

Modern Optimization Techniques

Lucas Rego Drumond

Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany

Cutting Plane Methods

Outline

- 1. Inequality Constrained Minimization Problems
- 2. Cutting Plane Methods: Basic Idea
- 3. The Oracle
- 4. The general Cutting Plane Method

Outline

1. Inequality Constrained Minimization Problems

- 2. Cutting Plane Methods: Basic Idea
- 3. The Oracle
- 4. The general Cutting Plane Method

Inequality Constrained Minimization (ICM) Problems

A problem of the form:

$$\begin{array}{ll} \text{minimize} & f_0(\mathbf{x}) \\ \text{subject to} & f_i(\mathbf{x}) \leq 0, \quad i = 1, \dots, m \\ & A\mathbf{x} = \mathbf{b} \end{array}$$

Where:

- ▶ $f_0, ..., f_m : \mathbb{R}^n \to \mathbb{R}$ are convex and twice differentiable
- $A \in \mathbb{R}^{q \times n}$ and $\mathbf{b} \in \mathbb{R}^{q}$
- A feasible optimal \mathbf{x}^* exists and $f_0(\mathbf{x}^*) = p^*$

KKT Conditions

Assume that a strictly feasible solution \mathbf{x}^* to the problem exists, the KKT Conditions are:

- 1. Primal feasibility: $f_i(\mathbf{x}^*) \leq 0$ for all *i* and $A\mathbf{x}^* = \mathbf{b}$
- 2. Dual feasibility: $\lambda \succeq 0$
- 3. Complementary Slackness: $\lambda_i f_i(\mathbf{x}^*) = 0$ for all *i*
- 4. Stationarity: $\nabla f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla f_i(\mathbf{x}^*) + \sum_{i=1}^q \nu_i \nabla h_i(\mathbf{x}^*) = 0$

Outline

1. Inequality Constrained Minimization Problems

2. Cutting Plane Methods: Basic Idea

3. The Oracle

4. The general Cutting Plane Method

Cutting Plane Methods

We have seen how to solve inequality constrained problems using interior point methods

Interior point methods assume $\{f_i(\mathbf{x})\}_{i=0,...,m}$ to be *convex* and *twice* differentiable

What to do if f_i is nondifferentiable?

Cutting plane methods:

- ► Are able to handle nondifferentiable convex problems
- ► Can also be applied to unconstrained minimization problems
- ► Require the computation of a subgradient per step
- ► Can be much faster than subgradient methods

Cutting Plane Methods - Basic Idea

Let us denote by $\mathcal{B} \subseteq \mathbb{R}^n$ the set of all solutions \mathbf{x}^* to our problem:

$$\mathcal{B} := \{\mathbf{x}^* | f_0(\mathbf{x}^*) = \boldsymbol{p}^* \land A \mathbf{x}^* = \mathbf{b} \land f_i(\mathbf{x}^*) \leq 0\}$$

Assume we have an **oracle** who can "answer" $\mathbf{x} \in \mathcal{B}$ The oracle returns a plane that separates \mathbf{x} from \mathcal{B} A cutting plane method starts with an initial solution \mathbf{x}^t and then:

- 1. Query the oracle $\mathbf{x}^t \stackrel{?}{\in} \mathcal{B}$
- 2. If $\mathbf{x}^t \in \mathcal{B}$ then stop and return \mathbf{x}^t
- 3. Generate a new point \mathbf{x}^{t+1} on the other side of the plane returned by the oracle
- 4. Go back to step 1

Modern Optimization Techniques 2. Cutting Plane Methods: Basic Idea

Cutting Plane Methods - Basic Idea

Outline

- 1. Inequality Constrained Minimization Problems
- 2. Cutting Plane Methods: Basic Idea
- 3. The Oracle
- 4. The general Cutting Plane Method

Cutting Plane Oracle

Goal: Determine if $\mathbf{x} \stackrel{?}{\in} \mathcal{B}$

There are two possible outcomes of a query to the oracle:

- A positive answer if $\mathbf{x} \in \mathcal{B}$
- ► If $\mathbf{x} \notin \mathcal{B}$ it returns a separating hyperplane (\mathbf{u}, v) between \mathbf{x} and \mathcal{B} :

$$\mathbf{u}^T \mathbf{x}^* \leq v$$
 for $\mathbf{x}^* \in \mathcal{B}$
 $\mathbf{u}^T \mathbf{x} \geq v$

with $\mathbf{u} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}$

This means we can eliminate (cut) all points in the halfspace $\{\alpha | \mathbf{u}^T \alpha > \mathbf{v}\}$ from our search

Neutral cuts

If \mathbf{x} is on the boundary of the halfspace the cut is called **neutral**:

Deep cuts

 $\mathbf{u}^T \mathbf{x} > \mathbf{v}$

Oracle for an Unconstrained Minimization Problem

For a convex $f_0 : \mathbb{R}^n \to \mathbb{R}$ and the minimization problem min f_0 :

We can implement the oracle through the subdifferential $\partial f_0(\mathbf{x})$:

Be $\mathbf{g} \in \partial f_0(\mathbf{x})$, we know from the subgradient definition:

$$f_0(\alpha) \ge f_0(\mathbf{x}) + \mathbf{g}^T(\alpha - \mathbf{x})$$

thus if

$$\mathbf{g}^{\mathcal{T}}(\alpha - \mathbf{x}) > \mathbf{0}$$

then

 $f_0(\alpha) > f_0(\mathbf{x})$

Oracle for an Unconstrained Minimization Problem

$$\mathbf{g}^{T}(\alpha - \mathbf{x}) > 0 \Longrightarrow f_{0}(\alpha) > f_{0}(\mathbf{x})$$

This means that all points α s.t. $\mathbf{g}^{T}(\alpha - \mathbf{x}) \geq 0$ are worse solutions then \mathbf{x}

Our oracle needs to return a cutting-plane $\mathbf{u}^T \alpha \geq \mathbf{v}$:

$$\begin{aligned} \mathbf{g}^{\mathcal{T}}(\alpha - \mathbf{x}) &\geq 0\\ \mathbf{g}^{\mathcal{T}}\alpha - \mathbf{g}^{\mathcal{T}}\mathbf{x} &\geq 0\\ \mathbf{g}^{\mathcal{T}}\alpha &\geq \mathbf{g}^{\mathcal{T}}\mathbf{x} \end{aligned}$$

This is a neutral cutting plane!

Modern Optimization Techniques 3. The Oracle

Subgradient as a cut criterion

Outline

- 1. Inequality Constrained Minimization Problems
- 2. Cutting Plane Methods: Basic Idea
- 3. The Oracle
- 4. The general Cutting Plane Method

Deep cut for Unconstrained Minimization

To get a deep cut we need to know a number \overline{f} such that $f_0(\mathbf{x}) > \overline{f} \ge f^*$ Recall the subgradient definition: $f_0(\alpha) \ge f_0(\mathbf{x}) + \mathbf{g}^T(\alpha - \mathbf{x})$

It follows that if:

$$f_0(\mathbf{x}) + \mathbf{g}^T(\alpha - \mathbf{x}) > \overline{f}$$

then

$$f_0(\alpha) > \overline{f} \ge f^* \Longrightarrow \alpha \notin \mathcal{B}$$

which gives us the following deep cut:

$$\mathbf{g}^{T}(\alpha - \mathbf{x}) + f_{0}(\mathbf{x}) - \overline{f} \leq 0$$

Modern Optimization Techniques 4. The general Cutting Plane Method

Deep cut for Unconstrained Minimization

$$\mathbf{g}^{\mathsf{T}}(\alpha - \mathbf{x}) + f_0(\mathbf{x}) - \overline{f} \leq \mathbf{0}$$

- Neutral cut plus
- ► Offset

How to find \overline{f} ?

One solution: maintain the lowest value for f_0 found so far

Feasibility problem Find a feasible $\mathbf{x} \in \mathbb{R}^n$

 $\begin{array}{ll} \mbox{find} & {\bf x} \\ \mbox{subject to} & f_i({\bf x}) \leq 0, \quad i=1,\ldots,m \end{array}$

For a given infeasible **x**:

▶ get a subgradient $\mathbf{g}_j \in \partial f_j(\mathbf{x})$ for the violated constraint j: $f_j(\mathbf{x}) > 0$

• Since
$$f_j(\alpha) \ge f_j(\mathbf{x}) + \mathbf{g}_j^T(\alpha - \mathbf{x})$$

$$f_j(\mathbf{x}) + \mathbf{g}_j^T(\alpha - \mathbf{x}) > 0 \Longrightarrow f_j(\alpha) > 0 \Longrightarrow \alpha \notin \mathcal{B}$$

- ► Thus every feasible $\alpha \in \mathcal{B}$ must satisfy: $f_j(\mathbf{x}) + \mathbf{g}_i^T(\alpha \mathbf{x}) \leq 0$
- ► Deep cut!

Inequality constrained Problem

Now assume a general inequality constrained problem:

$$\begin{array}{ll} \text{minimize} & f_0(\mathbf{x}) \\ \text{subject to} & f_i(\mathbf{x}) \leq 0, \quad i=1,\ldots,m \end{array}$$

Start with a point \mathbf{x}

- If x is not feasible, i.e. $f_j(\mathbf{x}) > 0$:
 - Perform a feasibility cut (for $\mathbf{g}_j \in \partial f_j(\mathbf{x})$):

$$f_j(\mathbf{x}) + \mathbf{g}_j^T(\alpha - \mathbf{x}) \leq 0$$

- If x is feasible:
 - Perform an objective (neutral) cut (for $\mathbf{g} \in \partial f_0(\mathbf{x})$):

$$\mathbf{g}^{\mathsf{T}}(\alpha - \mathbf{x}) \leq \mathbf{0}$$

Inequality constrained Problem

Now assume a general inequality constrained problem:

$$\begin{array}{ll} \text{minimize} & f_0(\mathbf{x}) \\ \text{subject to} & f_i(\mathbf{x}) \leq 0, \quad i=1,\ldots,m \end{array}$$

Start with a point \mathbf{x}

- If x is not feasible, i.e. $f_j(\mathbf{x}) > 0$:
 - Perform a feasibility cut (for $\mathbf{g}_j \in \partial f_j(\mathbf{x})$):

$$f_j(\mathbf{x}) + \mathbf{g}_j^T(\alpha - \mathbf{x}) \leq 0$$

- ▶ If **x** is feasible and we know a number \overline{f} : $f_0(\mathbf{x}^*) \leq \overline{f} < f_0(\mathbf{x})$:
 - Perform an objective (deep) cut (for $\mathbf{g} \in \partial f_0(\mathbf{x})$):

$$\mathbf{g}^{T}(\alpha - \mathbf{x}) + f_{0}(\mathbf{x}) - \overline{f} \leq 0$$

Basic Cutting Plane Method

We start with a polyhedron \mathcal{P}_0 known to contain \mathcal{B} :

 $\mathcal{P}_{\mathbf{0}} = \{ \alpha | \mathbf{C} \alpha \succeq \mathbf{d} \}$

We only query the oracle at points inside $\mathcal{P}_{\mathbf{0}}$

For each query point we get a cutting plane (\mathbf{u}, v)

We get a new polyhedron by inserting the new cutting plane:

$$\mathcal{P}_{t+1} \leftarrow \mathcal{P}_t \cap \{ \alpha | \mathbf{u}^T \alpha \leq \mathbf{v} \}$$

Basic Cutting Plane Algorithm

1: procedure CUTTING PLANE METHOD input: Initial Polyhedron $\mathcal{P}_0 = \{ \alpha | C\alpha \succeq \mathbf{d} \}$

```
t \leftarrow 0
 2.
             while not converged do
 3:
                    Get a point \mathbf{x}^{t+1} \in \mathcal{P}_t
 4:
                    Query the oracle at \mathbf{x}^{t+1}
 5:
                    if \mathbf{x}^{t+1} \in \mathcal{B} then
 6:
                           return \mathbf{x}^{t+1}
 7:
                    end if
 8:
                    \mathcal{P}_{t+1} \leftarrow \mathcal{P}_t \cap \{\alpha | \mathbf{u}_{t+1}^T \alpha \leq \mathbf{v}_{t+1}\}
 9:
                    if \mathcal{P}_{t+1} = \emptyset then
10:
                           Quit
11:
                    end if
12:
13:
                     t \leftarrow t + 1
```

14: end while

Basic Cutting Plane Algorithm

(From Stephen Boyd's Lecture Notes)

Universiter - Hildesheim

How to choose the next point

How do we choose the next \mathbf{x}^{t+1} ?

- The size of \mathcal{P}_{t+1} is a measure of our uncertainty
- ► We want to choose a x^{t+1} so that P_{t+1} is small as possible no matter the cut
- ▶ Strategy: choose \mathbf{x}^{t+1} close to the center of \mathcal{P}_{t+1}

Specific Cutting Plane Methods

Specific Cutting Plane Methods differ in the choice of the query point

- Center of Gravity (CG): \mathbf{x}^{t+1} is the center of gravity of \mathcal{P}_t
- Maximum volume ellipsoid (MVE): x^{t+1} is the center of the maximum volume ellipsoid contained in P_t
- ▶ Chebyshev Center: \mathbf{x}^{t+1} the Chebyshev center of \mathcal{P}_t
- ► Analytic Center: x^{t+1} is the analytic center of the inequalites defining P_t

Center of gravity Method

 \mathbf{x}^{t+1} is the center of gravity of \mathcal{P}_t : $CG(\mathcal{P}_t)$

$$CG(\mathcal{P}_t) = rac{\int_{\mathcal{P}_t} \mathbf{x} d\mathbf{x}}{\int_{\mathcal{P}_t} d\mathbf{x}}$$

Theorem: be $\mathcal{P} \subset \mathbb{R}^n$, $\mathbf{x}_{cg} = CG(\mathcal{P})$, $\mathbf{g} \neq 0$:

$$\mathsf{vol}\left(\mathcal{P} \cap \{\mathbf{x} | \mathbf{g}^{\mathsf{T}}(\mathbf{x} - \mathbf{x}_{cg}) \leq 0\}\right) \leq (1 - \frac{1}{e})\mathsf{vol}(\mathcal{P}) \approx 0.63\mathsf{vol}(\mathcal{P})$$

which means that, at epoch t, $\mathsf{vol}(\mathcal{P}_t) \leq 0.63^t \mathsf{vol}(\mathcal{P}_0)$

Maximum Volume Ellipsoid (MVE) Method

 \mathbf{x}^{t+1} is the center of the maximum volume ellipsoid $\mathcal E$ contained in $\mathcal P_t$

The ellipsoid can be parametrized by a positive definite matrix $E \in \mathbb{R}^{n \times n}_{++}$ and a vector $\mathbf{h} \in \mathbb{R}^{n}$:

$$\mathcal{E} = \{ \mathbf{E}\alpha + \mathbf{h} \mid ||\alpha||_2 \le 1 \}$$

The **Maximum Volume Ellipsoid** in a polyhedron $\{\alpha | \mathbf{c}_i^T \alpha \leq d_i, i = 1, ..., m\}$ can be found by solving:

maximize
$$\log \det E$$

subject to $||E\mathbf{c}_i||_2 + \mathbf{c}_i^T \mathbf{h} \le d_i, \quad i = 1, \dots, m$

Maximum Volume Ellipsoid (MVE) Method

Computing the MVE is done by solving a convex optimization problem

It is affine invariant

One can show that:

$$\mathsf{vol}(\mathcal{P}_{t+1}) \leq (1 - rac{1}{n})\mathsf{vol}(\mathcal{P}_t)$$

Chebyshev Center

 \mathbf{x}^{t+1} the center of the largest Euclidean ball in \mathcal{P}_t

Can be computed by linear programming:

The Chebyshev center of $\{\alpha | \mathbf{c}_i^T \alpha \leq \mathbf{d}_i, i = 1, \dots, m\}$

Is the center of the largest ball $\{\mathbf{x}_{center} + \alpha \mid ||\alpha||_2 \leq r\}$

We can find \mathbf{x}_{center} and r by solving:

maximize
$$r$$

subject to $\mathbf{c}_i^T \mathbf{x} + r ||\mathbf{c}_i||_2 \le d_i, \quad i = 1, \dots, m$

Modern Optimization Techniques 4. The general Cutting Plane Method

MVE vs. Chebyshev Center

Analytic Center

 \mathbf{x}^{t+1} is the analytic center of the inequalites defining \mathcal{P}_t

Be
$$\mathcal{P}_t = \{ \alpha | \mathbf{c}_i^T \alpha \leq \mathbf{d}_i, i = 1, \dots, q \}$$
:

$$\mathbf{x}^{t+1} = \operatorname{arg\,min}_{\mathbf{x}} - \sum_{i=1}^{q} \log(d_i - \mathbf{c}_i \mathbf{x})$$

Can be solved using Newton's method

