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Modern Optimization Techniques 1. Subgradients

Methods seen so far

I If a function is differentiable we can optimize it using Gradient
Descent and Stochastic Gradient Descent (1st order information)

I If a function is smooth and twice differentiable we can optimize it
using Newton’s method (2nd order information)

I What if the the function is not differentiable?
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Modern Optimization Techniques 1. Subgradients

1st-order condition for Convexity

1st-order condition: a differentiable function f is convex iff

I dom f is a convex set

I for all x, y ∈ dom f

f (y) ≥ f (x) +∇f (x)T (y − x)

I The first order Taylor approximation of f at x is a global
underestimator
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Modern Optimization Techniques 1. Subgradients

1st-order approximation as a global underestimator

f (x)

x
x

h(y) = f (x) +∇f (x)T (y − x)

What happens if f is not differentiable?
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Modern Optimization Techniques 1. Subgradients

Subgradient
Given a function f and a point x ∈ dim f , g is a subgradient of f at x if:

f (y) ≥ f (x) + gT (y − x)

for all y ∈ dom f

f (x)

x
x (1) f (x (1)) + gT

1 (x − x (1))x (2)

f (x (2)) + gT
2 (x − x (2))

f (x (2)) + gT
3 (x − x (2))
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Modern Optimization Techniques 1. Subgradients

Subgradient
Given a function f and a point x ∈ dim f , g is a subgradient of f at x if:

f (y) ≥ f (x) + gT (y − x)

for all y ∈ dom f

In the last example, g1 is a subgradient of f in x (1) while g2 and g3 are
subgradients in x (2)

For a convex function f :

I The subgradient always exist

I If f is differentiable at x, then g = ∇f (x)

For a non-convex function f :

I The same applies, except that ...

I ... the subgradient does not always exist
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Modern Optimization Techniques 1. Subgradients

Example
For f : R→ R and f (x) = |x |:

I For x 6= 0 there is one subgradient g = ∇f (x) = sign(x)
I For x = 0 the subgradient is g ∈ [−1, 1]

x

f (x)

f (x)
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Modern Optimization Techniques 1. Subgradients

Subdifferential

Subdifferential ∂f (x): set of all subgradients of f at x

If f is convex:

I ∂f (x) is nonempty

I ∂f (x) = {∇f (x)} if f is differentiable at x

I If ∂f (x) = {g}, then f is differentiable at x and g = ∇f (x)
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Modern Optimization Techniques 1. Subgradients

Example

For f (x) = |x |:

x

f (x)

x

∂f (x)

−1

+1
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Modern Optimization Techniques 1. Subgradients

Subgradient Calculus

Assume f convex and x ∈ dom f

Some algorithms require only one subgradient for optimizing
nondifferentiable functions f

Other algorithms, and optimality conditions require the whole
subdifferential at x

Tools for finding subgradients:

I Weak subgradient calculus: finding one subgradient g ∈ ∂f (x)

I Strong subgradient calculus: finding the whole subdifferential ∂f (x)
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Modern Optimization Techniques 1. Subgradients

Subgradient Calculus
We know that if f is differentiable at x then ∂f (x) = {∇f (x)}
There are a couple of additional rules:

I Scaling: for a > 0: ∂(a · f ) = {a · g|g ∈ ∂(f )}
I Addition: ∂(f1 + f2) = ∂f1 + ∂f2

I Affine composition: for h(x) = f (Ax + b) then

∂h(x) = AT∂f (Ax + b)

I Finite pointwise maximum: if f (x) = maxi=1 ...,m fi (x) then

∂f (x) = conv
⋃

i :fi (x)=f (x)

∂fi (x)

the subdifferential is the convex hull of the union of subdifferentials of
all active functions at x
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Modern Optimization Techniques 2. Subgradient Method

The Subgradient Method
Be f0 a nondifferentiable and convex function f0 : Rn → R and x ∈ Rn:

minimize f0(x)

Be gt any subgradient of f0 at xt

1. Start with an initial solution x(0)

2. t ← 0

3. Repeat until convergence

3.1 Find xt+1 = xt − µtgt

3.2 t ← t + 1

4. Return f0best = minj=1,...,t f0(xj)

The subgradient method is not a descent method!
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Modern Optimization Techniques 2. Subgradient Method

Optimality Conditions

For a convex f0 : Rn → R, x∗ is a minimizer iff 0 is a subgradient of f0 at
x∗

f0(x∗) = min
x∈Rn

f0(x) ⇔ 0 ∈ ∂f0(x∗)

Proof:

If 0 is a subgradient of f0 at x∗, then for all y ∈ Rn:

f0(y) ≥ f0(x∗) + 0T (y − x∗)

f0(y) ≥ f0(x∗)
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Modern Optimization Techniques 2. Subgradient Method

Step size rules

Fixed step-size: keep µt = µ constant

Fixed length: keep µt = γ
||gt ||2 so that ||xt+1 − xt ||2 = γ

Diminishing:

lim
t→∞

µt = 0,
∞∑
t=1

µt =∞

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Subgradient Methods 13 / 24



Modern Optimization Techniques 2. Subgradient Method

Does the algorithm converge?

The convergence analysis of the subgradient method makes some
assumptions:

I f0 : Rn → R is convex

I f0 is Lipschitz continuous with constant G > 0. i.e. for all x, α ∈ Rn:

|f0(x)− f0(α)| ≤ G ||x− α||2

I Equivalently: ||g||2 ≤ G for any subgradient of f0 at any x

I We know a constant R such that ||xt − x∗||2 ≤ R
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Modern Optimization Techniques 2. Subgradient Method

Does the algorithm converge?

Using the definition of the subgradient we have:

||xt+1 − x∗||22 = ||xt − µtgt − x∗||22
= ||xt − x∗||22 − 2µtg

tT (xt − x∗) + µ2t ||gt ||22
≤ ||xt − x∗||22 − 2µt(f0(xt)− f0(x∗)) + µ2t ||gt ||22

If we iterate that inequality over all the previous steps to t + 1:

||xt+1 − x∗||22 ≤ ||x1 − x∗||22 − 2
t∑

i=1

µi (f0(xi )− f0(x∗)) +
t∑

i=1

µ2i ||gi ||22
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Modern Optimization Techniques 2. Subgradient Method

Does the algorithm converge?
Remember that ||xt − x∗||2 ≤ R and ||g||2 ≤ G :

||xt+1 − x∗||22 ≤ ||x1 − x∗||22 − 2
t∑

i=1

µi (f0(xi )− f0(x∗)) +
t∑

i=1

µ2i ||gi ||22

≤ R2 − 2
t∑

i=1

µi (f0(xi )− f0(x∗)) + G 2
t∑

i=1

µ2i

Which we can rearrange as:

||xt+1 − x∗||22 ≤ R2 − 2
t∑

i=1

µi (f0(xi )− f0(x∗)) + G 2
t∑

i=1

µ2i

||xt+1 − x∗||22 + 2
t∑

i=1

µi (f0(xi )− f0(x∗)) ≤ R2 + G 2
t∑

i=1

µ2i
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Modern Optimization Techniques 2. Subgradient Method

Does the algorithm converge?

Now we also know that:

t∑
i=1

µi (f0(xi )− f0(x∗)) ≥ (f t0 best − f0(x∗))
t∑

i=1

µi

From which the following still holds:

2
t∑

i=1

µi (f0(xi )− f0(x∗)) ≥ 2(f t0 best − f0(x∗))
t∑

i=1

µi

||xt+1 − x∗||22 + 2
t∑

i=1

µi (f0(xi )− f0(x∗)) ≥ 2(f t0 best − f0(x∗))
t∑

i=1

µi
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Modern Optimization Techniques 2. Subgradient Method

Does the algorithm converge?
From

||xt+1 − x∗||22 + 2
t∑

i=1

µi (f0(xi )− f0(x∗)) ≤ R2 + G 2
t∑

i=1

µ2i

and

||xt+1 − x∗||22 + 2
t∑

i=1

µi (f0(xi )− f0(x∗)) ≥ 2(f t0 best − f0(x∗))
t∑

i=1

µi

We have

f t0 best − f0(x∗) ≤
R2 + G 2

∑t
i=1 µ

2
i

2
∑t

i=1 µi
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Modern Optimization Techniques 2. Subgradient Method

Convergence guarantees for different step sizes

For a fixed step size µt = µ

f t0 best − f0(x∗) ≤
R2 + G 2

∑t
i=1 µ

2
i

2
∑t

i=1 µi
=

R2 + G 2tµ2

2tµ

The error upperbound converges to:

lim
t→∞

R2 + G 2tµ2

2tµ
=

G 2µ

2
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Modern Optimization Techniques 2. Subgradient Method

Convergence guarantees for different step sizes

For a diminishing step size such that

∞∑
t=1

µt =∞
∞∑
t=1

µ2t <∞

f t0 best − f0(x∗) ≤
R2 + G 2

∑t
i=1 µ

2
i

2
∑t

i=1 µi

The error upperbound converges to:

lim
t→∞

R2 + G 2
∑t

i=1 µ
2
i

2
∑t

i=1 µi
= 0

This proves that for a diminishing step size with the properties above the
algorithm will converge to the optimum
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Modern Optimization Techniques 3. Subgradient Method Examples

Example: Text Classification

Features A: normalized word frequecies in text documents

Category y: topic of the text documents

Am,n =


1 a1,1 a1,2 a1,3 a1,4
1 a2,1 a2,2 a2,3 a2,4
...

...
...

...
...

1 am,1 am,2 am,3 am,4

 y =


y1
y2
...
ym



ŷi = σ(xTai)
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Modern Optimization Techniques 3. Subgradient Method Examples

Text Classification: L1-Regularized Logistic Regression

For x ∈ Rn, y ∈ Rm and A ∈ Rm×n we have the following the problem

minimize −
m∑
i=1

yi log σ(xTai) + (1− yi ) log(1− σ(xTai)) + λ||x||1

Which can be rewritten as:

minimize −
m∑
i=1

yi log σ(xTai) + (1− yi ) log(1− σ(xTai)) + λ

n∑
k=1

|xk |

f0 is convex and non-smooth
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Modern Optimization Techniques 3. Subgradient Method Examples

Example: L1-Regularized Linear Regression

The subgradients of
f0(x) = −

∑m
i=1 yi log σ(xTai) + (1− yi ) log(1− σ(xTai)) + λ||x||1 are:

g = −AT (y − ŷ) + λs

where s ∈ ∂||x||1, i.e.:

I sk = sign(xk) if xk 6= 0

I sk ∈ [−1, 1] if xk = 0
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Modern Optimization Techniques 3. Subgradient Method Examples

Example - The algorithm

For x ∈ Rn, y ∈ Rm and A ∈ Rm×n we have the following the problem

minimize −
m∑
i=1

yi log σ(xTai) + (1− yi ) log(1− σ(xTai)) + λ

n∑
k=1

|xk |

1. Start with an initial solution x(0)

2. t ← 0

3. f0best ← f0(x(0))

4. Repeat until convergence

4.1 xt+1 ← xt − µt(−AT (y − ŷ) + λs)
4.2 t ← t + 1
4.3 f0best → min(f0(xt), f0best)

5. Return f0best

where s ∈ ∂||x||1, i.e.:

I sk = sign(xk) if xk 6= 0

I sk ∈ [−1, 1] if xk = 0
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