

Modern Optimization Techniques

Lucas Rego Drumond

Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany

Newton's Method

Outline

1. Review

2. The Newton's Method

Outline

1. Review

2. The Newton's Method

Modern Optimization Techniques 1. Review

Unconstrained Optimization Problems

An **unconstrained optimization problem** has the form:

minimize $f_0(\mathbf{x})$

Where:

- $f_0 : \mathbb{R}^n \to \mathbb{R}$ is convex, twice differentiable
- An optimal \mathbf{x}^* exists and $f(\mathbf{x}^*)$ is attained and finite

Descent Methods

The next point is generated using

- \blacktriangleright A step size μ
- A direction $\Delta \mathbf{x}$ such that

$$f_0(\mathbf{x}^t + \mu \Delta \mathbf{x}^{t-1}) < f_0(\mathbf{x}^{t-1})$$

1: procedure DESCENTMETHOD input: f₀

2: Get initial point **x**

repeat

3:

4:

5: 6: 7:

8:

- Get Update Direction $\Delta \mathbf{x}$
 - Get Step Size μ

$$\mathbf{x}^{t+1} \leftarrow \mathbf{x}^t + \mu \varDelta \mathbf{x}^t$$

- until convergence
- return x, $f_0(x)$
- 9: end procedure

Methods seen so far

Gradient Descent:

►

$$\Delta \mathbf{x} = -\nabla f_0(\mathbf{x})$$

- Stochastic Gradient Descent:
 - If the function is if the form $f_0(\mathbf{x}) = \sum_{i=1}^m g(\mathbf{x}, i)$:
 - $\Delta_i \mathbf{x} = -\nabla g(\mathbf{x}, i)$

Outline

1. Review

2. The Newton's Method

Universiter - Hildeshein

An idea using second order approximations

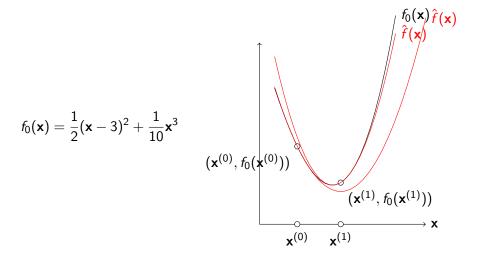
Be $f_0 : \mathbb{R}^n \to \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}$:

minimize $f_0(\mathbf{x})$

- Start with an initial solution $\mathbf{x}^{(t)}$
- Compute \hat{f} , a quadratic approximation of f_0 around $\mathbf{x}^{(t)}$
- Find $\mathbf{x}^{t+1} = \arg\min \hat{f}(\mathbf{x})$
- ► $t \leftarrow t+1$
- Repeat until convergence

Modern Optimization Techniques 2. The Newton's Method

An idea using second order approximations



Taylor Approximation

Be $f : \mathbb{R}^n \to \mathbb{R}$ an infinitely differentiable function at some point $\mathbf{a} \in \mathbb{R}^n$ $f(\mathbf{x})$ can be approximated by the Taylor expansion of f, which is given by:

$$f(\mathbf{a}) + \frac{\nabla f(\mathbf{a})}{1!}(\mathbf{x} - \mathbf{a}) + \frac{\nabla^2 f(\mathbf{a})}{2!}(\mathbf{x} - \mathbf{a})^2 + \frac{\nabla^3 f(\mathbf{a})}{3!}(\mathbf{x} - \mathbf{a})^3 + \cdots$$
$$= \sum_{i=0}^{\infty} \frac{\nabla^i f(\mathbf{a})}{i!}(\mathbf{x} - \mathbf{a})^i$$

It can be shown that for a k large enough

$$f(\mathbf{x}) = \sum_{i=0}^{k} \frac{\nabla^{i} f(\mathbf{a})}{i!} (\mathbf{x} - \mathbf{a})^{i}$$

Second Order Approximation

Let us take the second order approximation of a twice differentiable function $f_0 : \mathbb{R}^n \to \mathbb{R}$ at a point **x**:

$$\hat{f}(\mathbf{t}) = f_0(\mathbf{x}) + \nabla f_0(\mathbf{x})^T (\mathbf{t} - \mathbf{x}) + \frac{1}{2} (\mathbf{t} - \mathbf{x})^T \nabla^2 f_0(\mathbf{x}) (\mathbf{t} - \mathbf{x})$$

We want to find the point $\mathbf{t} = \mathbf{x}^{(t+1)} = \arg\min \hat{f}$:

$$\begin{aligned} \nabla_{\mathbf{t}} \hat{f}(\mathbf{t}) &= \nabla f_0(\mathbf{x}) + \nabla^2 f_0(\mathbf{x})(\mathbf{t} - \mathbf{x}) \stackrel{!}{=} 0\\ \nabla f_0(\mathbf{x}) + \nabla^2 f_0(\mathbf{x})(\mathbf{t} - \mathbf{x}) &= 0\\ \nabla^2 f_0(\mathbf{x})(\mathbf{t} - \mathbf{x}) &= -\nabla f_0(\mathbf{x})\\ \mathbf{t} - \mathbf{x} &= -\nabla^2 f_0(\mathbf{x})^{-1} \nabla f_0(\mathbf{x})\\ \mathbf{t} &= \mathbf{x} - \nabla^2 f_0(\mathbf{x})^{-1} \nabla f_0(\mathbf{x}) \end{aligned}$$

Newton's Step

▶ Be $f_0 : \mathbb{R}^n \to \mathbb{R}$ a twice differentiable convex function

► Newton's step uses the inverse of the Hessian matrix ∇²f₀(x)⁻¹ and the gradient ∇f₀(x)

$$\varDelta^{\mathsf{Newton}} \mathbf{x} = -\nabla^2 f_0(\mathbf{x})^{-1} \nabla f_0(\mathbf{x})$$

Newton Decrement

We have a measure of the proximity of \mathbf{x} to the optimal solution \mathbf{x}^* :

$$\lambda(\mathbf{x}) = \left(\nabla f_0(\mathbf{x})^T \nabla^2 f_0(\mathbf{x})^{-1} \nabla f_0(\mathbf{x})\right)^{\frac{1}{2}}$$

It provides a useful estimate of f₀(x) − f₀(x*) using the quadratic approximation f̂:

$$f_0(\mathbf{x}) - \inf_{\alpha} \hat{f}(\alpha) = \frac{1}{2}\lambda(\mathbf{x})^2$$

it is affine invariant (insensitive to the choice of coordinates)

Newton's method

- procedure NEWTONS METHOD input: f₀, tolerance ε > 0
- 2: Get initial point x
- 3: repeat

4:
$$\Delta \mathbf{x} \leftarrow -\nabla^2 f_0(\mathbf{x})^{-1} \nabla f_0(\mathbf{x})$$

5: $\lambda^2 \leftarrow \nabla f_0(\mathbf{x})^T \nabla^2 f_0(\mathbf{x})^{-1} \nabla f_0(\mathbf{x})$

5:
$$\lambda^{-} \leftarrow \sqrt{I_0(\mathbf{X})} \sqrt{-I_0(\mathbf{X})}$$

6: **if** $\frac{\lambda^2}{2} < \epsilon$ then

7:
$$\Pi \frac{1}{2} \ge \epsilon \Gamma$$

- 8: end if
- 9: Get Step Size μ
- 10: $\mathbf{x} \leftarrow \mathbf{x} + \mu \Delta \mathbf{x}$
- 11: **until** convergence
- 12: return x, $f_0(x)$

13: end procedure

Affine Invariance

We want to minimize $f_0(\mathbf{x})$.

Be T a positive-semidefinite matrix such that: $T\alpha = \mathbf{x}$

We can minimize $\tilde{f}(\alpha) = f_0(T\alpha) = f_0(\mathbf{x})$

The gradient of \tilde{f} is:

$$\nabla \tilde{f}(\alpha) = T^{\top} \nabla f_0(T\alpha)$$

This means that the gradient method isn't affine invariant!

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Newton's Method

Considerations

- Works extremely well for a lot of problems
- ► *f*⁰ must be twice differentiable
- The Hessian has n^2 elements.
- Compute and store the Hessian might hinder it's scalability for high dimensional problems
- ► Inverting the Hessian might be in some cases impractical

Newton's method - Example

For $\mathbf{x} \in \mathbb{R}$

$$\min_{\mathbf{x}} (2\mathbf{x} - 4)^4$$

Algorithm:

- \blacktriangleright Let us use a fixed step size $\mu=1$
- ► Initialize **x**⁽⁰⁾
- Repeat until convergence:

$$\blacktriangleright \mathbf{x}^{(t)} \leftarrow -\frac{\nabla f_0(\mathbf{x}^{(t-1)})}{\nabla^2 f_0(\mathbf{x}(t-1))}$$

Newton's method - Example

$$\min_{\mathbf{x}} (2\mathbf{x} - 4)^4$$

Algorithm:

•
$$\nabla f_0(\mathbf{x}) = 8(2\mathbf{x} - 4)^3$$

•
$$\nabla^2 f_0(\mathbf{x}) = 48(2\mathbf{x} - 4)^2$$

• Step:
$$\Delta \mathbf{x} = -\nabla^2 f_0(\mathbf{x})^{-1} \nabla f_0(\mathbf{x})$$

►
$$\Delta \mathbf{x} = -\frac{1}{6}(2\mathbf{x} - 4)$$

Universite Hildeshein

Newton's method - Example

We Start at $\mathbf{x}^0 = 2.5$ ▶ $\mathbf{x}^1 \leftarrow 2.5 - \frac{1}{6}(2 \cdot 2.5 - 4) = 2.3333$ ▶ $\mathbf{x}^2 \leftarrow 2.33333 - \frac{1}{6}(2 \cdot 2.3333 - 4) = 2.22222$ ▶ $\mathbf{x}^3 \leftarrow 2.22222 - \frac{1}{6}(2 \cdot 2.22222 - 4) = 2.148148$ ▶ $\mathbf{x}^4 \leftarrow 2.148148 - \frac{1}{6}(2 \cdot 2.148148 - 4) = 2.098765$ ▶ $\mathbf{x}^5 \leftarrow 2.098765 - \frac{1}{6}(2 \cdot 2.098765 - 4) = 2.065844$ ▶ $\mathbf{x}^{6} \leftarrow 2.065844 - \frac{1}{6}(2 \cdot 2.065844 - 4) = 2.043896$ ▶ ...

► $\mathbf{x}^{20} \leftarrow 2.000226 - \frac{1}{6}(2 \cdot 2.0000134 - 4) = 2.00015$

Practical Example: Household Location

Suppose we have the following data about different households:

- Number of workers in the household (a_1)
- ► Household composition (*a*₂)
- ▶ Weekly household spending (*a*₃)
- ► Gross normal weekly household income (*a*₄)
- **Region** (y): North y = 1 or south y = 0

We want to creat a model of the location of the household

w

Shiversiter

Practical Example: Household Spending

If we have data about m households, we can represent it as:

$$A_{m,n} = \begin{pmatrix} 1 & a_{1,2} & \dots & a_{1,n} \\ 1 & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & a_{m,2} & \dots & a_{m,n} \end{pmatrix} \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

We can model the household location is a linear combination of the household features with parameters \mathbf{x} :

$$\hat{y}_i = \sigma(\mathbf{x}^T \mathbf{a_i}) = \sigma(\mathbf{x}_0 1 + \mathbf{x}_1 a_{i,1} + \mathbf{x}_2 a_{i,2} + \mathbf{x}_3 a_{i,3} + \mathbf{x}_4 a_{i,4})$$

here: $\sigma(x) = \frac{1}{1 + e^{-x}}$

Shi^{wers}ire

Example II - The Logistic Regression

The logistic regression learning problem is

minimize
$$\sum_{i=1}^{m} y_i \log \sigma(\mathbf{x}^T \mathbf{a_i}) + (1 - y_i) \log(1 - \sigma(\mathbf{x}^T \mathbf{a_i}))$$

$$A_{m,n} = \begin{pmatrix} 1 & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ 1 & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{m,1} & a_{m,2} & a_{m,3} & a_{m,4} \end{pmatrix} \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

The Logistic Regression

m

First we need to compute the gradient of our objective function:

inimize
$$\sum_{i=1}^{m} y_i \log \sigma(\mathbf{x}^T \mathbf{a}_i) + (1 - y_i) \log(1 - \sigma(\mathbf{x}^T \mathbf{a}_i))$$
$$\frac{\partial f_0}{\partial \mathbf{x}_k} = \sum_{i=1}^{m} y_i \frac{1}{\sigma(\mathbf{x}^T \mathbf{a}_i)} \sigma(\mathbf{x}^T \mathbf{a}_i) \left(1 - \sigma(\mathbf{x}^T \mathbf{a}_i)\right) a_{ik}$$
$$-(1 - y_i) \frac{1}{1 - \sigma(\mathbf{x}^T \mathbf{a}_i)} \sigma(\mathbf{x}^T \mathbf{a}_i) \left(1 - \sigma(\mathbf{x}^T \mathbf{a}_i)\right) a_{ik}$$
$$= \sum_{i=1}^{m} y_i a_{ik} \left(1 - \sigma(\mathbf{x}^T \mathbf{a}_i)\right) - (1 - y_i) a_{ik} \sigma(\mathbf{x}^T \mathbf{a}_i)$$
$$= \sum_{i=1}^{m} a_{ik} \left(y_i - \sigma(\mathbf{x}^T \mathbf{a}_i)\right)$$

The Logistic Regression

$$\frac{\partial f_0}{\partial \mathbf{x}_k} = \sum_{i=1}^m a_{ik} \left(y_i - \sigma(\mathbf{x}^T \mathbf{a_i}) \right)$$

Now we need to compute the Hessian matrix:

$$\begin{aligned} \frac{\partial^2 f_0}{\partial \mathbf{x}_k \partial \mathbf{x}_j} &= \sum_{i=1}^m -a_{ik} \sigma(\mathbf{x}^T \mathbf{a_i}) \left(1 - \sigma(\mathbf{x}^T \mathbf{a_i}) \right) a_{ij} \\ &= \sum_{i=1}^m a_{ik} a_{ij} \sigma(\mathbf{x}^T \mathbf{a_i}) \left(\sigma(\mathbf{x}^T \mathbf{a_i}) - 1 \right) \end{aligned}$$

The Hessian *H* is an $n \times n$ matrix such that:

$$H_{k,j} = \sum_{i=1}^{m} a_{ik} a_{ij} \sigma(\mathbf{x}^{T} \mathbf{a}_{i}) \left(\sigma(\mathbf{x}^{T} \mathbf{a}_{i}) - 1 \right)$$

The Logistic Regression So we have our gradient $\nabla f_0 \in \mathbb{R}^n$ such that

1

$$\nabla_{\mathbf{x}_k} f_0 = \sum_{i=1}^m a_{ik} \left(y_i - \sigma(\mathbf{x}^T \mathbf{a}_i) \right)$$

And the Hessian $H \in \mathbb{R}^{n \times n}$:

$$H_{k,j} = \sum_{i=1}^{m} a_{ik} a_{ij} \sigma(\mathbf{x}^{T} \mathbf{a}_{i}) \left(\sigma(\mathbf{x}^{T} \mathbf{a}_{i}) - 1 \right)$$

the newton update rule is:

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \mu H^{-1} \nabla f_0$$

Newton's Method for Logistic Regression - Considerations

The newton update rule is:

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \mu H^{-1} \nabla f_0$$

Biggest problem:

How to efficiently compute H^{-1} for:

$$H_{k,j} = \sum_{i=1}^{m} a_{ik} a_{ij} \sigma(\mathbf{x}^{T} \mathbf{a}_{i}) \left(\sigma(\mathbf{x}^{T} \mathbf{a}_{i}) - 1 \right)$$

Considerations:

• *H* is symmetric: $H_{k,j} = H_{j,k}$