
Modern Optimization Techniques

Modern Optimization Techniques

Lucas Rego Drumond

Information Systems and Machine Learning Lab (ISMLL)
Institute of Computer Science

University of Hildesheim, Germany

Newton’s Method part II

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 1 / 24

Modern Optimization Techniques

Outline

1. Review

2. Excursion: Inverting Matrices

3. Excursion II: Solving Linear Systems of Equations

4. Newton’s method Revisited
4.1 Quasi-Newton Methods

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 1 / 24

Modern Optimization Techniques 1. Review

Outline

1. Review

2. Excursion: Inverting Matrices

3. Excursion II: Solving Linear Systems of Equations

4. Newton’s method Revisited
4.1 Quasi-Newton Methods

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 1 / 24

Modern Optimization Techniques 1. Review

Example II - The Logistic Regression

The logistic regression learning problem is

minimize −
m∑
i=1

yi log σ(xTai) + (1− yi) log(1− σ(xTai))

Am,n =

1 a1,1 a1,2 a1,3 a1,4
1 a2,1 a2,2 a2,3 a2,4
...

...
...

...
...

1 am,1 am,2 am,3 am,4

 y =

y1
y2
...
ym

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 1 / 24

Modern Optimization Techniques 1. Review

The Logistic Regression
First we need to compute the gradient of our objective function:

minimize −
m∑
i=1

yi log σ(xTai) + (1− yi) log(1− σ(xTai))

∂f0
∂xk

= −
m∑
i=1

yi
1

σ(xTai)
σ(xTai)

(
1− σ(xTai)

)
aik

−(1− yi)
1

1− σ(xTai)
σ(xTai)

(
1− σ(xTai)

)
aik

= −
m∑
i=1

yiaik

(
1− σ(xTai)

)
− (1− yi)aikσ(xTai)

= −
m∑
i=1

aik

(
yi − σ(xTai)

)
Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 2 / 24

Modern Optimization Techniques 1. Review

The Logistic Regression

∂f0
∂xk

= −
m∑
i=1

aik

(
yi − σ(xTai)

)
Now we need to compute the Hessian matrix:

∂2f0
∂xk∂xj

= −
m∑
i=1

−aikσ(xTai)
(

1− σ(xTai)
)
aij

= −
m∑
i=1

aikaijσ(xTai)
(
σ(xTai)− 1

)
The Hessian H is an n × n matrix such that:

Hk,j = −
m∑
i=1

aikaijσ(xTai)
(
σ(xTai)− 1

)
Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 3 / 24

Modern Optimization Techniques 1. Review

The Logistic Regression
So we have our gradient ∇f0 ∈ Rn such that

∇xk f0 = −
m∑
i=1

aik

(
yi − σ(xTai)

)
And the Hessian H ∈ Rn×n:

Hk,j = −
m∑
i=1

aikaijσ(xTai)
(
σ(xTai)− 1

)
the newton update rule is:

xt+1 = xt − µH−1∇f0

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 4 / 24

Modern Optimization Techniques 1. Review

Newton’s Method for Logistic Regression - Considerations

Biggest problem:

How to efficiently compute H−1 for:

Hk,j = −
m∑
i=1

aikaijσ(xTai)
(
σ(xTai)− 1

)

Considerations:

I H is symmetric: Hk,j = Hj ,k

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 5 / 24

Modern Optimization Techniques 2. Excursion: Inverting Matrices

Outline

1. Review

2. Excursion: Inverting Matrices

3. Excursion II: Solving Linear Systems of Equations

4. Newton’s method Revisited
4.1 Quasi-Newton Methods

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 6 / 24

Modern Optimization Techniques 2. Excursion: Inverting Matrices

Matrix Inversion

Disclaimer: Never attempt to invert a matrix unless this is your last
resort!

Given a matrix A ∈ Rn×n, its inverse A−1 is a matrix such that:

AA−1 = I

Where:

I I is the identity matrix

I If no such matrix A−1 exists A is called a singular matrix or
non-invertible

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 6 / 24

Modern Optimization Techniques 2. Excursion: Inverting Matrices

Matrix Inversion - Easy cases

Small Matrices:

For A ∈ Rn×n with n = 2 or n = 3 it is still possible to compute A−1

Orthogonal Matrices:

If A ∈ Rn×n is Orthogonal then ATA = I which means that A−1 = AT

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 7 / 24

Modern Optimization Techniques 2. Excursion: Inverting Matrices

Matrix Inversion - Easy cases

Diagonal Matrices:

If A ∈ Rn×n is diagonal, i.e. Aij = 0 for all i 6= j , its inverse is a matrix
A−1 such that

(A−1)i ,i =
1

Ai ,i

A =

A1,1 0 0 · · · 0

0 A2,2 0 · · · 0
0 0 A3,3 · · · 0
...

...
...

. . .
...

0 0 0 · · · An,n

A−1 =

1
A1,1

0 0 · · · 0

0 1
A2,2

0 · · · 0

0 0 1
A3,3

· · · 0
...

...
...

. . .
...

0 0 0 · · · 1
An,n

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 8 / 24

Modern Optimization Techniques 2. Excursion: Inverting Matrices

Matrix Inversion - Conclusions

We can compute the inverse of the Hessian if it is:

I Low dimensional (2× 2 or 3× 3)

I Diagonal

I Orthogonal

What to do if that is not the case?

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 9 / 24

Modern Optimization Techniques 2. Excursion: Inverting Matrices

Avoiding the Inversion of the Hessian
Our goal is to compute the Newton Step:

∆x = −∇2f0(x)−1∇f0(x)

But we know:

I The gradient ∇f0(x)

I The Hessian ∇2f0(x)

So we can rearrange the Step equation:

∆x = −∇2f0(x)−1∇f0(x)

∇2f0(x)∆x = −∇f0(x)

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 10 / 24

Modern Optimization Techniques 2. Excursion: Inverting Matrices

Avoiding the Inversion of the Hessian

∇2f0(x)∆x = −∇f0(x)

From this we know that the Newton step ∆x is the solution to a linear
system of equations:

Ax = b

Where:
I b is the negative gradient −∇f0(x)
I A is the Hessian ∇2f0(x)
I x is the Newton step ∆x

We need to know how to efficiently solve linear systems of
equations!

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 11 / 24

Modern Optimization Techniques 3. Excursion II: Solving Linear Systems of Equations

Outline

1. Review

2. Excursion: Inverting Matrices

3. Excursion II: Solving Linear Systems of Equations

4. Newton’s method Revisited
4.1 Quasi-Newton Methods

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 12 / 24

Modern Optimization Techniques 3. Excursion II: Solving Linear Systems of Equations

Linear Systems of Equations
Given A ∈ Rm×n and b ∈ Rn×1, find x ∈ Rn×1 such that:

Ax = b

A general method to find x such that Ax− b = 0 is to solve:

min
x
||Ax− b||22

Depending of how A looks like there can be specific algorithms for solving
the system:
For A diagonal:

x = A−1b =

(
b1
A1,1

,
b2
A2,2

, . . . ,
bn
An,n

)
Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 12 / 24

Modern Optimization Techniques 3. Excursion II: Solving Linear Systems of Equations

Linear Systems of Equations

For A orthogonal:

x = A−1b = ATb

A special case of orthogonal matrices are permutation matrices:

Be π = (π1, π2, . . . , πn) a permutation of (1, 2 . . . , n),

Ai ,j =

{
1 if j = πi

0 otherwise

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 13 / 24

Modern Optimization Techniques 3. Excursion II: Solving Linear Systems of Equations

Forward Substitution

For A lower triangular, i.e. Ai ,j = 0 for all i < j :

x1 =
b1
A1,1

x2 =
b2 − A2,1x1

A2,2

x3 =
b3 − A3,1x1 − A3,2x2

A3,3

...

xn =
bn − An,1x1 − An,2x2 − . . .− An,n−1xn−1

An,n

This method is called forward substitution

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 14 / 24

Modern Optimization Techniques 3. Excursion II: Solving Linear Systems of Equations

Backward Substitution

For A upper triangular, i.e. Ai ,j = 0 for all i > j :

xn =
bn
An,n

xn−1 =
bn−1 − An−1,nxn

An−1,n−1

...

x1 =
b1 − A1,2x2 − A1,3x3 − . . .− A1,nxn

A1,1

This method is called backward substitution

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 15 / 24

Modern Optimization Techniques 3. Excursion II: Solving Linear Systems of Equations

Factor and solve method
We can represent the matrix A as a product of different matrices
U1,U2, . . . ,Up:

A = U1U2 . . .Up

Then we can solve the system by computing:

x = A−1b = U−1
p . . .U−1

2 U−1
1 b

Which boils down to solving p equations:

U1z1 = b

U2z2 = z1
...

Upx = zp−1

If Ui is diagonal, othogonal, lower or upper-triangular, the equations above
are “easy” to solve!

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 16 / 24

Modern Optimization Techniques 3. Excursion II: Solving Linear Systems of Equations

LU Factorization

If A is nonsingular it can be
factorized as:

A = PLU

Where:

I P is a permutation matrix

I L is Lower triangular

I U is upper Triangular

We can solve Ax = b for A
nonsingular as follows:

1. LU-Factorize A such that
A = PLU

2. Solve Pz1 = b

3. Solve Lz2 = z1 with Forward
Substitution

4. Solve Ux = z2 with Backward
Substitution

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 17 / 24

Modern Optimization Techniques 3. Excursion II: Solving Linear Systems of Equations

Other Factorizations

Cholesky:

I For positive definite A

I A = LLT

I L is lower triangular

LDLT:

I nonsingular symmetric A

I A = PLDLTPT

I L is lower triangular, P is a permutation matrix, D is block diagonal

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 18 / 24

Modern Optimization Techniques 4. Newton’s method Revisited

Outline

1. Review

2. Excursion: Inverting Matrices

3. Excursion II: Solving Linear Systems of Equations

4. Newton’s method Revisited
4.1 Quasi-Newton Methods

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 19 / 24

Modern Optimization Techniques 4. Newton’s method Revisited

Newton’s method

The Newton’s method can be then rewritten without the inverse of the
Hessian as the follows:

Repeat until convergence:

1. Solve ∇2f0(x)∆x = −∇f0(x) for ∆x

2. Get step size µ (line search)

3. Update x : x← x + µ∆x

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 19 / 24

Modern Optimization Techniques 4. Newton’s method Revisited

Newton’s method

1: procedure Newtons Method
input: f0,

2: Get initial point x
3: repeat
4: ∆x← Solve ∇2f0(x)∆x = −∇f0(x)
5: Get Step Size µ
6: x← x + µ∆x
7: until convergence
8: return x, f0(x)
9: end procedure

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 20 / 24

Modern Optimization Techniques 4. Newton’s method Revisited 4.1 Quasi-Newton Methods

Quasi-Newton Methods

Solving one linear system of equations per update can be infeasible for
large scale problems

The same holds for computing and storing the second derivatives

Quasi-newton Methods replace the Newton update:

∆Newtonx = −∇2f0(x)−1∇f0(x)

with an approximation

∆QNx = −H−1∇f0(x)

where H � 0 is an approximation of the Hessian at x

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 21 / 24

Modern Optimization Techniques 4. Newton’s method Revisited 4.1 Quasi-Newton Methods

Quasi-Newton Method

1: procedure Quasi-Newton Method
input: f0

2: Get initial point x(0)

3: t ← 0
4: repeat
5: Compute H(t)−1

6: ∆x← −H(t)−1∇f0(x(t))
7: Get Step Size µ
8: x(t+1) ← x + µ∆x
9: t ← t + 1

10: until convergence
11: return x, f0(x)
12: end procedure

Methods differ in how they perform line 4 (compute H−1)

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 22 / 24

Modern Optimization Techniques 4. Newton’s method Revisited 4.1 Quasi-Newton Methods

Broyden-Fletcher-Goldfarb-Shanno (BFGS)

Be:

I s = x(t) − x(t−1)

I g = ∇f (x(t))−∇f (x(t−1))

We can update H(t):

H(t) = H(t−1) +
ggT

gT s
− H(t−1)ssTH(t−1)

sTH(t−1)s

or we can update the inverse directly:

H(t)−1
=

(
I− sgT

gT s

)
H(t−1)−1

(
I− gsT

gT s

)
+

ssT

gT s

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 23 / 24

Modern Optimization Techniques 4. Newton’s method Revisited 4.1 Quasi-Newton Methods

Limited Memory BFGS (L-BFGS)

Although BFGS may be faster to compute, we still need to store H

L-BFGS solves this by storing the r most recent values of s and g:

For j = t − r , t − r + 1, t − r + 2, . . . , t:

s(j) = x(j) − x(j−1)

g(j) = ∇f (x(j))−∇f (x(j−1))

At each epoch t, H(t)−1
is computed recursively:

For j = t − r , t − r + 1, t − r + 2, . . . , t:

H(j)−1
=

(
I− s(j)g(j)T

g(j)T s(j)

)
H(j−1)−1

(
I− g(j)s(j)

T

g(j)T s(j)

)
+

s(j)s(j)
T

g(j)T s(j)

with H(t−r)−1
= I

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 24 / 24

	1. Review
	2. Excursion: Inverting Matrices
	3. Excursion II: Solving Linear Systems of Equations
	4. Newton's method Revisited
	4.1 Quasi-Newton Methods

