

Modern Optimization Techniques

Lucas Rego Drumond

Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany

Stochastic Gradient Descent

Outline

- 1. Unconstrained Optimization
- 2. Stochastic Gradient Descent
- 3. Choosing the right step size
- 4. Stochastic Gradient Descent on Practice

Outline

1. Unconstrained Optimization

- 2. Stochastic Gradient Descent
- 3. Choosing the right step size
- 4. Stochastic Gradient Descent on Practice

Gradient Descent

- 1: procedure GRADIENTDESCENT input: f₀
- 2: Get initial point x
- 3: repeat
- 4: Get Step Size μ
- 5: $\mathbf{x} := \mathbf{x} \mu \nabla f_0(\mathbf{x})$
- 6: **until** convergence
- 7: return x, $f_0(x)$
- 8: end procedure

Outline

- 1. Unconstrained Optimization
- 2. Stochastic Gradient Descent
- 3. Choosing the right step size
- 4. Stochastic Gradient Descent on Practice

Practical Example: Household Spending

Suppose we have the following data about different households:

- Number of workers in the household (a_1)
- ► Household composition (*a*₂)
- Region (a_3)
- ► Gross normal weekly household income (*a*₄)
- ► Weekly household spending (y)

We want to creat a model of the weekly household spending

Practical Example: Household Spending

If we have data about m households, we can represent it as:

$$A_{m,n} = \begin{pmatrix} 1 & a_{1,2} & \dots & a_{1,n} \\ 1 & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & a_{m,2} & \dots & a_{m,n} \end{pmatrix} \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

We can model the household consumption is a linear combination of the household features with parameters \mathbf{x} :

$$\hat{y}_i = \mathbf{x}^T \mathbf{a}_i = x_0 1 + x_1 a_{i,1} + x_2 a_{i,2} + x_3 a_{i,3} + x_4 a_{i,4}$$

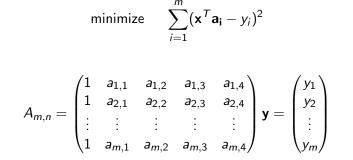
Modern Optimization Techniques 2. Stochastic Gradient Descent

Least Square Problem Revisited

The following least square problem

minimize $||A\mathbf{x} - \mathbf{y}||_2^2$

Can be rewritten as



Modern Optimization Techniques 2. Stochastic Gradient Descent

The Gradient Descent update rule For the problem

minimize
$$\sum_{i=1}^{m} (\mathbf{x}^T \mathbf{a_i} - y_i)^2$$

The the gradient $\nabla f_0(\mathbf{x})$ of the objective function is:

$$abla_{\mathbf{x}} f_0(\mathbf{x}) = 2 \sum_{i=1}^m (\mathbf{x}^T \mathbf{a}_i - y_i) \mathbf{a}_i$$

The Gradient Descent update rule is then:

$$\mathbf{x}
ightarrow \mathbf{x} - \mu \left(2 \sum_{i=1}^{m} (\mathbf{x}^{T} \mathbf{a}_{i} - y_{i}) \mathbf{a}_{i}
ight)$$

The Gradient Descent update rule

We need to "see" all the data before updating \mathbf{x}

$$\mathbf{x} \rightarrow \mathbf{x} - \mu \left(2 \sum_{i=1}^{m} (\mathbf{x}^T \mathbf{a}_i - y_i) \mathbf{a}_i \right)$$

Can we make any progress before iterating over all the data?

Modern Optimization Techniques 2. Stochastic Gradient Descent

Decomposing the objective function The objective function

$$f_0(\mathbf{x}) = \sum_{i=1}^m (\mathbf{x}^T \mathbf{a_i} - y_i)^2$$

Can be expressed as a function of the objective on each data point (\mathbf{a}, y) :

$$g(\mathbf{x},i) = (\mathbf{x}^T \mathbf{a_i} - y_i)^2$$

So that

$$f_0(\mathbf{x}) = \sum_{i=1}^m g(\mathbf{x}, i)$$

A simpler update rule

Now that we have

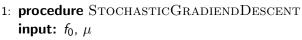
$$f_0(\mathbf{x}) = \sum_{i=1}^m g(\mathbf{x}, i)$$

We can define the following update rule

- ▶ Pick a random instance *i* ~ Uniform(1, *m*)
- Update x

$$\mathbf{x} \rightarrow \mathbf{x} + \mu \left(-\nabla_{\mathbf{x}} g(\mathbf{x}, i) \right)$$

Stochastic Gradient Descent (SGD)



- 2: Get initial point x
- 3: repeat
- 4: **for** $i \in 1, ..., m$ **do**

5: $\mathbf{x} \rightarrow \mathbf{x} - \mu \nabla g(\mathbf{x}, i)$

- 6: end for
- 7: **until** convergence
- 8: return x, $f_0(x)$
- 9: end procedure

SGD and the least squares

We have

$$f_0(\mathbf{x}) = \sum_{i=1}^m g(\mathbf{x}, i)$$

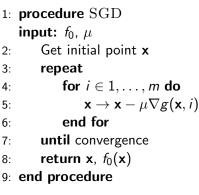
with

$$g(\mathbf{x},i) = (\mathbf{x}^T \mathbf{a_i} - y_i)^2$$

The update rule is

$$\nabla_{\mathbf{x}} g(\mathbf{x}, i) = 2(\mathbf{x}^{T} \mathbf{a}_{\mathbf{i}} - y_{i}) \mathbf{a}_{\mathbf{i}}$$
$$\mathbf{x} \to \mathbf{x} - \mu \left(2(\mathbf{x}^{T} \mathbf{a}_{\mathbf{i}} - y_{i}) \mathbf{a}_{\mathbf{i}} \right)$$

SGD vs. GD



- 1: procedure GRADIENTDESCENT input: f₀
- 2: Get initial point x
- 3: repeat
- 4: Get Step Size μ

5:
$$\mathbf{x} := \mathbf{x} - \mu \nabla f_0(\mathbf{x})$$

- 6: **until** convergence
- 7: return x, $f_0(x)$
- 8: end procedure

SGD vs. GD - Least Squares

1: procedure SGD input: f_0 , μ

- 2: Get initial point **x**
- 3: repeat
 - for $i \in 1, \ldots, m$ do
- 4: 5:

$$\mathbf{x} \rightarrow \mathbf{x} - \mu \left(2(\mathbf{x}^{\mathsf{T}} \mathbf{a}_{\mathbf{i}} - y_{i}) \mathbf{a}_{\mathbf{i}} \right)$$
6: end for

- 7: until convergence
- 8: return x, $f_0(x)$
- 9: end procedure

- procedure GD input: f₀
- 2: Get initial point **x**
- 3: repeat

4: Get Step Size
$$\mu$$

$$\mathbf{x} \rightarrow \mathbf{x} - \mu \left(2 \sum_{i=1}^{m} (\mathbf{x}^T \mathbf{a_i} - y_i) \mathbf{a_i} \right)$$

- 6: **until** convergence
- 7: return x, $f_0(x)$
- 8: end procedure

Outline

- 1. Unconstrained Optimization
- 2. Stochastic Gradient Descent
- 3. Choosing the right step size
- 4. Stochastic Gradient Descent on Practice

Choosing the step size for SGD

- \blacktriangleright The step size μ is a crucial parameter to be tuned
- Given the low cost of the SGD update, using line search for the step size is a bad choice
- Possible alternatives:
 - Fixed step size
 - Armijo principle
 - Bold-Driver
 - Adagrad

Real World Dataset: Body Fat prediction

We want to estimate the percentage of body fat based on various attributes:

- Age (years)
- Weight (lbs)

▶ ...

- Height (inches)
- Neck circumference (cm)
- Chest circumference (cm)
- Abdomen 2 circumference (cm)
- Hip circumference (cm)
- Thigh circumference (cm)
- ► Knee circumference (cm)

http://lib.stat.cmu.edu/datasets/bodyfat

Real World Dataset: Body Fat prediction

The data is represented it as:

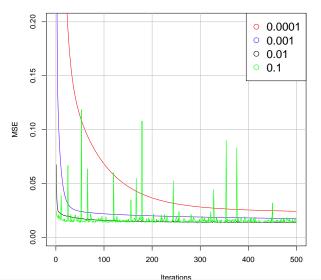
$$A_{m,n} = \begin{pmatrix} 1 & a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ 1 & a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{pmatrix} \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

with m = 252, n = 14

We can model the percentage of body fat y is a linear combination of the body measurements with parameters x:

$$\hat{y}_i = \mathbf{x}^T \mathbf{a}_i = x_0 1 + x_1 a_{i,1} + x_2 a_{i,2} + \ldots + x_n a_{i,n}$$

SGD - Fixed Step Size on the Body Fat dataset



SGD Step Size

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Stochastic Gradient Descent

Ners

Bold Driver Heuristic

- The Bold Driver Heuristic makes the assumption that smaller step sizes are needed when closer to the optimum
- ► It adjusts the step size based on the value of $f_0(\mathbf{x}^t) f_0(\mathbf{x}^{t-1})$
- If the value of $f_0(\mathbf{x})$ grows, the step size must decrease
- ► If the value of f₀(x) decreases, the step size can be larger for faster convergence

Bold Driver Heuristic - Update Rule

We have

$$f_0(\mathbf{x}) = \sum_{i=1}^m g(\mathbf{x}, i)$$

We need to define an increase factor γ and a decay factor ν

- ► For each epoch
- Evaluate the objective function $f_0(\mathbf{x}^{t-1})$
- ► Cycle through the whole data and update the parameters
- Evaluate the objective function $f_0(\mathbf{x}^t)$
- if $f_0(\mathbf{x}^t) < f_0(\mathbf{x}^{t-1})$ then $\mu \to \gamma \mu$
- else $f_0(\mathbf{x}^t) > f_0(\mathbf{x}^{t-1})$ then $\mu \to \nu \mu$

Widely used values: $\gamma = 1.05$ and $\nu = 0.5$

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Stochastic Gradient Descent

SGD with Bold Driver

- procedure BOLDDRIVERSGD input: f₀, μ, γ and ν
- 2: Get initial point **x**
- 3: repeat
- 4: $\epsilon^{t-1} \to f_0(\mathbf{x})$
- 5: **for** $i \in 1, ..., m$ **do**
 - $\mathbf{x}
 ightarrow \mathbf{x} \mu
 abla g(\mathbf{x}, i)$
- 7: end for

6:

- 8: $\epsilon^t \to f_0(\mathbf{x})$ 9: **if** $\epsilon^t < \epsilon^{t-1}$ **then**
- 9: if $\epsilon^t < \epsilon^{t-1}$ th
- 10: $\mu \rightarrow \nu \mu$
- 11: else
- 12: $\mu \to \gamma \mu$
- 13: end if
- 14: **until** convergence
- 15: return x, $f_0(\mathbf{x})$

Considerations

- Works well for a range of problems
- \blacktriangleright The initial μ just need to be large enough
- $\blacktriangleright~\gamma$ and ν needs to be adusted
- May lead to faster convergence rates

AdaGrad

- ► Adagrad adjusts the step size for each parameter to be optimized
- It uses information about the past gradients
- Leads to faster convergence
- Less sensitive to the choice of the step size

AdaGrad - Update Rule We have

$$f_0(\mathbf{x}) = \sum_{i=1}^m g(\mathbf{x}, i)$$

Update rule:

- ▶ Pick a random instance *i* ~ Uniform(1, *m*)
- Compute the gradient $\nabla_{\mathbf{x}} g(\mathbf{x}, i)$
- ▶ Update the gradient history $\mathbf{h} \rightarrow \mathbf{h} + \nabla_{\mathbf{x}} g(\mathbf{x}, i) \circ \nabla_{\mathbf{x}} g(\mathbf{x}, i)$
- The step size for parameter \mathbf{x}_i is $\frac{\mu}{\sqrt{h_i}}$
- Update

$$\mathbf{x}
ightarrow \mathbf{x} - rac{\mu}{\sqrt{\mathbf{h}}} \circ (
abla_{\mathbf{x}} g(\mathbf{x}, i))$$

\circ denotes the elementwise product

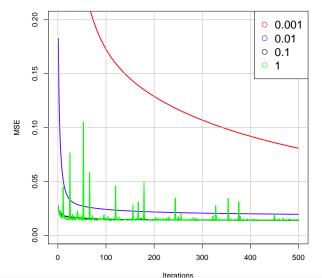
Universiter Fildesheim

SGD with Adagrad

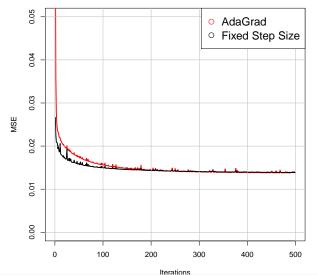
- 1: procedure ADAGRADSGD input: f₀, μ
- 2: Get initial point x
- 3: $\mathbf{h}
 ightarrow \mathbf{0}$
- 4: repeat
- 5: **for** $i \in 1, ..., m$ **do**
- 6: $\mathbf{h} \rightarrow \mathbf{h} + \nabla_{\mathbf{x}} g(\mathbf{x}, i) \circ \nabla_{\mathbf{x}} g(\mathbf{x}, i)$
- 7:
- $\mathbf{n} \to \mathbf{n} + \nabla_{\mathbf{x}} g(\mathbf{x}, i) \circ \nabla_{\mathbf{x}} g(\mathbf{x}, i)$ $\mathbf{x} \to \mathbf{x} \frac{\mu}{\sqrt{\mathbf{h}}} \circ \nabla g(\mathbf{x}, i)$
- 8: end for
- 9: until convergence
- 10: return x, $f_0(x)$
- 11: end procedure

AdaGrad Step Size

ADAGRAD Step Size



AdaGrad vs Fixed Step Size

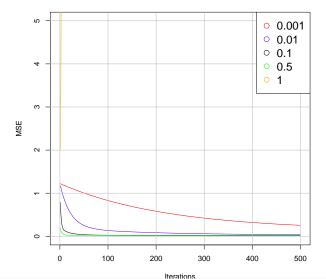


Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Stochastic Gradient Descent

Outline

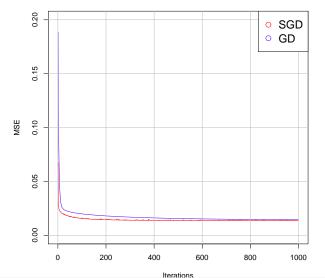
- 1. Unconstrained Optimization
- 2. Stochastic Gradient Descent
- 3. Choosing the right step size
- 4. Stochastic Gradient Descent on Practice

GD Step Size



SGD vs GD - Body Fat Dataset

SGD vs GD

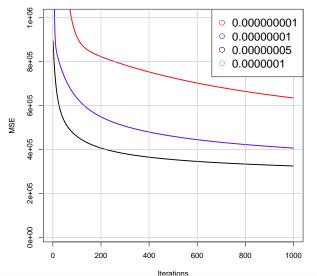


Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Stochastic Gradient Descent

Year Prediction Data Set

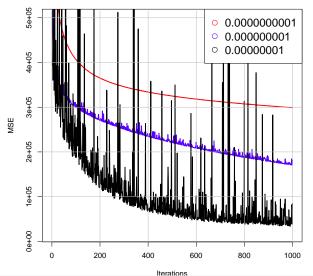
- ► Least Squares Problem
- Prediction of the release year of a song from audio features
- ▶ 90 features
- ► Experiments done on a subset of 1000 instances of the data

GD Step Size - Year Prediction



Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Stochastic Gradient Descent

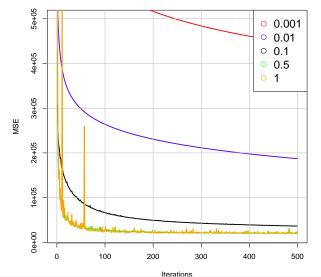
SGD Step Size - Year Prediction



Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Stochastic Gradient Descent

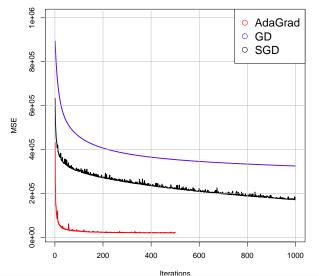
AdaGrad Step Size - Year Prediction

ADAGRAD Step Size



Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Stochastic Gradient Descent

AdaGrad vs SGD vs GD - Year Prediction



Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Stochastic Gradient Descent