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Modern Optimization Techniques 1. Review

Unconstrained Optimization Problems

An unconstrained optimization problem has the form:

minimize f0(x)

Where:

I f0 : Rn → R is convex, twice differentiable

I An optimal x∗ exists and f (x∗) is attained and finite
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Modern Optimization Techniques 1. Review

Descent Methods

The next point is generated
using

I A step size µ

I A direction ∆x such that

f0(xt + µ∆xt−1) < f0(xt−1)

1: procedure DescentMethod
input: f0

2: Get initial point x
3: repeat
4: Get Update Direction ∆x
5: Get Step Size µ
6: xt+1 ← xt + µ∆xt

7: until convergence
8: return x, f0(x)
9: end procedure
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Modern Optimization Techniques 1. Review

Methods seen so far

I Gradient Descent:

∆x = −∇f0(x)

I Stochastic Gradient Descent:
I If the function is if the form f0(x) =

∑m
i=1 g(x, i):

I

∆ix = −∇g(x, i)
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Modern Optimization Techniques 2. The Newton’s Method

An idea using second order approximations

Be f0 : Rn → R and x ∈ R:

minimize f0(x)

I Start with an initial solution x(t)

I Compute f̂ , a quadratic approximation of f0 around x(t)

I Find xt+1 = arg min f̂ (x)

I t ← t + 1

I Repeat until convergence
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Modern Optimization Techniques 2. The Newton’s Method

An idea using second order approximations

f0(x) =
1

2
(x− 3)2 +

1

10
x3

f0(x)

x

(x(0), f0(x(0)))

x(0)

f̂ (x)

x(1)

(x(1), f0(x(1)))

f̂ (x)
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Modern Optimization Techniques 2. The Newton’s Method

Taylor Approximation

Be f : Rn → R an infinitely differentiable function at some point a ∈ Rn

f (x) can be approximated by the Taylor expansion of f , which is given by:

f (a) +
∇f (a)

1!
(x− a) +

∇2f (a)

2!
(x− a)2 +

∇3f (a)

3!
(x− a)3 + · · ·

=
∞∑
i=0

∇i f (a)

i !
(x− a)i

It can be shown that for a k large enough

f (x) =
k∑

i=0

∇i f (a)

i !
(x− a)i
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Modern Optimization Techniques 2. The Newton’s Method

Second Order Approximation
Let us take the second order approximation of a twice differentiable
function f0 : Rn → R at a point x:

f̂ (t) = f0(x) +∇f0(x)T (t− x) +
1

2
(t− x)T∇2f0(x)(t− x)

We want to find the point t = x(t+1) = arg min f̂ :

∇tf̂ (t) = ∇f0(x) +∇2f0(x)(t− x)
!

= 0

∇f0(x) +∇2f0(x)(t− x) = 0

∇2f0(x)(t− x) = −∇f0(x)

t− x = −∇2f0(x)−1∇f0(x)

t = x−∇2f0(x)−1∇f0(x)
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Modern Optimization Techniques 2. The Newton’s Method

Newton’s Step

I Be f0 : Rn → R a twice differentiable convex function

I Newton’s step uses the inverse of the Hessian matrix ∇2f0(x)−1 and
the gradient ∇f0(x)

∆Newtonx = −∇2f0(x)−1∇f0(x)
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Modern Optimization Techniques 2. The Newton’s Method

Newton Decrement

We have a measure of the proximity of x to the optimal solution x∗:

λ(x) =
(
∇f0(x)T∇2f0(x)−1∇f0(x)

) 1
2

I It provides a useful estimate of f0(x)− f0(x∗) using the quadratic
approximation f̂ :

f0(x)− inf
α
f̂ (α) =

1

2
λ(x)2

I it is affine invariant (insensitive to the choice of coordinates)
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Modern Optimization Techniques 2. The Newton’s Method

Newton’s method

1: procedure Newtons Method
input: f0, tolerance ε > 0

2: Get initial point x
3: repeat
4: ∆x← −∇2f0(x)−1∇f0(x)
5: λ2 ← ∇f0(x)T∇2f0(x)−1∇f0(x)

6: if λ2

2 ≤ ε then
7: Quit
8: end if
9: Get Step Size µ

10: x← x + µ∆x
11: until convergence
12: return x, f0(x)
13: end procedure
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Modern Optimization Techniques 2. The Newton’s Method

Affine Invariance

We want to minimize f0(x).

Be T a positive-semidefinite matrix such that: Tα = x

We can minimize f̃ (α) = f0(Tα) = f0(x)

The gradient of f̃ is:

∇f̃ (α) = T>∇f0(Tα)

This means that the gradient method isn’t affine invariant!
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Modern Optimization Techniques 2. The Newton’s Method

Considerations

I Works extremely well for a lot of problems

I f0 must be twice differentiable

I The Hessian has n2 elements.

I Compute and store the Hessian might hinder it’s scalability for high
dimensional problems

I Inverting the Hessian might be in some cases impractical
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Modern Optimization Techniques 2. The Newton’s Method

Newton’s method - Example

For x ∈ R

min
x

(2x− 4)4

Algorithm:

I Let us use a fixed step size µ = 1

I Initialize x(0)

I Repeat until convergence:

I x(t) ← − ∇f0(x
(t−1))

∇2f0(x(t−1))
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Modern Optimization Techniques 2. The Newton’s Method

Newton’s method - Example

For x ∈ R

min
x

(2x− 4)4

Algorithm:

I ∇f0(x) = 8(2x− 4)3

I ∇2f0(x) = 48(2x− 4)2

I Step: ∆x = −∇2f0(x)−1∇f0(x)

I ∆x = −1
6(2x− 4)
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Modern Optimization Techniques 2. The Newton’s Method

Newton’s method - Example

We Start at x0 = 2.5

I x1 ← 2.5− 1
6(2 · 2.5− 4) = 2.3333

I x2 ← 2.33333− 1
6(2 · 2.3333− 4) = 2.22222

I x3 ← 2.22222− 1
6(2 · 2.22222− 4) = 2.148148

I x4 ← 2.148148− 1
6(2 · 2.148148− 4) = 2.098765

I x5 ← 2.098765− 1
6(2 · 2.098765− 4) = 2.065844

I x6 ← 2.065844− 1
6(2 · 2.065844− 4) = 2.043896

I ...

I x20 ← 2.000226− 1
6(2 · 2.0000134− 4) = 2.00015
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Modern Optimization Techniques 2. The Newton’s Method

Practical Example: Household Location

Suppose we have the following data about different households:

I Number of workers in the household (a1)

I Household composition (a2)

I Weekly household spending (a3)

I Gross normal weekly household income (a4)

I Region (y): North y = 1 or south y = 0

We want to creat a model of the location of the household
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Modern Optimization Techniques 2. The Newton’s Method

Practical Example: Household Spending

If we have data about m households, we can represent it as:

Am,n =


1 a1,2 . . . a1,n
1 a2,2 . . . a2,n
...

...
...

...
1 am,2 . . . am,n

 y =


y1
y2
...
ym


We can model the household location is a linear combination of the
household features with parameters x:

ŷi = σ(xTai) = σ(x01 + x1ai ,1 + x2ai ,2 + x3ai ,3 + x4ai ,4)

where: σ(x) = 1
1+e−x
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Modern Optimization Techniques 2. The Newton’s Method

Example II - The Logistic Regression

The logistic regression learning problem is

minimize
m∑
i=1

yi log σ(xTai) + (1− yi ) log(1− σ(xTai))

Am,n =


1 a1,1 a1,2 a1,3 a1,4
1 a2,1 a2,2 a2,3 a2,4
...

...
...

...
...

1 am,1 am,2 am,3 am,4

 y =


y1
y2
...
ym
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Modern Optimization Techniques 2. The Newton’s Method

The Logistic Regression
First we need to compute the gradient of our objective function:

minimize
m∑
i=1

yi log σ(xTai) + (1− yi ) log(1− σ(xTai))

∂f0
∂xk

=
m∑
i=1

yi
1

σ(xTai)
σ(xTai)

(
1− σ(xTai)

)
aik

−(1− yi )
1

1− σ(xTai)
σ(xTai)

(
1− σ(xTai)

)
aik

=
m∑
i=1

yiaik

(
1− σ(xTai)

)
− (1− yi )aikσ(xTai)

=
m∑
i=1

aik

(
yi − σ(xTai)

)
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Modern Optimization Techniques 2. The Newton’s Method

The Logistic Regression

∂f0
∂xk

=
m∑
i=1

aik

(
yi − σ(xTai)

)
Now we need to compute the Hessian matrix:

∂2f0
∂xk∂xj

=
m∑
i=1

−aikσ(xTai)
(

1− σ(xTai)
)
aij

=
m∑
i=1

aikaijσ(xTai)
(
σ(xTai)− 1

)
The Hessian H is an n × n matrix such that:

Hk,j =
m∑
i=1

aikaijσ(xTai)
(
σ(xTai)− 1

)
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Modern Optimization Techniques 2. The Newton’s Method

The Logistic Regression
So we have our gradient ∇f0 ∈ Rn such that

∇xk f0 =
m∑
i=1

aik

(
yi − σ(xTai)

)
And the Hessian H ∈ Rn×n:

Hk,j =
m∑
i=1

aikaijσ(xTai)
(
σ(xTai)− 1

)
the newton update rule is:

xt+1 = xt − µH−1∇f0
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Modern Optimization Techniques 2. The Newton’s Method

Newton’s Method for Logistic Regression - Considerations

The newton update rule is:

xt+1 = xt − µH−1∇f0

Biggest problem:

How to efficiently compute H−1 for:

Hk,j =
m∑
i=1

aikaijσ(xTai)
(
σ(xTai)− 1

)

Considerations:

I H is symmetric: Hk,j = Hj ,k
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