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Modern Optimization Techniques 1. Constrained Optimization

Constrained Optimization Problems

A constrained optimization problem has the form:

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, i = 1, . . . , p

Where:

I f0, . . . , fm : Rn → R
I h1, . . . , hp : Rn → R
I An optimal x∗
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Modern Optimization Techniques 1. Constrained Optimization

Convex Constrained Optimization Problems
A constrained optimization problem:

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, i = 1, . . . , p

is convex iff:

I f0, . . . , fm are convex
I h1, . . . , hp are affine

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . ,m

Hx = b
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Modern Optimization Techniques 1. Constrained Optimization

Linear Programming

minimize cTx

subject to aTi x ≤ bi i = 1, . . . ,m

I No analytical solution

I There are reliable algorithms available
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Modern Optimization Techniques 1. Constrained Optimization

Quadratic Programming

minimize
1

2
xTQx + cTx

subject to aTi x ≤ bi i = 1, . . . ,m

where:

I Q � 0
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Modern Optimization Techniques 1. Constrained Optimization

Maximum Margin Separating Hyperplanes
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Modern Optimization Techniques 1. Constrained Optimization

Support Vector Machines

If the instances are not completely separable, we can allow some of them
to be on the wrong side of the decision boundary

The closer the “wrong” points are to the boundary the better (modeled by
slack variables ξi

minimize
1

2
||x||2 + γ

n∑
i=1

ξi

subject to yi (x0 + xTai) ≥ 1− ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n
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Modern Optimization Techniques 2. Duality

Lagrangian

Given a constrained optimization problem in the standard form:

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, i = 1, . . . , p

We can put the objective function and the constraints in the same
expression:

f0(x) +
m∑
i=1

λi fi (x) +

p∑
j=1

νjhj(x)

The expression above is not the same original problem. It is called the
primal Lagrangian of the problem
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Modern Optimization Techniques 2. Duality

Lagrangian

The primal Lagrangian of a constrained optimization problem is a
function L : Rn × Rm × Rp → R:

L(x, λ, ν) = f0(x) +
m∑
i=1

λi fi (x) +

p∑
i=1

νihi (x)

where:

I λi and νj are called Lagrange multipliers

I λi is the Lagrange multiplier associated with the constraint fi (x) ≤ 0

I νi is the Lagrange multiplier associated with the constraint hi (x) = 0
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Modern Optimization Techniques 2. Duality

Dual Lagrangian

Be D the domain of the problem, the dual Lagrangian of a constrained
optimization problem is a function g : ×Rm × Rp → R:

g(λ, ν) = inf
x∈D

L(x, λ, ν)

= inf
x∈D

(
f0(x) +

m∑
i=1

λi fi (x) +

p∑
i=1

νihi (x)

)

where g is concave

Interesting fact: for non-negative λi , g is a lower bound on f0(x∗), i.e:

If λ � 0, then g(λ, ν) ≤ f0(x∗)
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Modern Optimization Techniques 2. Duality

Dual Lagrangian
Proof of the lower bound property of:

g(λ, ν) = inf
x∈D

L(x, λ, ν)

= inf
x∈D

(
f0(x) +

m∑
i=1

λi fi (x) +

p∑
i=1

νihi (x)

)

for a feasible x′ we have:

I hi (x
′) = 0

I fi (x
′) ≤ 0

thus, with λ � 0:

f0(x′) ≥ L(x′, λ, ν) ≥ inf
x∈D

L(x, λ, ν) = g(λ, ν)

minimizing over all feasible x′ we have f0(x∗) ≥ g(λ, ν)
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Modern Optimization Techniques 2. Duality

Computing the dual

minimize (y − Ax)2

subject to − xi ≤ 0

Hx = b

Lagrangian: L(x, λ, ν) = (y − Ax)2 +
∑n

i=1−λixi + ν(Hx− b)

Dual Lagrangian: Minimize L over x

∇xL(x, λν) = −2AT (y − Ax)− λ+ HTν = 0

x =
1

2
(HTν − λ− 2ATy)ATA−1

Substitute in L to get g
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Modern Optimization Techniques 2. Duality

Least-norm solution of linear equations

minimize xTx

subject to Hx = b

Lagrangian: L(x, ν) = xTx + ν(Hx− b)

Dual Lagrangian: Minimize L over x

∇xL(x, ν) = 2x + HTν = 0

x = −1

2
HTν

Substituting in L to get g : g(ν) = −1
4ν

THHTν − bTν
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Modern Optimization Techniques 2. Duality

The dual problem

Once we know how to compute the dual, we are interested in computing
the best lower bound on f0(x∗):

maximize g(λ, ν)

subject to λ � 0

where:

I this is a convex optimization problem (g is concave)

I d∗ is the optimal value of g
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Modern Optimization Techniques 2. Duality

Weak and Strong Duality

Say p∗ is the optimal value of f0 and d∗ is the optimal value of g

We have weak duality when: d∗ ≤ p∗

I Always holds

I Can be useful to find informative lower bounds for difficult problems

We have strong duality when: d∗ = p∗

I Does not always hold

I Holds for a range of convex problems

I Properties that guarantee strong duality are called constraint
qualifications
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Modern Optimization Techniques 2. Duality

Slater’s Condition

If the following primal problem

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . ,m

Hx = b

is:

I convex

I strictly feasible, i.e.

∃x : fi (x) < 0 i = 1, . . . ,m, Hx = b

then strong duality holds for this problem
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Modern Optimization Techniques 2. Duality

Duality Gap

How close is the value of the dual lagrangian to the primal objective?

Given a primal feasible x and a dual feasible λ, ν, the duality gap is given
by:

f0(x)− g(λ, ν)

Since g(λ, ν) is a lower bound on f0:

f0(x)− f0(x∗) ≤ f0(x)− g(λ, ν)

If the duality gap is zero, then x is primal optimal

This is a useful stopping criterion since if f0(x)− g(λ, ν) ≤ ε, then we are
sure that f0(x)− f0(x∗) ≤ ε
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Modern Optimization Techniques 3. KKT Conditions

Complementary Slackness
Assume strong duality where x∗ is the primal optimal and (λ∗, ν∗) is dual
optimal:

f0(x∗) = g(λ∗, ν∗) = inf
x∈D

(
f0(x) +

m∑
i=1

λ∗i fi (x) +

p∑
i=1

ν∗i hi (x)

)

≤ f0(x∗) +
m∑
i=1

λ∗i fi (x
∗) +

p∑
i=1

ν∗i hi (x
∗)

≤ f0(x∗)

hence:

f0(x∗) +
m∑
i=1

λ∗i fi (x
∗) +

p∑
i=1

ν∗i hi (x
∗) = f0(x∗)

and x∗ minimizes L(x, λ∗, ν∗)
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Modern Optimization Techniques 3. KKT Conditions

Complementary Slackness

Assume we have a problem with strong duality where x∗ is the primal
optimal and (λ∗, ν∗) is dual optimal.

f0(x∗) +
m∑
i=1

λ∗i fi (x
∗) +

p∑
i=1

ν∗i hi (x
∗) = f0(x∗)

From this we can derive the complementary slackness:

For i = 1, . . . ,m

λ∗i fi (x
∗) = 0

Which means that

I If λ∗i > 0 then fi (x
∗) = 0

I If fi (x
∗) < 0 then λi = 0
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Modern Optimization Techniques 3. KKT Conditions

Karush-Kuhn-Tucker (KKT) Conditions

The following conditions are called the KKT conditions:

1. Primal feasibility: fi (x) ≤ 0 and hj(x) = 0 for all i , j

2. Dual feasibility: λ � 0

3. Complementary Slackness: λi fi (x) = 0 for all i

4. Stationarity: ∇f0(x) +
∑m

i=1 λi∇fi (x) +
∑p

i=1 νi∇hi (x) = 0

If strong duality holds and x, λ, ν are optimal, then they must satisfy the
KKT conditions

If x, λ, ν satisfy the KKT conditions, then x is the primal solution
and (λ, ν) is the dual solution
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