Modern Optimization Techniques

Lucas Rego Drumond

Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science
University of Hildesheim, Germany

Newton's Method part II

Outline

1. Review
2. Excursion: Inverting Matrices
3. Excursion II: Solving Linear Systems of Equations
4. Newton's method Revisited
4.1 Quasi-Newton Methods

Outline

\author{

1. Review
}

2. Excursion: Inverting Matrices

3. Excursion II: Solving Linear Systems of Equations

4. Newton's method Revisited 4.1 Quasi-Newton Methods

Example II - The Logistic Regression

The logistic regression learning problem is

$$
\begin{aligned}
& \operatorname{minimize}-\sum_{i=1}^{m} y_{i} \log \sigma\left(\mathbf{x}^{\top} \mathbf{a}_{\mathbf{i}}\right)+\left(1-y_{i}\right) \log \left(1-\sigma\left(\mathbf{x}^{\top} \mathbf{a}_{\mathbf{i}}\right)\right) \\
& A_{m, n}=\left(\begin{array}{ccccc}
1 & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\
1 & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & a_{m, 1} & a_{m, 2} & a_{m, 3} & a_{m, 4}
\end{array}\right) \mathbf{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)
\end{aligned}
$$

The Logistic Regression

First we need to compute the gradient of our objective function:

$$
\begin{aligned}
\operatorname{minimize} & \quad-\sum_{i=1}^{m} y_{i} \log \sigma\left(\mathbf{x}^{T} \mathbf{a}_{\mathbf{i}}\right)+\left(1-y_{i}\right) \log \left(1-\sigma\left(\mathbf{x}^{T} \mathbf{a}_{\mathbf{i}}\right)\right) \\
\frac{\partial f_{0}}{\partial \mathbf{x}_{k}}= & -\sum_{i=1}^{m} y_{i} \frac{1}{\sigma\left(\mathbf{x}^{T} \mathbf{a}_{\mathbf{i}}\right)} \sigma\left(\mathbf{x}^{T} \mathbf{a}_{\mathbf{i}}\right)\left(1-\sigma\left(\mathbf{x}^{T} \mathbf{a}_{\mathbf{i}}\right)\right) a_{i k} \\
- & \left(1-y_{i}\right) \frac{1}{1-\sigma\left(\mathbf{x}^{T} \mathbf{a}_{\mathbf{i}}\right)} \sigma\left(\mathbf{x}^{T} \mathbf{a}_{\mathbf{i}}\right)\left(1-\sigma\left(\mathbf{x}^{T} \mathbf{a}_{\mathbf{i}}\right)\right) a_{i k} \\
= & -\sum_{i=1}^{m} y_{i} a_{i k}\left(1-\sigma\left(\mathbf{x}^{T} \mathbf{a}_{\mathbf{i}}\right)\right)-\left(1-y_{i}\right) a_{i k} \sigma\left(\mathbf{x}^{T} \mathbf{a}_{\mathbf{i}}\right) \\
= & -\sum_{i=1}^{m} a_{i k}\left(y_{i}-\sigma\left(\mathbf{x}^{T} \mathbf{a}_{\mathbf{i}}\right)\right)
\end{aligned}
$$

The Logistic Regression

$$
\frac{\partial f_{0}}{\partial \mathbf{x}_{k}}=-\sum_{i=1}^{m} a_{i k}\left(y_{i}-\sigma\left(\mathbf{x}^{T} \mathbf{a}_{\mathbf{i}}\right)\right)
$$

Now we need to compute the Hessian matrix:

$$
\begin{aligned}
\frac{\partial^{2} f_{0}}{\partial \mathbf{x}_{k} \partial \mathbf{x}_{j}} & =-\sum_{i=1}^{m}-a_{i k} \sigma\left(\mathbf{x}^{\top} \mathbf{a}_{\mathbf{i}}\right)\left(1-\sigma\left(\mathbf{x}^{\top} \mathbf{a}_{\mathbf{i}}\right)\right) a_{i j} \\
& =-\sum_{i=1}^{m} a_{i k} a_{i j} \sigma\left(\mathbf{x}^{\top} \mathbf{a}_{\mathbf{i}}\right)\left(\sigma\left(\mathbf{x}^{\top} \mathbf{a}_{\mathbf{i}}\right)-1\right)
\end{aligned}
$$

The Hessian H is an $n \times n$ matrix such that:

$$
H_{k, j}=-\sum_{i=1}^{m} a_{i k} a_{i j} \sigma\left(\mathbf{x}^{T} \mathbf{a}_{\mathbf{i}}\right)\left(\sigma\left(\mathbf{x}^{T} \mathbf{a}_{\mathbf{i}}\right)-1\right)
$$

The Logistic Regression

So we have our gradient $\nabla f_{0} \in \mathbb{R}^{n}$ such that

$$
\nabla_{\mathbf{x}_{k}} f_{0}=-\sum_{i=1}^{m} a_{i k}\left(y_{i}-\sigma\left(\mathbf{x}^{T} \mathbf{a}_{\mathbf{i}}\right)\right)
$$

And the Hessian $H \in \mathbb{R}^{n \times n}$:

$$
H_{k, j}=-\sum_{i=1}^{m} a_{i k} a_{i j} \sigma\left(\mathbf{x}^{T} \mathbf{a}_{\mathbf{i}}\right)\left(\sigma\left(\mathbf{x}^{T} \mathbf{a}_{\mathbf{i}}\right)-1\right)
$$

the newton update rule is:

$$
\mathbf{x}^{t+1}=\mathbf{x}^{t}-\mu H^{-1} \nabla f_{0}
$$

Newton's Method for Logistic Regression - Considerations

Biggest problem:

How to efficiently compute H^{-1} for:

$$
H_{k, j}=-\sum_{i=1}^{m} a_{i k} a_{i j} \sigma\left(\mathbf{x}^{T} \mathbf{a}_{\mathbf{i}}\right)\left(\sigma\left(\mathbf{x}^{T} \mathbf{a}_{\mathbf{i}}\right)-1\right)
$$

Considerations:

- H is symmetric: $H_{k, j}=H_{j, k}$

Outline

1. Review

2. Excursion: Inverting Matrices

3. Excursion II: Solving Linear Systems of Equations

4. Newton's method Revisited 4.1 Quasi-Newton Methods

Matrix Inversion

Disclaimer: Never attempt to invert a matrix unless this is your last resort!

Given a matrix $A \in \mathbb{R}^{n \times n}$, its inverse A^{-1} is a matrix such that:

$$
A A^{-1}=\mathbf{I}
$$

Where:

- I is the identity matrix
- If no such matrix A^{-1} exists A is called a singular matrix or non-invertible

Matrix Inversion - Easy cases

Small Matrices:

For $A \in \mathbb{R}^{n \times n}$ with $n=2$ or $n=3$ it is still possible to compute A^{-1}

Orthogonal Matrices:

If $A \in \mathbb{R}^{n \times n}$ is Orthogonal then $A^{T} A=\mathbf{I}$ which means that $A^{-1}=A^{T}$

Matrix Inversion - Easy cases

Diagonal Matrices:

If $A \in \mathbb{R}^{n \times n}$ is diagonal, i.e. $A_{i j}=0$ for all $i \neq j$, its inverse is a matrix A^{-1} such that

$$
\left(A^{-1}\right)_{i, i}=\frac{1}{A_{i, i}}
$$

$A=\left(\begin{array}{ccccc}A_{1,1} & 0 & 0 & \cdots & 0 \\ 0 & A_{2,2} & 0 & \cdots & 0 \\ 0 & 0 & A_{3,3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & A_{n, n}\end{array}\right) A^{-1}=\left(\begin{array}{ccccc}\frac{1}{A_{1,1}} & 0 & 0 & \cdots & 0 \\ 0 & \frac{1}{A_{2,2}} & 0 & \cdots & 0 \\ 0 & 0 & \frac{1}{A_{3,3}} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \frac{1}{A_{n, n}}\end{array}\right)$

Matrix Inversion - Conclusions

We can compute the inverse of the Hessian if it is:

- Low dimensional (2×2 or 3×3)
- Diagonal
- Orthogonal

What to do if that is not the case?

Avoiding the Inversion of the Hessian
Our goal is to compute the Newton Step:

$$
\Delta \mathbf{x}=-\nabla^{2} f_{0}(\mathbf{x})^{-1} \nabla f_{0}(\mathbf{x})
$$

But we know:

- The gradient $\nabla f_{0}(\mathbf{x})$
- The Hessian $\nabla^{2} f_{0}(x)$

So we can rearrange the Step equation:

$$
\begin{aligned}
\Delta \mathbf{x} & =-\nabla^{2} f_{0}(\mathbf{x})^{-1} \nabla f_{0}(\mathbf{x}) \\
\nabla^{2} f_{0}(\mathbf{x}) \Delta \mathbf{x} & =-\nabla f_{0}(\mathbf{x})
\end{aligned}
$$

Avoiding the Inversion of the Hessian

$$
\nabla^{2} f_{0}(\mathbf{x}) \Delta \mathbf{x}=-\nabla f_{0}(\mathbf{x})
$$

From this we know that the Newton step $\Delta \mathrm{x}$ is the solution to a linear system of equations:

$$
A \mathbf{x}=\mathbf{b}
$$

Where:

- \mathbf{b} is the negative gradient $-\nabla f_{0}(\mathbf{x})$
- A is the Hessian $\nabla^{2} f_{0}(\mathbf{x})$
- x is the Newton step $\Delta \mathrm{x}$

We need to know how to efficiently solve linear systems of equations!

Outline

1. Review

2. Excursion: Inverting Matrices

3. Excursion II: Solving Linear Systems of Equations

4. Newton's method Revisited 4.1 Quasi-Newton Methods

Linear Systems of Equations

Given $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{n \times 1}$, find $\mathbf{x} \in \mathbb{R}^{n \times 1}$ such that:

$$
A \mathbf{x}=\mathbf{b}
$$

A general method to find \mathbf{x} such that $A \mathbf{x}-\mathbf{b}=0$ is to solve:

$$
\min _{x}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}
$$

Depending of how A looks like there can be specific algorithms for solving the system:
For A diagonal:

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left(\frac{b_{1}}{A_{1,1}}, \frac{b_{2}}{A_{2,2}}, \ldots, \frac{b_{n}}{A_{n, n}}\right)
$$

Linear Systems of Equations

For A orthogonal:

$$
\mathbf{x}=A^{-1} \mathbf{b}=A^{T} \mathbf{b}
$$

A special case of orthogonal matrices are permutation matrices:

Be $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ a permutation of $(1,2 \ldots, n)$,

$$
A_{i, j}= \begin{cases}1 & \text { if } j=\pi_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Forward Substitution

For A lower triangular, i.e. $A_{i, j}=0$ for all $i<j$:

$$
\begin{aligned}
& x_{1}=\frac{b_{1}}{A_{1,1}} \\
& x_{2}=\frac{b_{2}-A_{2,1} x_{1}}{A_{2,2}} \\
& x_{3}=\frac{b_{3}-A_{3,1} x_{1}-A_{3,2} x_{2}}{A_{3,3}} \\
& \vdots \\
& x_{n}=\frac{b_{n}-A_{n, 1} x_{1}-A_{n, 2} x_{2}-\ldots-A_{n, n-1} x_{n-1}}{A_{n, n}}
\end{aligned}
$$

This method is called forward substitution

Backward Substitution

For A upper triangular, i.e. $A_{i, j}=0$ for all $i>j$:

$$
\begin{aligned}
& x_{n}=\frac{b_{n}}{A_{n, n}} \\
& x_{n-1}=\frac{b_{n-1}-A_{n-1, n} x_{n}}{A_{n-1, n-1}} \\
& \vdots \\
& x_{1}=\frac{b_{1}-A_{1,2} x_{2}-A_{1,3} x_{3}-\ldots-A_{1, n} x_{n}}{A_{1,1}}
\end{aligned}
$$

This method is called backward substitution

Factor and solve method

We can represent the matrix A as a product of different matrices $U_{1}, U_{2}, \ldots, U_{p}$:

$$
A=U_{1} U_{2} \ldots U_{p}
$$

Then we can solve the system by computing:

$$
\mathbf{x}=A^{-1} \mathbf{b}=U_{p}^{-1} \ldots U_{2}^{-1} U_{1}^{-1} \mathbf{b}
$$

Which boils down to solving p equations:

$$
\begin{aligned}
& U_{1} \mathbf{z}_{1}=\mathbf{b} \\
& U_{2} \mathbf{z}_{2}=\mathbf{z}_{1} \\
& \vdots \\
& U_{p} \mathbf{x}=\mathbf{z}_{p-1}
\end{aligned}
$$

If U_{i} is diagonal, othogonal, lower or upper-triangular, the equations above are "easy" to solve!

LU Factorization

If A is nonsingular it can be factorized as:

$$
A=P L U
$$

Where:

- P is a permutation matrix
- L is Lower triangular
- U is upper Triangular

We can solve $A \mathbf{x}=\mathbf{b}$ for A nonsingular as follows:

1. $L U$-Factorize A such that $A=P L U$
2. Solve $P \mathbf{z}_{1}=\mathbf{b}$
3. Solve $L z_{2}=\mathbf{z}_{1}$ with Forward Substitution
4. Solve $U \mathbf{x}=\mathbf{z}_{2}$ with Backward Substitution

Other Factorizations

Cholesky:

- For positive definite A
- $A=L L^{T}$
- L is lower triangular

LDLT:

- nonsingular symmetric A
- $A=P L D L^{T} P^{T}$
- L is lower triangular, P is a permutation matrix, D is block diagonal

Outline

2. Excursion: Inverting Matrices
3. Excursion II: Solving Linear Systems of Equations
4. Newton's method Revisited
4.1 Quasi-Newton Methods

Newton's method

The Newton's method can be then rewritten without the inverse of the Hessian as the follows:

Repeat until convergence:

1. Solve $\nabla^{2} f_{0}(\mathbf{x}) \Delta \mathbf{x}=-\nabla f_{0}(\mathbf{x})$ for $\Delta \mathbf{x}$
2. Get step size μ (line search)
3. Update $\mathbf{x}: \mathbf{x} \leftarrow \mathbf{x}+\mu \Delta \mathbf{x}$

Newton's method

: procedure Newtons Method input: f_{0},
2: Get initial point \mathbf{x}
3: repeat
4: $\quad \Delta \mathbf{x} \leftarrow$ Solve $\nabla^{2} f_{0}(\mathbf{x}) \Delta \mathbf{x}=-\nabla f_{0}(\mathbf{x})$
5: \quad Get Step Size μ
6: $\quad \mathbf{x} \leftarrow \mathbf{x}+\mu \Delta \mathbf{x}$
7: until convergence
8: \quad return $x, f_{0}(\mathbf{x})$
9 : end procedure

Quasi-Newton Methods

Solving one linear system of equations per update can be infeasible for large scale problems

The same holds for computing and storing the second derivatives
Quasi-newton Methods replace the Newton update:

$$
\Delta^{\text {Newton }} \mathbf{x}=-\nabla^{2} f_{0}(\mathbf{x})^{-1} \nabla f_{0}(\mathbf{x})
$$

with an approximation

$$
\Delta^{\mathrm{QN}} \mathbf{x}=-H^{-1} \nabla f_{0}(\mathbf{x})
$$

where $H \succ 0$ is an approximation of the Hessian at \mathbf{x}

Quasi-Newton Method

1: procedure Quasi-Newton Method input: f_{0}
2: \quad Get initial point $\mathbf{x}^{(\mathbf{0})}$
3: $\quad t \leftarrow 0$
4: repeat
Compute $H^{(t)^{-1}}$ $\Delta \mathbf{x} \leftarrow-H^{(t)^{-1}} \nabla f_{0}\left(\mathbf{x}^{(t)}\right)$
Get Step Size μ
$\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}+\mu \Delta \mathbf{x}$
$t \leftarrow t+1$
10: until convergence
11: return $\mathbf{x}, f_{0}(\mathbf{x})$

12: end procedure

Methods differ in how they perform line 4 (compute H^{-1})

Broyden-Fletcher-Goldfarb-Shanno (BFGS)

 Be:- $\mathbf{s}=\mathbf{x}^{(t)}-\mathbf{x}^{(t-1)}$
- $\mathbf{g}=\nabla f\left(\mathbf{x}^{(t)}\right)-\nabla f\left(\mathbf{x}^{(t-1)}\right)$

We can update $H^{(t)}$:

$$
H^{(t)}=H^{(t-1)}+\frac{\mathbf{g g}^{T}}{\mathbf{g}^{T} \mathbf{s}}-\frac{H^{(t-1)} \mathbf{s s}^{T} H^{(t-1)}}{\mathbf{s}^{T} H^{(t-1)} \mathbf{s}}
$$

or we can update the inverse directly:

$$
H^{(t)^{-1}}=\left(\mathbf{I}-\frac{\mathbf{s g}^{T}}{\mathbf{g}^{T} \mathbf{s}}\right) H^{(t-1)^{-1}}\left(\mathbf{I}-\frac{\mathbf{\mathbf { s } ^ { T }}}{\mathbf{g}^{T} \mathbf{s}}\right)+\frac{\mathbf{s s}^{T}}{\mathbf{g}^{T} \mathbf{s}}
$$

Limited Memory BFGS (L-BFGS)

Although BFGS may be faster to compute, we still need to store H
L-BFGS solves this by storing the r most recent values of \mathbf{s} and \mathbf{g} :
For $j=t-r, t-r+1, t-r+2, \ldots, t$:

$$
\begin{aligned}
& \mathbf{s}^{(j)}=\mathbf{x}^{(j)}-\mathbf{x}^{(j-1)} \\
& \mathbf{g}^{(j)}=\nabla f\left(\mathbf{x}^{(j)}\right)-\nabla f\left(\mathbf{x}^{(j-1)}\right)
\end{aligned}
$$

At each epoch $t, H^{(t)^{-1}}$ is computed recursively:
For $j=t-r, t-r+1, t-r+2, \ldots, t$:

$$
H^{(j)^{-1}}=\left(\mathbf{I}-\frac{\mathbf{s}^{(j)} \mathbf{g}^{(j)^{\top}}}{\mathbf{g}^{(j)^{\top}} \mathbf{s}^{(j)}}\right) H^{(j-1)^{-1}}\left(\mathbf{I}-\frac{\mathbf{g}^{(j)} \mathbf{s}^{(j)}{ }^{\top}}{\mathbf{g}^{(j)} \mathbf{s}^{(j)}}\right)+\frac{\mathbf{s}^{(j)} \mathbf{s}^{(j)^{\top}}}{\mathbf{g}^{(j)^{\top}} \mathbf{s}^{(j)}}
$$

with $H^{(t-r)^{-1}}=\mathbf{I}$

