Modern Optimization Techniques

Lucas Rego Drumond

Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science
University of Hildesheim, Germany

Equality Constrained Optimization

Outline

\author{

1. Equality Constrained Optimization
}
2. Newton Methods for Equality Constrained Problems

Outline

1. Equality Constrained Optimization

2. Newton Methods for Equality Constrained Problems

Equality Constrained Optimization Problems

A constrained optimization problem has the form:

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(\mathbf{x}) \\
\text { subject to } & h_{j}(\mathbf{x})=0, \quad j=1, \ldots, p
\end{aligned}
$$

Where:

- $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- $h_{1}, \ldots, h_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- An optimal \mathbf{x}^{*}

Convex Equality Constrained Optimization Problems

An equality constrained optimization problem:

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(\mathbf{x}) \\
\text { subject to } & h_{j}(\mathbf{x})=0, \quad j=1, \ldots, p
\end{aligned}
$$

is convex iff:

- f_{0} is convex
- h_{1}, \ldots, h_{p} are affine

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(\mathbf{x}) \\
\text { subject to } & A \mathbf{x}=\mathbf{b}
\end{aligned}
$$

Optimality criterion

Given the following problem:

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(\mathbf{x}) \\
\text { subject to } & A \mathbf{x}=\mathbf{b}
\end{aligned}
$$

The Lagrangian is given by:

$$
L(\mathbf{x}, \nu)=f_{0}(\mathbf{x})+\nu(A \mathbf{x}-\mathbf{b})
$$

And it's derivative:

$$
\nabla_{\mathbf{x}} L(\mathbf{x}, \nu)=\nabla_{\mathbf{x}} f_{0}(\mathbf{x})+A^{T} \nu
$$

Optimality criterion

Given the following problem:

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(\mathbf{x}) \\
\text { subject to } & A \mathbf{x}=\mathbf{b}
\end{aligned}
$$

The optimal solution \mathbf{x}^{*} must fulfill the KKT Conditions:

1. Primal feasibility: $f_{i}\left(\mathbf{x}^{*}\right) \leq 0$ and $h_{j}(\mathbf{x})=0$ for all i, j
2. Dual feasibility: $\lambda \succeq 0$
3. Complementary Slackness: $\lambda_{i} f_{i}\left(\mathbf{x}^{*}\right)=0$ for all i
4. Stationarity: $\nabla f_{0}\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{p} \nu_{i} \nabla h_{i}\left(\mathbf{x}^{*}\right)=0$
5. Primal feasibility: $f_{i}\left(\mathbf{x}^{*}\right) \leq 0$ and $h_{j}(\mathbf{x})=0$ for all i, j
6. Dual feasibility: $\lambda \succeq 0$
7. Complementary Slackness: $\lambda_{i} f_{i}\left(\mathbf{x}^{*}\right)=0$ for all i
8. Stationarity: $\nabla f_{0}\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{p} \nu_{i} \nabla h_{i}\left(\mathbf{x}^{*}\right)=0$

Since there are no inequality constraints, the conditions in red are

Optimality criterion

Given the following problem:

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(\mathbf{x}) \\
\text { subject to } & A \mathbf{x}=\mathbf{b}
\end{aligned}
$$

The optimal solution \mathbf{x}^{*} must fulfil the KKT Conditions:

- Primal feasibility: $h_{j}\left(\mathbf{x}^{*}\right)=0$
- Stationarity: $\nabla f_{0}\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{p} \nu_{i} \nabla h_{i}\left(\mathbf{x}^{*}\right)=0$
for $h_{j}(\mathbf{x})=\mathbf{a}_{\mathbf{j}} \mathbf{x}-b_{j}$ we have:
- Primal feasibility: $A \mathbf{x}^{*}=\mathbf{b}$
- Stationarity: $\nabla f_{0}\left(\mathbf{x}^{*}\right)+A^{T} \nu^{*}=0$

Optimality criterion

Given the following problem:

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(\mathbf{x}) \\
\text { subject to } & A \mathbf{x}=\mathbf{b}
\end{aligned}
$$

\mathbf{x}^{*} is optimal iff there exists a ν^{*} :

- Primal feasibility: $A \mathbf{x}^{*}=\mathbf{b}$
- Stationarity: $\nabla f_{0}\left(\mathbf{x}^{*}\right)+A^{T} \nu^{*}=0$

Example

Given the following problem:

$$
\begin{aligned}
\text { minimize } & \left(x_{1}-2\right)^{2}+2\left(x_{2}-1\right)^{2}-5 \\
\text { subject to } & x_{1}+4 x_{2}=3
\end{aligned}
$$

- Primal feasibility: $x_{1}+4 x_{2}=3$
- Stationarity: $\nabla f_{0}\left(\mathbf{x}^{*}\right)+\left[\begin{array}{ll}1 & 4\end{array}\right]^{\top} \nu^{*}=0$

$$
\begin{aligned}
& \frac{\partial f_{0}}{\partial x_{1}}=2\left(x_{1}-2\right)=2 x_{1}-4 \\
& \frac{\partial f_{0}}{\partial x_{2}}=4\left(x_{2}-1\right)=4 x_{2}-4
\end{aligned}
$$

Example

From the KKT conditions we have:

- Primal feasibility: $x_{1}+4 x_{2}=3$
- Stationarity:

$$
\left[\begin{array}{l}
2 x_{1}-4 \\
4 x_{2}-4
\end{array}\right]+\nu\left[\begin{array}{l}
1 \\
4
\end{array}\right]=0
$$

This gives us the following system of equations:

$$
\begin{aligned}
2 x_{1}+\nu & =4 \\
4 x_{2}+4 \nu & =4 \\
x_{1}+4 x_{2} & =3
\end{aligned}
$$

$$
\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 4 & 4 \\
1 & 4 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\nu
\end{array}\right]=\left[\begin{array}{l}
4 \\
4 \\
3
\end{array}\right]
$$

With solution: $x_{1}=\frac{5}{3}, x_{2}=\frac{1}{3}, \nu=\frac{2}{3}$

Example II - Quadratic Programming

Given P positive semi-definite, the following problem:

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2} \mathbf{x}^{T} P \mathbf{x}+\mathbf{q}^{T} \mathbf{x}+r \\
\text { subject to } & A \mathbf{x}=\mathbf{b}
\end{aligned}
$$

Optimality Condition:

$$
\left[\begin{array}{cc}
P & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}^{*} \\
\nu^{*}
\end{array}\right]=\left[\begin{array}{c}
-\mathbf{q} \\
\mathbf{b}
\end{array}\right]
$$

- KKT Matrix
- Solution is the inverse of the KKT matrix times the right hand side of the system
- The KKT matrix is nonsingular iff:

$$
A \mathbf{x}=0, \quad \mathbf{x} \neq 0 \quad \Rightarrow \mathbf{x}^{T} P \mathbf{x}>0
$$

Outline

1. Equality Constrained Optimization

2. Newton Methods for Equality Constrained Problems

Descent step for equality constrained problems

Given the following problem:

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(\mathbf{x}) \\
\text { subject to } & A \mathbf{x}=\mathbf{b}
\end{aligned}
$$

we want to start with a feasible solution \mathbf{x} and compute a step $\Delta \mathrm{x}$ such that

- $f_{0}(\mathbf{x}+\Delta \mathbf{x}) \leq f_{0}(\mathbf{x})$
- $A(\mathbf{x}+\Delta \mathbf{x})=\mathbf{b}$

Which means solving the following problem for $\Delta \mathbf{x}$:

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(\mathbf{x}+\Delta \mathbf{x}) \\
\text { subject to } & A(\mathbf{x}+\Delta \mathbf{x})=\mathbf{b}
\end{aligned}
$$

Newton Step

The Newton Step is the solution for the minimization of the second order approximation of f_{0} :

$$
\text { minimize } \quad \hat{f}(\mathbf{x}+\Delta \mathbf{x})=f_{0}(\mathbf{x})+\nabla f_{0}(\mathbf{x})^{T} \Delta \mathbf{x}+\frac{1}{2} \Delta \mathbf{x}^{T} \nabla^{2} f_{0}(\mathbf{x}) \Delta \mathbf{x}
$$ subject to $\quad A(\mathbf{x}+\Delta \mathbf{x})=\mathbf{b}$

The equality constraint can be rewritten as

$$
\begin{aligned}
A(\mathbf{x}+\Delta \mathbf{x}) & =\mathbf{b} \\
A \mathbf{x}+A \Delta \mathbf{x} & =\mathbf{b} \\
A \Delta \mathbf{x} & =\mathbf{b}-A \mathbf{x}
\end{aligned}
$$

And since we assume \mathbf{x} feasible, we have $A \mathbf{x}=\mathbf{b}$:

$$
A \Delta \mathrm{x}=0
$$

Newton Step

The Newton Step is the solution for the minimization of the second order approximation of f_{0} :

$$
\begin{aligned}
\text { minimize } & \hat{f}(\mathbf{x}+\Delta \mathbf{x})=f_{0}(\mathbf{x})+\nabla f_{0}(\mathbf{x})^{T} \Delta \mathbf{x}+\frac{1}{2} \Delta \mathbf{x}^{T} \nabla^{2} f_{0}(\mathbf{x}) \Delta \mathbf{x} \\
\text { subject to } & A \Delta \mathbf{x}=\mathbf{0}
\end{aligned}
$$

minimize $\quad \hat{f}(\mathbf{x}+\Delta \mathbf{x})=f_{0}(\mathrm{x})+\nabla \mathrm{f}_{0}(\mathbf{x})^{T} \Delta \mathbf{x}+\frac{1}{2} \Delta \mathbf{x}^{T} \nabla^{2} f_{0}(\mathbf{x}) \Delta \mathbf{x}$ subject to $A \Delta \mathbf{x}=\mathbf{0}$

This is a quadratic programming with:

- $P=\nabla^{2} f_{0}(x)$
- $\mathbf{q}=\nabla f_{0}(\mathbf{x})$
- $r=f_{0}(x)$
and optimality conditions:

Newton Step

The Newton Step is the solution for the minimization of the second order approximation of f_{0} :

$$
\begin{aligned}
\operatorname{minimize} & \hat{f}(\mathbf{x}+\Delta \mathbf{x})=f_{0}(\mathrm{x})+\nabla f_{0}(\mathbf{x})^{T} \Delta \mathbf{x}+\frac{1}{2} \Delta \mathbf{x}^{T} \nabla^{2} f_{0}(\mathbf{x}) \Delta \mathbf{x} \\
\text { subject to } & A \Delta \mathbf{x}=\mathbf{0}
\end{aligned}
$$

Is computed by solving the following system:

$$
\left[\begin{array}{cc}
\nabla^{2} f_{0}(\mathbf{x}) & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta \mathbf{x} \\
\mathbf{w}
\end{array}\right]=\left[\begin{array}{c}
-\nabla f_{0}(\mathbf{x}) \\
\mathbf{0}
\end{array}\right]
$$

For the unconstrained case:

$$
\nabla^{2} f_{0}(\mathbf{x}) \Delta \mathbf{x}=-\nabla f_{0}(\mathbf{x})
$$

Newton's method for Equality Constrained Problems

1: procedure Newtons Method input: f_{0}, initial feasible point $\mathbf{x} \in \operatorname{dom} f_{0}$ and $A \mathbf{x}=\mathbf{b}$ repeat
2: repeat
3: \quad Get $\Delta \mathbf{x}$ by solving $\left[\begin{array}{cc}\nabla^{2} f_{0}(\mathbf{x}) & A^{T} \\ A & 0\end{array}\right]\left[\begin{array}{c}\Delta \mathbf{x} \\ \mathbf{w}\end{array}\right]=\left[\begin{array}{c}-\nabla f_{0}(\mathbf{x}) \\ \mathbf{0}\end{array}\right]$
4: \quad Get Step Size μ
5: $\quad \mathbf{x} \leftarrow \mathbf{x}+\mu \Delta \mathbf{x}$
6: until convergence
7: return $\mathbf{x}, f_{0}(\mathbf{x})$
8: end procedure

What if we don't have a feasible \mathbf{x} to start with?

Newton Step at infeasible points

If \mathbf{x} is infeasible, i.e. $A \mathbf{x} \neq \mathbf{b}$, we have the following problem:

$$
\begin{aligned}
\operatorname{minimize} & \hat{f}(\mathbf{x}+\Delta \mathbf{x})=f_{0}(\mathbf{x})+\nabla f_{0}(\mathbf{x})^{T} \Delta \mathbf{x}+\frac{1}{2} \Delta \mathbf{x}^{T} \nabla^{2} f_{0}(\mathbf{x}) \Delta \mathbf{x} \\
\text { subject to } & A \Delta \mathbf{x}=\mathbf{b}-A \mathbf{x}
\end{aligned}
$$

Which can be solved for $\Delta \mathbf{x}$ by solving the following system of equations:

$$
\left[\begin{array}{cc}
\nabla^{2} f_{0}(\mathbf{x}) & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta \mathbf{x} \\
\mathbf{w}
\end{array}\right]=-\left[\begin{array}{c}
\nabla f_{0}(\mathbf{x}) \\
A \mathbf{x}-\mathbf{b}
\end{array}\right]
$$

After one step in this algorithm, we have a feasible solution

Solving KKT systems of equations

The KKT systems are systems of equations that look like this:

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{v} \\
\mathbf{w}
\end{array}\right]=-\left[\begin{array}{l}
\mathbf{g} \\
\mathbf{h}
\end{array}\right]
$$

Standard methods for solving it:

- $L D L^{T}$ factorization
- Elimination (might require inverting H)

