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Modern Optimization Techniques 1. Inequality Constrained Minimization Problems

Inequality Constrained Minimization (ICM) Problems

A problem of the form:

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

Where:

I f0, . . . , fm : Rn → R are convex and twice differentiable

I A ∈ Rq×n and b ∈ Rq

I A feasible optimal x∗ exists and f0(x∗) = p∗
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Modern Optimization Techniques 1. Inequality Constrained Minimization Problems

KKT Conditions

Assume that a strictly feasible solution x∗ to the problem exists, the KKT
Conditions are:

1. Primal feasibility: fi (x∗) ≤ 0 for all i and Ax∗ = b

2. Dual feasibility: λ � 0

3. Complementary Slackness: λi fi (x∗) = 0 for all i

4. Stationarity: ∇f0(x∗) +
∑m

i=1 λi∇fi (x∗) +
∑q

i=1 νi∇hi (x∗) = 0
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Modern Optimization Techniques 1. Inequality Constrained Minimization Problems

Interior-point Methods

Interior Point Methods solve inequality constrained minimization problems
by

1. Reducing them to a sequence of linear equality constrained problems

2. Applying Newton’s method to the approximation
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Modern Optimization Techniques 2. Logarithmic Barrier function

Rewriting an ICM Problem

We start by rewriting the ICM problem:

minimize f0(x) +
m∑
i=1

I−(fi (x))

subject to Ax = b

where I− : R→ R is the indicator function for non-positive reals:

I−(u) =

{
0 if u ≤ 0

∞ if u > 0

now we have no inequality constraints but the objective function is not
differentiable and hence Newton’s method cannot be applied!

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Interior Point Methods 4 / 29



Modern Optimization Techniques 2. Logarithmic Barrier function

The Logarithmic Barrier

The barrier method approximates the indicator function I− by:

Î−(u) = −(1/t) log(−u), dom Î− = R−

where t > 0 controls the quality of the approximation.

This function has the following advantages over I−:

1. It is differentiable

2. it increases to ∞ when u increases to 0, i.e. it is closed.
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Modern Optimization Techniques 2. Logarithmic Barrier function

The Logarithmic Approximation

t = 3
t = 5
t = 10

t = 20

(0, 0)

Î−(u) = −(1/t) log(−u), dom Î− = R−
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Modern Optimization Techniques 2. Logarithmic Barrier function

The Logarithmic Barrier Function

Substituting I− for Î− in our problem definition yields the following
problem:

minimize f0(x) +
m∑
i=1

−(1/t) log(−fi (x))

subject to Ax = b

where

φ(x) = −
m∑
i=1

log(−fi (x))

with dom φ = {x ∈ Rn|fi (x) < 0, i = 1, . . . ,m} is called the logarithmic
barrier.

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Interior Point Methods 7 / 29



Modern Optimization Techniques 2. Logarithmic Barrier function

The Logarithmic Barrier Function

φ(x) = −
m∑
i=1

log(−fi (x))

I is convex

I is twice continuously differentiable, with derivatives:

∇φ(x) =
m∑
i=1

1

−fi (x)
∇fi (x)

∇2φ(x) =
m∑
i=1

1

fi (x)2
∇fi (x)∇fi (x)T +

m∑
i=1

1

−fi (x)
∇2fi (x)
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Modern Optimization Techniques 2. Logarithmic Barrier function

The Logarithmic Barrier

By multiplying our objective function:

f0(x) +
m∑
i=1

−(1/t) log(−fi (x))

by t we get the following equivalent problem which has the same
minimizers:

minimize tf0(x) + φ(x)

subject to Ax = b
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Modern Optimization Techniques 2. Logarithmic Barrier function

The Logarithmic Barrier Summary

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

minimize f0(x) +
m∑
i=1

I−(fi (x))

subject to Ax = b

minimize tf0(x) + φ(x)

subject to Ax = b
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Modern Optimization Techniques 3. Central path

Central Path

Given our ICM problem

minimize tf0(x) + φ(x)

subject to Ax = b

let x∗(t) be its the solution for a given t > 0

Definition
The Central Path associated with an ICM problem is the set of points
x∗(t), t > 0, which are called central points
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Modern Optimization Techniques 3. Central path

Central Path - Example

Central Path for a Linear
Program

minimize x cTx

subject to aT
i x ≤ bi ,

i = 1, . . . , 6

cTx = cTx∗(t) is tangent to
the level curve of φ through
x∗(t)

(From Stephen Boyd’s Lecture Notes)
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Modern Optimization Techniques 3. Central path

Central Path
Given our ICM problem

minimize tf0(x) + φ(x)

subject to Ax = b

A point x∗(t) on the central path is strictly feasible, i.e., satisfies

Ax∗(t) = b, fi (x∗(t)) < 0, i = 1, . . . ,m

and there exists a ν̂ ∈ Rq such that the following holds:

0 = t∇f0(x∗(t)) +∇φ(x∗(t)) + AT ν̂

= t∇f0(x∗(t)) +
m∑
i=1

1

−fi (x∗(t))
∇fi (x∗(t)) + AT ν̂
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Modern Optimization Techniques 3. Central path 3.1 Dual Points from the Central Path

Dual Points from Central Path

0 = t∇f0(x∗(t)) +
m∑
i=1

1

−fi (x∗(t))
∇fi (x∗(t)) + AT ν̂

= ∇f0(x∗(t)) +
m∑
i=1

1

−tfi (x∗(t))
∇fi (x∗(t)) +

1

t
AT ν̂

If we define:

λ∗i (t) = − 1

tfi (x∗(t))
, i = 1, . . . ,m, ν∗(t) =

ν̂

t

We can rewrite:

∇f0(x∗(t)) +
m∑
i=1

λ∗i (t)∇fi (x∗(t)) + ATν∗(t) = 0
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Modern Optimization Techniques 3. Central path 3.1 Dual Points from the Central Path

Minimizing the Lagrangian

From the last slide:

∇f0(x∗(t)) +
m∑
i=1

λ∗i (t)∇fi (x∗(t)) + ATν∗(t) = 0

we can see that this is the minimizer for the lagrangian:

L(x, λ, ν) = f0(x) +
m∑
i=1

λi fi (x) + νT (Ax− b)

x∗(t) minimizes the lagrangian for λ = λ∗(t) and ν = ν∗(t). Thus
λ∗(t), ν∗(t) is a dual feasible pair
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Modern Optimization Techniques 3. Central path 3.1 Dual Points from the Central Path

The dual function:

The dual function g(λ∗(t), ν∗(t)) is finite and

g(λ∗(t), ν∗(t)) = f0(x∗(t)) +
m∑
i=1

λ∗i (t)fi (x∗(t)) + ν∗(t)T (Ax∗(t)− b)

= f0(x∗(t)) +
m∑
i=1

λ∗
i (t)︷ ︸︸ ︷

− 1

tfi (x∗(t))
fi (x∗(t)) + ν∗(t)T

Ax∗(t) = b︷ ︸︸ ︷
(Ax∗(t)− b)

= f0(x∗(t))− m

t

As an important consequence of this we have that:

f0(x∗(t))− p∗ ≤ m/t

which confirms that x∗(t) converges to an optimal point as t →∞
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Modern Optimization Techniques 3. Central path 3.1 Dual Points from the Central Path

Centrality Conditions and the KKT Conditions

In order for a point x to be a central point, i.e. x = x∗(t), there must exist
λ, ν such that:

Ax = b, fi (x) ≤ 0, i = 1, . . . ,m

λ � 0

∇f0(x) +
m∑
i=1

λi∇fi (x) + ATν = 0

− λi fi (x) =
1

t
, i = 1, . . . ,m
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Modern Optimization Techniques 4. The Barrier Method

The Unconstrained Minimization Method

Since x∗(t) is m
t -suboptimal we can specify a desired accuracy ε such that

t =
m

ε

and use Newton’s method to solve

minimize (
m

ε
)f0(x) + φ(x)

subject to Ax = b

Problems:

I It does not work well for large scale problems

I It does not work well for small accuracies ε

I It needs a “good” starting point
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Modern Optimization Techniques 4. The Barrier Method

The Barrier Method

A simple variation of the unconstrained minimization method works well:

1. Solve an unconstrained (or linearly constrained) minimization problem
for a given value t

2. Increase t and use the solution of the previous step as starting point
for a new problem with the new t

3. Repeat Step 2 until t > m
ε

This method is know as:

I Sequential Unconstrained Minimization Technique (SUMT)

I Barrier Method

I Path Following Method

I ...
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Modern Optimization Techniques 4. The Barrier Method

The Barrier Method - Algorithm

1: procedure Barrier Method
input: strictly feasible x(0), t0 > 0, step size µ > 1, tolerance ε > 0

2: t := t0

3: x := x0

4: while m/t < ε do
/* Centering Step */

5: x∗(t) := arg minx(t)tf0(x(t)) + φ(x(t)),
subject to Ax(t) = b,
starting at x(t) = x

6: x := x∗(t)
7: t := µt
8: end while
9: return x

10: end procedure
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Modern Optimization Techniques 4. The Barrier Method

Considerations about the algorithm

I It terminates with f0(x)− p∗ ≤ ε
I The centering step is usually done using Newton’s method

I Trade-off about the choice of µ: large µ means fewer centering steps
but more Newton steps
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Modern Optimization Techniques 5. Convergence Analysis
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Modern Optimization Techniques 5. Convergence Analysis

Convergence Analysis

Assume that tf0 + φ can be minimized by Newton’s method for
t = t(0), µt(0), µ2t(0), . . . , the t in the k-th outer step is

t(k) = µkt(0)

From this, it follows that, in the k-th outer step, the duality gap is

m

µkt(0)
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Modern Optimization Techniques 5. Convergence Analysis

Convergence Analysis

Then the number of outer iterations k∗ needed to achieve accuracy ε is

ε =
m

µk∗t(0)

µk
∗

=
m

εt(0)

log(µk
∗
) = log(

m

εt(0)
)

k∗ log(µ) = log(
m

εt(0)
)

k∗ =
log( m

εt(0)
)

log(µ)
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Modern Optimization Techniques 5. Convergence Analysis

Convergence Analysis

The number of outer iterations is exactly:

⌈
log( m

εt(0)
)

logµ

⌉

plus the initial step to compute x∗(t(0))

The inner problem

minimize tf0(x) + φ(x)

is solved by Newton’s method (see convergence analysis for it)
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Modern Optimization Techniques 5. Convergence Analysis

Examples
Inequality form Linear Program (m = 100 inequalities, n = 50 variables)

(From Stephen Boyd’s Lecture Notes)

I starts with x on central path (t(0) = 1, duality gap 100)

I terminates when t = 108 (gap 10−6)

I centering uses Newton’s method with backtracking

I total number of Newton iterations not very sensitive for µ ≥ 10
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Modern Optimization Techniques 5. Convergence Analysis

Examples
Family of Linear Programs (A ∈ Rm×2m)

minimize cT x

subject to AT x ≤ b, x � 0

m = 10, . . . , 1000; for each m solve 100 randomly generated instances
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Modern Optimization Techniques 6. Feasibility and Phase I methods

Feasibility and Phase I method

I The barrier method requires a strictly feasible starting point x(0)

I In phase I such a point is computed (or the constraints are found to
be infeasible)

I The barrier method algorithm then starts from x(0), in which it is
called the phase II stage
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Modern Optimization Techniques 6. Feasibility and Phase I methods

Basic Phase I method
Find x such that

fi (x) ≤ 0, i = 1, . . . ,m, Ax = b (1)

Phase I method for target variables x ∈ Rn and s ∈ R::

minimize s (2)

subject to fi (x) ≤ s, i = 1, . . . ,m

ATx = b

I if x, s is feasible, with s < 0, then x is strictly feasible for (1)

I if the optimal value p∗ of (2) is positive, then problem (1) is infeasible

I if p∗ = 0 and attained, then problem (1) is feasible (but not strictly)

I if p∗ = 0 and not attained, then problem (1) is infeasible
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Modern Optimization Techniques 6. Feasibility and Phase I methods

Sum of infeasibilities phase I method

For target variables x ∈ Rn and s ∈ Rm:

minimize 1T s

subject to s � 0 fi (x) ≤ si , i = 0, . . . ,m

ATx = b

This method has the advantage of producing a solution that satisfies many
more inequalities than the basic phase I method
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