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Modern Optimization Techniques 1. Inequality Constrained Minimization Problems

Inequality Constrained Minimization (ICM) Problems

A problem of the form:

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

Where:

I f0, . . . , fm : Rn → R are convex and twice differentiable

I A ∈ Rq×n and b ∈ Rq

I A feasible optimal x∗ exists and f0(x∗) = p∗
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Modern Optimization Techniques 1. Inequality Constrained Minimization Problems

KKT Conditions

Assume that a strictly feasible solution x∗ to the problem exists, the KKT
Conditions are:

1. Primal feasibility: fi (x∗) ≤ 0 for all i and Ax∗ = b

2. Dual feasibility: λ � 0

3. Complementary Slackness: λi fi (x∗) = 0 for all i

4. Stationarity: ∇f0(x∗) +
∑m

i=1 λi∇fi (x∗) +
∑q

i=1 νi∇hi (x∗) = 0
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Modern Optimization Techniques 2. Cutting Plane Methods: Basic Idea

Cutting Plane Methods

We have seen how to solve inequality constrained problems using interior
point methods

Interior point methods assume {fi (x)}i=0,...,m to be convex and twice
differentiable

What to do if fi is nondifferentiable?

Cutting plane methods:

I Are able to handle nondifferentiable convex problems

I Can also be applied to unconstrained minimization problems

I Require the computation of a subgradient per step

I Can be much faster than subgradient methods
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Modern Optimization Techniques 2. Cutting Plane Methods: Basic Idea

Cutting Plane Methods - Basic Idea

Let us denote by B ⊆ Rn the set of all solutions x∗ to our problem:

B := {x∗|f0(x∗) = p∗ ∧ Ax∗ = b ∧ fi (x∗) ≤ 0}

Assume we have an oracle who can “answer” x
?
∈ B

The oracle returns a plane that separates x from B
A cutting plane method starts with an initial solution xt and then:

1. Query the oracle xt
?
∈ B

2. If xt ∈ B then stop and return xt

3. Generate a new point xt+1 on the other side of the plane returned by
the oracle

4. Go back to step 1
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Cutting Plane Methods - Basic Idea
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Modern Optimization Techniques 3. The Oracle

Cutting Plane Oracle

Goal: Determine if x
?
∈ B

There are two possible outcomes of a query to the oracle:

I A positive answer if x ∈ B

I If x /∈ B it returns a separating hyperplane (u, v) between x and B:

uTx∗ ≤ v for x∗ ∈ B
uTx ≥ v

with u ∈ Rn and v ∈ R

This means we can eliminate (cut) all points in the halfspace
{α|uTα > v} from our search

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Cutting Plane Methods 6 / 27



Modern Optimization Techniques 3. The Oracle

Neutral cuts

If x is on the boundary of the halfspace the cut is called neutral:

uTx = v

B

x(0)

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Cutting Plane Methods 7 / 27



Modern Optimization Techniques 3. The Oracle

Deep cuts

If x is in the interior of the halfspace that is cut we have a deep cut:

uTx > v

B

x(0)
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Modern Optimization Techniques 3. The Oracle

Oracle for an Unconstrained Minimization Problem

For a convex f0 : Rn → R and the minimization problem min f0:

We can implement the oracle through the subdifferential ∂f0(x):

Be g ∈ ∂f0(x), we know from the subgradient definition:

f0(α) ≥ f0(x) + gT (α− x)

thus if

gT (α− x) > 0

then

f0(α) > f0(x)
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Modern Optimization Techniques 3. The Oracle

Oracle for an Unconstrained Minimization Problem

gT (α− x) > 0 =⇒ f0(α) > f0(x)

This means that all points α s.t. gT (α− x) ≥ 0 are worse solutions then x

Our oracle needs to return a cutting-plane uTα ≥ v :

gT (α− x) ≥ 0

gTα− gTx ≥ 0

gTα ≥ gTx

This is a neutral cutting plane!
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Modern Optimization Techniques 3. The Oracle

Subgradient as a cut criterion

x∗

x

g
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Modern Optimization Techniques 4. The general Cutting Plane Method

Deep cut for Unconstrained Minimization

To get a deep cut we need to know a number f̄ such that f0(x) > f̄ ≥ f ∗

Recall the subgradient definition: f0(α) ≥ f0(x) + gT (α− x)

It follows that if:

f0(x) + gT (α− x) > f̄

then

f0(α) > f̄ ≥ f ∗ =⇒ α /∈ B

which gives us the following deep cut:

gT (α− x) + f0(x)− f̄ ≤ 0
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Modern Optimization Techniques 4. The general Cutting Plane Method

Deep cut for Unconstrained Minimization

gT (α− x) + f0(x)− f̄ ≤ 0

I Neutral cut plus

I Offset

How to find f̄ ?

One solution: maintain the lowest value for f0 found so far
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Modern Optimization Techniques 4. The general Cutting Plane Method

Feasibility problem
Find a feasible x ∈ Rn

find x

subject to fi (x) ≤ 0, i = 1, . . . ,m

For a given infeasible x:

I get a subgradient gj ∈ ∂fj(x) for the violated constraint j : fj(x) > 0

I Since fj(α) ≥ fj(x) + gT
j (α− x)

fj(x) + gT
j (α− x) > 0 =⇒ fj(α) > 0 =⇒ α /∈ B

I Thus every feasible α ∈ B must satisfy: fj(x) + gT
j (α− x) ≤ 0

I Deep cut!
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Modern Optimization Techniques 4. The general Cutting Plane Method

Inequality constrained Problem
Now assume a general inequality constrained problem:

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . ,m

Start with a point x

I If x is not feasible, i.e. fj(x) > 0:

I Perform a feasibility cut (for gj ∈ ∂fj(x)):

fj(x) + gT
j (α− x) ≤ 0

I If x is feasible:

I Perform an objective (neutral) cut (for g ∈ ∂f0(x)):

gT (α− x) ≤ 0
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Modern Optimization Techniques 4. The general Cutting Plane Method

Inequality constrained Problem
Now assume a general inequality constrained problem:

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . ,m

Start with a point x

I If x is not feasible, i.e. fj(x) > 0:
I Perform a feasibility cut (for gj ∈ ∂fj(x)):

fj(x) + gT
j (α− x) ≤ 0

I If x is feasible and we know a number f̄ : f0(x∗) ≤ f̄ < f0(x):

I Perform an objective (deep) cut (for g ∈ ∂f0(x)):

gT (α− x) + f0(x)− f̄ ≤ 0
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Modern Optimization Techniques 4. The general Cutting Plane Method

Basic Cutting Plane Method

We start with a polyhedron P0 known to contain B:

P0 = {α|Cα � d}

We only query the oracle at points inside P0

For each query point we get a cutting plane (u, v)

We get a new polyhedron by inserting the new cutting plane:

Pt+1 ← Pt ∩ {α|uTα ≤ v}
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Modern Optimization Techniques 4. The general Cutting Plane Method

Basic Cutting Plane Algorithm

1: procedure Cutting Plane Method
input: Initial Polyhedron P0 = {α|Cα � d}

2: t ← 0
3: while not converged do
4: Get a point xt+1 ∈ Pt
5: Query the oracle at xt+1

6: if xt+1 ∈ B then
7: return xt+1

8: end if
9: Pt+1 ← Pt ∩ {α|uT

t+1α ≤ vt+1}
10: if Pt+1 = ∅ then
11: Quit
12: end if
13: t ← t + 1
14: end while
15: end procedure
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Modern Optimization Techniques 4. The general Cutting Plane Method

Basic Cutting Plane Algorithm

(From Stephen Boyd’s Lecture Notes)
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Modern Optimization Techniques 4. The general Cutting Plane Method

How to choose the next point

How do we choose the next xt+1?

I The size of Pt+1 is a measure of our uncertainty

I We want to choose a xt+1 so that Pt+1 is small as possible no matter
the cut

I Strategy: choose xt+1 close to the center of Pt+1

Pt

xt+1

Pt

xt+1
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Modern Optimization Techniques 4. The general Cutting Plane Method

Specific Cutting Plane Methods

Specific Cutting Plane Methods differ in the choice of the query point

I Center of Gravity (CG): xt+1 is the center of gravity of Pt

I Maximum volume ellipsoid (MVE): xt+1 is the center of the
maximum volume ellipsoid contained in Pt

I Chebyshev Center: xt+1 the Chebyshev center of Pt

I Analytic Center: xt+1 is the analytic center of the inequalites defining
Pt
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Modern Optimization Techniques 4. The general Cutting Plane Method

Center of gravity Method

xt+1 is the center of gravity of Pt : CG (Pt)

CG (Pt) =

∫
Pt

xdx∫
Pt

dx

Theorem: be P ⊂ Rn, xcg = CG (P), g 6= 0:

vol
(
P ∩ {x|gT (x− xcg ) ≤ 0}

)
≤ (1− 1

e
)vol(P) ≈ 0.63vol(P)

which means that, at epoch t, vol(Pt) ≤ 0.63tvol(P0)
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Modern Optimization Techniques 4. The general Cutting Plane Method

Maximum Volume Ellipsoid (MVE) Method

xt+1 is the center of the maximum volume ellipsoid E contained in Pt

The ellipsoid can be parametrized by a positive definite matrix E ∈ Rn×n
++

and a vector h ∈ Rn:

E = {Eα + h | ||α||2 ≤ 1}

The Maximum Volume Ellipsoid in a polyhedron
{α|cTi α ≤ di , i = 1, . . . ,m} can be found by solving:

maximize log det E

subject to ||Eci ||2 + cTi h ≤ di , i = 1, . . . ,m
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Modern Optimization Techniques 4. The general Cutting Plane Method

Maximum Volume Ellipsoid (MVE) Method

Computing the MVE is done by solving a convex optimization problem

It is affine invariant

One can show that:

vol(Pt+1) ≤ (1− 1

n
)vol(Pt)
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Modern Optimization Techniques 4. The general Cutting Plane Method

Chebyshev Center

xt+1 the center of the largest Euclidean ball in Pt

Can be computed by linear programming:

The Chebyshev center of {α|cTi α ≤ di , i = 1, . . . ,m}

Is the center of the largest ball {xcenter + α | ||α||2 ≤ r}

We can find xcenter and r by solving:

maximize r

subject to cTi x + r ||ci ||2 ≤ di , i = 1, . . . ,m
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Modern Optimization Techniques 4. The general Cutting Plane Method

MVE vs. Chebyshev Center

P

xMVE

P

xCheb
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Modern Optimization Techniques 4. The general Cutting Plane Method

Analytic Center

xt+1 is the analytic center of the inequalites defining Pt

Be Pt = {α|cTi α ≤ di , i = 1, . . . , q}:

xt+1 = arg minx −
q∑

i=1

log(di − cix)

Can be solved using Newton’s method
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