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Modern Optimization Techniques 1. Equality Constrained Optimization

Equality Constrained Optimization Problems

A constrained optimization problem has the form:

minimize f0(x)

subject to hj(x) = 0, j = 1, . . . , p

Where:

I f0 : Rn → R
I h1, . . . , hp : Rn → R
I An optimal x∗
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Modern Optimization Techniques 1. Equality Constrained Optimization

Convex Equality Constrained Optimization Problems

An equality constrained optimization problem:

minimize f0(x)

subject to hj(x) = 0, j = 1, . . . , p

is convex iff:

I f0 is convex

I h1, . . . , hp are affine

minimize f0(x)

subject to Ax = b
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Modern Optimization Techniques 1. Equality Constrained Optimization

Optimality criterion
Given the following problem:

minimize f0(x)

subject to Ax = b

The Lagrangian is given by:

L(x, ν) = f0(x) + ν(Ax− b)

And it’s derivative:

∇xL(x, ν) = ∇xf0(x) + ATν
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Modern Optimization Techniques 1. Equality Constrained Optimization

Optimality criterion
Given the following problem:

minimize f0(x)

subject to Ax = b

The optimal solution x∗ must fulfill the KKT Conditions:

1. Primal feasibility: fi (x
∗) ≤ 0 and hj(x) = 0 for all i , j

2. Dual feasibility: λ � 0
3. Complementary Slackness: λi fi (x

∗) = 0 for all i
4. Stationarity: ∇f0(x∗) +

∑m
i=1 λi∇fi (x∗) +

∑p
i=1 νi∇hi (x∗) = 0

1. Primal feasibility: fi (x
∗) ≤ 0 and hj(x) = 0 for all i , j

2. Dual feasibility: λ � 0
3. Complementary Slackness: λi fi (x

∗) = 0 for all i
4. Stationarity: ∇f0(x∗) +

∑m
i=1 λi∇fi (x∗) +

∑p
i=1 νi∇hi (x∗) = 0

Since there are no inequality constraints, the conditions in red are
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Modern Optimization Techniques 1. Equality Constrained Optimization

Optimality criterion

Given the following problem:

minimize f0(x)

subject to Ax = b

The optimal solution x∗ must fulfil the KKT Conditions:

I Primal feasibility: hj(x
∗) = 0

I Stationarity: ∇f0(x∗) +
∑p

i=1 νi∇hi (x∗) = 0

for hj(x) = ajx− bj we have:

I Primal feasibility: Ax∗ = b

I Stationarity: ∇f0(x∗) + ATν∗ = 0
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Modern Optimization Techniques 1. Equality Constrained Optimization

Optimality criterion

Given the following problem:

minimize f0(x)

subject to Ax = b

x∗ is optimal iff there exists a ν∗:

I Primal feasibility: Ax∗ = b

I Stationarity: ∇f0(x∗) + ATν∗ = 0
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Modern Optimization Techniques 1. Equality Constrained Optimization

Example
Given the following problem:

minimize (x1 − 2)2 + 2(x2 − 1)2 − 5

subject to x1 + 4x2 = 3

I Primal feasibility: x1 + 4x2 = 3
I Stationarity: ∇f0(x∗) + [1 4]Tν∗ = 0

∂f0
∂x1

= 2(x1 − 2) = 2x1 − 4

∂f0
∂x2

= 4(x2 − 1) = 4x2 − 4
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Modern Optimization Techniques 1. Equality Constrained Optimization

Example

From the KKT conditions we have:

I Primal feasibility: x1 + 4x2 = 3

I Stationarity: [
2x1 − 4
4x2 − 4

]
+ ν

[
1
4

]
= 0

This gives us the following system of equations:

2x1 + ν = 4

4x2 + 4ν = 4

x1 + 4x2 = 3

2 0 1
0 4 4
1 4 0

x1x2
ν

 =

4
4
3


With solution: x1 = 5

3 , x2 = 1
3 , ν = 2

3
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Modern Optimization Techniques 1. Equality Constrained Optimization

Example II - Quadratic Programming
Given P positive semi-definite, the following problem:

minimize
1

2
xTPx + qTx + r

subject to Ax = b

Optimality Condition: [
P AT

A 0

] [
x∗

ν∗

]
=

[
−q
b

]
I KKT Matrix
I Solution is the inverse of the KKT matrix times the right hand side of

the system
I The KKT matrix is nonsingular iff:

Ax = 0, x 6= 0 ⇒ xTPx > 0
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Modern Optimization Techniques 2. Newton Methods for Equality Constrained Problems

Descent step for equality constrained problems
Given the following problem:

minimize f0(x)

subject to Ax = b

we want to start with a feasible solution x and compute a step ∆x such
that

I f0(x +∆x) ≤ f0(x)

I A(x +∆x) = b

Which means solving the following problem for ∆x:

minimize f0(x +∆x)

subject to A(x +∆x) = b
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Modern Optimization Techniques 2. Newton Methods for Equality Constrained Problems

Newton Step
The Newton Step is the solution for the minimization of the second order
approximation of f0:

minimize f̂ (x +∆x) = f0(x) +∇f0(x)T∆x +
1

2
∆xT∇2f0(x)∆x

subject to A(x +∆x) = b

The equality constraint can be rewritten as

A(x +∆x) = b

Ax + A∆x = b

A∆x = b− Ax

And since we assume x feasible, we have Ax = b:

A∆x = 0
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Modern Optimization Techniques 2. Newton Methods for Equality Constrained Problems

Newton Step
The Newton Step is the solution for the minimization of the second order
approximation of f0:

minimize f̂ (x +∆x) = f0(x) +∇f0(x)T∆x +
1

2
∆xT∇2f0(x)∆x

subject to A∆x = 0

minimize f̂ (x +∆x) = f0(x) +∇f0(x)T∆x +
1

2
∆xT∇2f0(x)∆x

subject to A∆x = 0

This is a quadratic programming with:
I P = ∇2f0(x)
I q = ∇f0(x)
I r = f0(x)

and optimality conditions:

I A∆x = 0
I ∇∆xf̂ (x +∆x) + ATw = ∇f0(x) +∇2f0(x)∆x + ATw = 0
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Modern Optimization Techniques 2. Newton Methods for Equality Constrained Problems

Newton Step
The Newton Step is the solution for the minimization of the second order
approximation of f0:

minimize f̂ (x +∆x) = f0(x) +∇f0(x)T∆x +
1

2
∆xT∇2f0(x)∆x

subject to A∆x = 0

Is computed by solving the following system:

[
∇2f0(x) AT

A 0

] [
∆x
w

]
=

[
−∇f0(x)

0

]
For the unconstrained case:

∇2f0(x)∆x = −∇f0(x)
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Modern Optimization Techniques 2. Newton Methods for Equality Constrained Problems

Newton’s method for Equality Constrained Problems

1: procedure Newtons Method
input: f0, initial feasible point x ∈ dom f0 and Ax = b

2: repeat

3: Get ∆x by solving

[
∇2f0(x) AT

A 0

] [
∆x
w

]
=

[
−∇f0(x)

0

]
4: Get Step Size µ
5: x← x + µ∆x
6: until convergence
7: return x, f0(x)
8: end procedure

What if we don’t have a feasible x to start with?
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Modern Optimization Techniques 2. Newton Methods for Equality Constrained Problems

Newton Step at infeasible points

If x is infeasible, i.e. Ax 6= b, we have the following problem:

minimize f̂ (x +∆x) = f0(x) +∇f0(x)T∆x +
1

2
∆xT∇2f0(x)∆x

subject to A∆x = b− Ax

Which can be solved for ∆x by solving the following system of equations:

[
∇2f0(x) AT

A 0

] [
∆x
w

]
= −

[
∇f0(x)
Ax− b

]
After one step in this algorithm, we have a feasible solution

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Equality Constrained Optimization 15 / 16



Modern Optimization Techniques 2. Newton Methods for Equality Constrained Problems

Solving KKT systems of equations

The KKT systems are systems of equations that look like this:

[
H AT

A 0

] [
v
w

]
= −

[
g
h

]
Standard methods for solving it:

I LDLT factorization

I Elimination (might require inverting H)
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