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Modern Optimization Techniques 1. Review

Example II - The Logistic Regression

The logistic regression learning problem is

minimize −
m∑
i=1

yi log σ(xTai) + (1− yi ) log(1− σ(xTai))

Am,n =


1 a1,1 a1,2 a1,3 a1,4
1 a2,1 a2,2 a2,3 a2,4
...

...
...

...
...

1 am,1 am,2 am,3 am,4

 y =


y1
y2
...
ym
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Modern Optimization Techniques 1. Review

The Logistic Regression
First we need to compute the gradient of our objective function:

minimize −
m∑
i=1

yi log σ(xTai) + (1− yi ) log(1− σ(xTai))

∂f0
∂xk

= −
m∑
i=1

yi
1

σ(xTai)
σ(xTai)

(
1− σ(xTai)

)
aik

−(1− yi )
1

1− σ(xTai)
σ(xTai)

(
1− σ(xTai)

)
aik

= −
m∑
i=1

yiaik

(
1− σ(xTai)

)
− (1− yi )aikσ(xTai)

= −
m∑
i=1

aik

(
yi − σ(xTai)

)
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Modern Optimization Techniques 1. Review

The Logistic Regression

∂f0
∂xk

= −
m∑
i=1

aik

(
yi − σ(xTai)

)
Now we need to compute the Hessian matrix:

∂2f0
∂xk∂xj

= −
m∑
i=1

−aikσ(xTai)
(

1− σ(xTai)
)
aij

= −
m∑
i=1

aikaijσ(xTai)
(
σ(xTai)− 1

)
The Hessian H is an n × n matrix such that:

Hk,j = −
m∑
i=1

aikaijσ(xTai)
(
σ(xTai)− 1

)
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Modern Optimization Techniques 1. Review

The Logistic Regression
So we have our gradient ∇f0 ∈ Rn such that

∇xk f0 = −
m∑
i=1

aik

(
yi − σ(xTai)

)
And the Hessian H ∈ Rn×n:

Hk,j = −
m∑
i=1

aikaijσ(xTai)
(
σ(xTai)− 1

)
the newton update rule is:

xt+1 = xt − µH−1∇f0
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Modern Optimization Techniques 1. Review

Newton’s Method for Logistic Regression - Considerations

Biggest problem:

How to efficiently compute H−1 for:

Hk,j = −
m∑
i=1

aikaijσ(xTai)
(
σ(xTai)− 1

)

Considerations:

I H is symmetric: Hk,j = Hj ,k
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Modern Optimization Techniques 2. Excursion: Inverting Matrices

Matrix Inversion

Disclaimer: Never attempt to invert a matrix unless this is your last
resort!

Given a matrix A ∈ Rn×n, its inverse A−1 is a matrix such that:

AA−1 = I

Where:

I I is the identity matrix

I If no such matrix A−1 exists A is called a singular matrix or
non-invertible
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Modern Optimization Techniques 2. Excursion: Inverting Matrices

Matrix Inversion - Easy cases

Small Matrices:

For A ∈ Rn×n with n = 2 or n = 3 it is still possible to compute A−1

Orthogonal Matrices:

If A ∈ Rn×n is Orthogonal then ATA = I which means that A−1 = AT
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Modern Optimization Techniques 2. Excursion: Inverting Matrices

Matrix Inversion - Easy cases

Diagonal Matrices:

If A ∈ Rn×n is diagonal, i.e. Aij = 0 for all i 6= j , its inverse is a matrix
A−1 such that

(A−1)i ,i =
1

Ai ,i

A =


A1,1 0 0 · · · 0

0 A2,2 0 · · · 0
0 0 A3,3 · · · 0
...

...
...

. . .
...

0 0 0 · · · An,n

A−1 =



1
A1,1

0 0 · · · 0

0 1
A2,2

0 · · · 0

0 0 1
A3,3

· · · 0
...

...
...

. . .
...

0 0 0 · · · 1
An,n
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Modern Optimization Techniques 2. Excursion: Inverting Matrices

Matrix Inversion - Conclusions

We can compute the inverse of the Hessian if it is:

I Low dimensional (2× 2 or 3× 3)

I Diagonal

I Orthogonal

What to do if that is not the case?
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Modern Optimization Techniques 2. Excursion: Inverting Matrices

Avoiding the Inversion of the Hessian
Our goal is to compute the Newton Step:

∆x = −∇2f0(x)−1∇f0(x)

But we know:

I The gradient ∇f0(x)

I The Hessian ∇2f0(x)

So we can rearrange the Step equation:

∆x = −∇2f0(x)−1∇f0(x)

∇2f0(x)∆x = −∇f0(x)
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Modern Optimization Techniques 2. Excursion: Inverting Matrices

Avoiding the Inversion of the Hessian

∇2f0(x)∆x = −∇f0(x)

From this we know that the Newton step ∆x is the solution to a linear
system of equations:

Ax = b

Where:
I b is the negative gradient −∇f0(x)
I A is the Hessian ∇2f0(x)
I x is the Newton step ∆x

We need to know how to efficiently solve linear systems of
equations!
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Modern Optimization Techniques 3. Excursion II: Solving Linear Systems of Equations

Linear Systems of Equations
Given A ∈ Rm×n and b ∈ Rn×1, find x ∈ Rn×1 such that:

Ax = b

A general method to find x such that Ax− b = 0 is to solve:

min
x
||Ax− b||22

Depending of how A looks like there can be specific algorithms for solving
the system:
For A diagonal:

x = A−1b =

(
b1
A1,1

,
b2
A2,2

, . . . ,
bn
An,n

)
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Modern Optimization Techniques 3. Excursion II: Solving Linear Systems of Equations

Linear Systems of Equations

For A orthogonal:

x = A−1b = ATb

A special case of orthogonal matrices are permutation matrices:

Be π = (π1, π2, . . . , πn) a permutation of (1, 2 . . . , n),

Ai ,j =

{
1 if j = πi

0 otherwise
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Modern Optimization Techniques 3. Excursion II: Solving Linear Systems of Equations

Forward Substitution

For A lower triangular, i.e. Ai ,j = 0 for all i < j :

x1 =
b1
A1,1

x2 =
b2 − A2,1x1

A2,2

x3 =
b3 − A3,1x1 − A3,2x2

A3,3

...

xn =
bn − An,1x1 − An,2x2 − . . .− An,n−1xn−1

An,n

This method is called forward substitution
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Modern Optimization Techniques 3. Excursion II: Solving Linear Systems of Equations

Backward Substitution

For A upper triangular, i.e. Ai ,j = 0 for all i > j :

xn =
bn
An,n

xn−1 =
bn−1 − An−1,nxn

An−1,n−1

...

x1 =
b1 − A1,2x2 − A1,3x3 − . . .− A1,nxn

A1,1

This method is called backward substitution
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Modern Optimization Techniques 3. Excursion II: Solving Linear Systems of Equations

Factor and solve method
We can represent the matrix A as a product of different matrices
U1,U2, . . . ,Up:

A = U1U2 . . .Up

Then we can solve the system by computing:

x = A−1b = U−1
p . . .U−1

2 U−1
1 b

Which boils down to solving p equations:

U1z1 = b

U2z2 = z1
...

Upx = zp−1

If Ui is diagonal, othogonal, lower or upper-triangular, the equations above
are “easy” to solve!
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Modern Optimization Techniques 3. Excursion II: Solving Linear Systems of Equations

LU Factorization

If A is nonsingular it can be
factorized as:

A = PLU

Where:

I P is a permutation matrix

I L is Lower triangular

I U is upper Triangular

We can solve Ax = b for A
nonsingular as follows:

1. LU-Factorize A such that
A = PLU

2. Solve Pz1 = b

3. Solve Lz2 = z1 with Forward
Substitution

4. Solve Ux = z2 with Backward
Substitution
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Modern Optimization Techniques 3. Excursion II: Solving Linear Systems of Equations

Other Factorizations

Cholesky:

I For positive definite A

I A = LLT

I L is lower triangular

LDLT:

I nonsingular symmetric A

I A = PLDLTPT

I L is lower triangular, P is a permutation matrix, D is block diagonal
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Modern Optimization Techniques 4. Newton’s method Revisited

Newton’s method

The Newton’s method can be then rewritten without the inverse of the
Hessian as the follows:

Repeat until convergence:

1. Solve ∇2f0(x)∆x = −∇f0(x) for ∆x

2. Get step size µ (line search)

3. Update x : x← x + µ∆x
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Modern Optimization Techniques 4. Newton’s method Revisited

Newton’s method

1: procedure Newtons Method
input: f0,

2: Get initial point x
3: repeat
4: ∆x← Solve ∇2f0(x)∆x = −∇f0(x)
5: Get Step Size µ
6: x← x + µ∆x
7: until convergence
8: return x, f0(x)
9: end procedure
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Modern Optimization Techniques 4. Newton’s method Revisited 4.1 Quasi-Newton Methods

Quasi-Newton Methods

Solving one linear system of equations per update can be infeasible for
large scale problems

The same holds for computing and storing the second derivatives

Quasi-newton Methods replace the Newton update:

∆Newtonx = −∇2f0(x)−1∇f0(x)

with an approximation

∆QNx = −H−1∇f0(x)

where H � 0 is an approximation of the Hessian at x
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Modern Optimization Techniques 4. Newton’s method Revisited 4.1 Quasi-Newton Methods

Quasi-Newton Method

1: procedure Quasi-Newton Method
input: f0

2: Get initial point x(0)

3: t ← 0
4: repeat
5: Compute H(t)−1

6: ∆x← −H(t)−1∇f0(x(t))
7: Get Step Size µ
8: x(t+1) ← x + µ∆x
9: t ← t + 1

10: until convergence
11: return x, f0(x)
12: end procedure

Methods differ in how they perform line 4 (compute H−1)
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Modern Optimization Techniques 4. Newton’s method Revisited 4.1 Quasi-Newton Methods

Broyden-Fletcher-Goldfarb-Shanno (BFGS)

Be:

I s = x(t) − x(t−1)

I g = ∇f (x(t))−∇f (x(t−1))

We can update H(t):

H(t) = H(t−1) +
ggT

gT s
− H(t−1)ssTH(t−1)

sTH(t−1)s

or we can update the inverse directly:

H(t)−1
=

(
I− sgT

gT s

)
H(t−1)−1

(
I− gsT

gT s

)
+

ssT

gT s
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Modern Optimization Techniques 4. Newton’s method Revisited 4.1 Quasi-Newton Methods

Limited Memory BFGS (L-BFGS)

Although BFGS may be faster to compute, we still need to store H

L-BFGS solves this by storing the r most recent values of s and g:

For j = t − r , t − r + 1, t − r + 2, . . . , t:

s(j) = x(j) − x(j−1)

g(j) = ∇f (x(j))−∇f (x(j−1))

At each epoch t, H(t)−1
is computed recursively:

For j = t − r , t − r + 1, t − r + 2, . . . , t:

H(j)−1
=

(
I− s(j)g(j)T

g(j)T s(j)

)
H(j−1)−1

(
I− g(j)s(j)

T

g(j)T s(j)

)
+

s(j)s(j)
T

g(j)T s(j)

with H(t−r)−1
= I

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Newton’s Method part II 24 / 24


	1. Review
	2. Excursion: Inverting Matrices
	3. Excursion II: Solving Linear Systems of Equations
	4. Newton's method Revisited
	4.1 Quasi-Newton Methods


