ

2: Get initial point x
3: repeat
4: for i ∈ 1, . . . ,m do
5: x→ x− µ∇g(x, i)
6: end for
7: until convergence
8: return x, f0(x)
9: end procedure
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Modern Optimization Techniques 2. Stochastic Gradient Descent

SGD and the least squares

We have

f0(x) =
m∑
i=1

g(x, i)

with

g(x, i) = (xTai − yi )
2

The update rule is

∇xg(x, i) = 2(xTai − yi )ai

x→ x− µ
(

2(xTai − yi )ai
)
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Modern Optimization Techniques 2. Stochastic Gradient Descent

SGD vs. GD

1: procedure SGD
input: f0, µ

2: Get initial point x
3: repeat
4: for i ∈ 1, . . . ,m do
5: x→ x− µ∇g(x, i)
6: end for
7: until convergence
8: return x, f0(x)
9: end procedure

1: procedure GradientDescent
input: f0

2: Get initial point x
3: repeat
4: Get Step Size µ
5: x := x− µ∇f0(x)
6: until convergence
7: return x, f0(x)
8: end procedure
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Modern Optimization Techniques 2. Stochastic Gradient Descent

SGD vs. GD - Least Squares

1: procedure SGD
input: f0, µ

2: Get initial point x
3: repeat
4: for i ∈ 1, . . . ,m do
5:

x→ x− µ
(
2(xTai − yi )ai

)
6: end for
7: until convergence
8: return x, f0(x)
9: end procedure

1: procedure GD
input: f0

2: Get initial point x
3: repeat
4: Get Step Size µ
5:

x→ x− µ
(
2
∑m

i=1(xTai − yi )ai
)

6: until convergence
7: return x, f0(x)
8: end procedure
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Modern Optimization Techniques 3. Choosing the right step size

Choosing the step size for SGD

I The step size µ is a crucial parameter to be tuned

I Given the low cost of the SGD update, using line search for the step
size is a bad choice

I Possible alternatives:

I Fixed step size

I Armijo principle

I Bold-Driver

I Adagrad
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Modern Optimization Techniques 3. Choosing the right step size

Real World Dataset: Body Fat prediction
We want to estimate the percentage of body fat based on various
attributes:

I Age (years)

I Weight (lbs)

I Height (inches)

I Neck circumference (cm)

I Chest circumference (cm)

I Abdomen 2 circumference (cm)

I Hip circumference (cm)

I Thigh circumference (cm)

I Knee circumference (cm)

I ...

http://lib.stat.cmu.edu/datasets/bodyfat
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Modern Optimization Techniques 3. Choosing the right step size

Real World Dataset: Body Fat prediction

The data is represented it as:

Am,n =


1 a1,1 a1,2 . . . a1,n
1 a2,1 a2,2 . . . a2,n
...

...
...

...
...

1 am,1 am,2 . . . am,n

 y =


y1
y2
...
ym


with m = 252, n = 14
We can model the percentage of body fat y is a linear combination of the
body measurements with parameters x:

ŷi = xTai = x01 + x1ai ,1 + x2ai ,2 + . . .+ xnai ,n
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Modern Optimization Techniques 3. Choosing the right step size

SGD - Fixed Step Size on the Body Fat dataset
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Modern Optimization Techniques 3. Choosing the right step size

Bold Driver Heuristic

I The Bold Driver Heuristic makes the assumption that smaller step
sizes are needed when closer to the optimum

I It adjusts the step size based on the value of f0(xt)− f0(xt−1)

I If the value of f0(x) grows, the step size must decrease

I If the value of f0(x) decreases, the step size can be larger for faster
convergence
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Modern Optimization Techniques 3. Choosing the right step size

Bold Driver Heuristic - Update Rule

We have

f0(x) =
m∑
i=1

g(x, i)

We need to define an increase factor γ and a decay factor ν

I For each epoch

I Evaluate the objective function f0(xt−1)

I Cycle through the whole data and update the parameters

I Evaluate the objective function f0(xt)

I if f0(xt) < f0(xt−1) then µ→ γµ

I else f0(xt) > f0(xt−1) then µ→ νµ

Widely used values: γ = 1.05 and ν = 0.5
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Modern Optimization Techniques 3. Choosing the right step size

SGD with Bold Driver
1: procedure BoldDriverSGD

input: f0, µ, γ and ν
2: Get initial point x
3: repeat
4: εt−1 → f0(x)
5: for i ∈ 1, . . . ,m do
6: x→ x− µ∇g(x, i)
7: end for
8: εt → f0(x)
9: if εt < εt−1 then

10: µ→ νµ
11: else
12: µ→ γµ
13: end if
14: until convergence
15: return x, f0(x)
16: end procedureLucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Modern Optimization Techniques 3. Choosing the right step size

Considerations

I Works well for a range of problems

I The initial µ just need to be large enough

I γ and ν needs to be adusted

I May lead to faster convergence rates
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Modern Optimization Techniques 3. Choosing the right step size

AdaGrad

I Adagrad adjusts the step size for each parameter to be optimized

I It uses information about the past gradients

I Leads to faster convergence

I Less sensitive to the choice of the step size
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Modern Optimization Techniques 3. Choosing the right step size

AdaGrad - Update Rule
We have

f0(x) =
m∑
i=1

g(x, i)

Update rule:

I Pick a random instance i ∼ Uniform(1,m)

I Compute the gradient ∇xg(x, i)

I Update the gradient history h→ h +∇xg(x, i) ◦ ∇xg(x, i)

I The step size for parameter xi is µ√
hi

I Update

x→ x− µ√
h
◦ (∇xg(x, i))

◦ denotes the elementwise product
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Modern Optimization Techniques 3. Choosing the right step size

SGD with Adagrad

1: procedure AdaGradSGD
input: f0, µ

2: Get initial point x
3: h→ 0
4: repeat
5: for i ∈ 1, . . . ,m do
6: h→ h +∇xg(x, i) ◦ ∇xg(x, i)
7: x→ x− µ√

h
◦ ∇g(x, i)

8: end for
9: until convergence

10: return x, f0(x)
11: end procedure
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Modern Optimization Techniques 3. Choosing the right step size

AdaGrad Step Size
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Modern Optimization Techniques 3. Choosing the right step size

AdaGrad vs Fixed Step Size
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Modern Optimization Techniques 4. Stochastic Gradient Descent on Practice

GD Step Size
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Modern Optimization Techniques 4. Stochastic Gradient Descent on Practice

SGD vs GD - Body Fat Dataset
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Modern Optimization Techniques 4. Stochastic Gradient Descent on Practice

Year Prediction Data Set

I Least Squares Problem

I Prediction of the release year of a song from audio features

I 90 features

I Experiments done on a subset of 1000 instances of the data
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GD Step Size - Year Prediction
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SGD Step Size - Year Prediction
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AdaGrad Step Size - Year Prediction
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AdaGrad vs SGD vs GD - Year Prediction
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