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Modern Optimization Techniques 1. Distributed Optimization

Problem set up
Given an equality constrained problem:

minimize f0(x)

subject to Ax = b

The Lagrangian is given by:

L(x, ν) = f0(x) + ν(Ax− b)

And the dual:

g(ν) = inf
x
L(x, ν)

We solve it by

1. ν∗ := arg maxx g(ν)

2. x∗ := arg minx L(x, ν∗)
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Modern Optimization Techniques 1. Distributed Optimization

Dual Ascent

We can apply the gradient method for maximizing the dual:

νt+1 = νt + µt∇g(νt)

where, given that x′ = arg min L(x, νt):

∇g(νt) = Ax′ + b

Which gives us the following method for solving the dual:

xt+1 ← arg min L(x, νt)

νt+1 ← νt + µt(Axt+1 + b)
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Modern Optimization Techniques 1. Distributed Optimization

Dual Decomposition

Now suppose f0 can be rewritten like this:

f0(x) = f1(x1) + f2(x2) + . . .+ fN(xN), x = (x1, x2, . . . , xN)

Partitioning A = [A1 · · ·AN ] so that
∑n

i=1 Aixi = Ax, we can write the
Lagrangian as:

L(x, ν) = f0(x) + ν(Ax− b)

L(x, ν) = f1(x1) + . . .+ fN(xN) + ν(A1x1 + . . .+ Anxn − b)

L(x, ν) = f1(x1) + νTA1x1 + . . .+ fN(xN) + νTANxN − νTb
L(x, ν) = L1(x1, ν) + . . .+ LN(xN , ν)− νTb

Where: Li (xi , ν) = fi (xi ) + νTAixi
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Modern Optimization Techniques 1. Distributed Optimization

Dual Decomposition

The problem

xt+1 := arg min
x

L(x, νt)

With the Lagrange function

L(x, ν) =
N∑
i=1

Li (xi , ν)− νTb

where Li (xi , ν) = fi (xi ) + νTAixi

Can be solved by N minimization steps:

xt+1
i := arg min

xi
Li (xi , ν

t)

carried out in parallel
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Modern Optimization Techniques 1. Distributed Optimization

Dual Decomposition

Dual decomposition method:

xt+1
i ← arg min

xi
Li (xi , ν

t)

νt+1 ← νt + µt

(
n∑

i=1

Aix
t+1
i + b

)

At each step:

I νt have to be broadcasted

I xt+1
i are updated in parallel

I Aix
t+1
i are gathered to compute the sum

∑n
i=1 Aix

t+1
i

Works if assumptions hold but often slow!!
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Modern Optimization Techniques 1. Distributed Optimization

Method of Multipliers
The method of multipliers uses the augmented lagrangian, s > 0:

Ls(x, ν) = f0(x) + ν(Ax− b) + (
s

2
)||Ax− b||22

and solves the dual problem through the following steps:

xt+1 ← arg min
x

Ls(x, νt)

νt+1 ← νt + s
(
Axt+1 + b

)
I Converges under more relaxed assumptions

I AugmentedLagrangian not separable because of the additional term
(no parallelization)
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Modern Optimization Techniques 1. Distributed Optimization

Alternating Direction Method of Multipliers (ADMM)
ADMM assumes the problem can take the form:

minimize f0(x) + h0(α)

subject to Ax + Bα = c

which has the following augmented lagragian:

Ls(x, α, ν) = f0(x) + h0(α) + νT (Ax + Bα− c) + (
s

2
)||Ax + Bα− c||22

and solves the dual problem through the following steps:

xt+1 ← arg min
x

Ls(x, αt , νt)

αt+1 ← arg min
α

Ls(xt+1, α, νt)

νt+1 ← νt + s
(
Axt+1 + Bαt+1 − c

)
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Modern Optimization Techniques 1. Distributed Optimization

Alternating Direction Method of Multipliers (ADMM)

xt+1 ← arg min
x

Ls(x, αt , νt)

αt+1 ← arg min
α

Ls(xt+1, α, νt)

νt+1 ← νt + s
(
Axt+1 + Bαt+1 − c

)
At first ADMM seems very similar to the method of multipliers

I It reduces to the method of multipliers if x and α are optimized jointly

I if f0 or h0 are separable we can now perform the updates of x (or α)
in parallel
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Modern Optimization Techniques 1. Distributed Optimization

ADMM: scaled form

We can rewrite the ADMM algorithm in a more convenient form.

From the augumented Lagrangian:

Ls(x, α, ν) = f0(x) + h0(α) + νT (Ax + Bα− c) + (
s

2
)||Ax + Bα− c||22

we can define: r = Ax + Bα− c so that:

νT r + (
s

2
)||r||22 =

s

2
||r − 1

s
ν||22 −

1

2s
||ν||22

=
s

2
||r + u||22 −

s

2
||u||22

where u = 1
s ν
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Modern Optimization Techniques 1. Distributed Optimization

ADMM: scaled form
From the augumented Lagrangian:

Ls(x, α, ν) = f0(x) + h0(α) + νT (Ax + Bα− c) + (
s

2
)||Ax + Bα− c||22

And r = Ax + Bα− c:

νT r + (
s

2
)||r||22 =

s

2
||r + u||22 −

s

2
||u||22

where u = 1
s ν, we have:

xt+1 ← arg min
x

f0(x) +
s

2
||Ax + Bαt − c + ut ||22

αt+1 ← arg min
α

h0(α) +
s

2
||Axt+1 + Bα− c + ut ||22

ut+1 ← ut + Axt+1 + Bαt+1 − c
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Modern Optimization Techniques 1. Distributed Optimization

Example: Machine Learning

The data is represented it as:

Dm,n =


1 d1,1 d1,2 . . . d1,n
1 d2,1 d2,2 . . . d2,n
...

...
...

...
...

1 dm,1 dm,2 . . . dm,n

 y =


y1
y2
...
ym


We want to learn a model to predict y from X through parameters x:

ŷi = xTdi = x01 + x1di ,1 + x2di ,2 + . . .+ xndi ,n
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Modern Optimization Techniques 1. Distributed Optimization

Example: Machine Learning
Be l : Rm → R is a loss function and r : Rn → R is a regularization term
the problem of learning a linear model can be written as:

minimize l(Dx− y) + r(x)

Most losses l can be decomposed into losses on datapoints:

minimize
m∑
i=1

li (x
Tdi − yi ) + r(x)

Example: Ridge (Linear) Regression:

minimize ||Dx− y||22 + λ||x||22 =

minimize
m∑
i=1

(xTdi − yi )
2 + λ

n∑
j=1

xj
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Modern Optimization Techniques 1. Distributed Optimization

Example: Machine Learning
Now we can rewrite our problem

minimize l(Dx− y) + r(x)

as

minimize l(Dx− y) + r(α)

subject to x− α = 0

And solve it through ADMM:

xt+1 ← arg min
x

l(Dx− y) + νt
T

(x− αt) +
s

2
||x− αt ||22

αt+1 ← arg min
α

r(α) + νt
T

(xt+1 − α) +
s

2
||xt+1 − α||22

νt+1 ← νt + s
(
Axt+1 + Bαt+1 − c

)
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Modern Optimization Techniques 1. Distributed Optimization

Example: Machine Learning
Given that the loss function is separable:

minimize
M∑
i=1

li (x
Tdi − yi ) + r(α)

subject to x− α = 0

We can rewrite the algorithm like:

xt+1
i ← arg min

xi
l(Dixi − yi ) +

s

2
||xi − αt + uti ||22

αt+1 ← arg min
α

r(α) +
Ms

2
||α− x̄t+1 − ūt ||22

ut+1
i ← uti + xt+1

i − αt+1

And solve for different xi in parallel
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Modern Optimization Techniques 2. Wrap up

Unconstrained Optimization Problems

An unconstrained optimization problem has the form:

minimize f0(x)

Where:

I f0 : Rn → R is convex, twice differentiable

I An optimal x∗ exists and f (x∗) is attained and finite
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Modern Optimization Techniques 2. Wrap up

Descent Methods

The next point is generated
using

I A step size µ

I A direction ∆x such that

f0(xt + µ∆xt−1) < f0(xt−1)

1: procedure DescentMethod
input: f0

2: Get initial point x
3: repeat
4: Get Update Direction ∆x
5: Get Step Size µ
6: xt+1 ← xt + µ∆xt

7: until convergence
8: return x, f0(x)
9: end procedure
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Modern Optimization Techniques 2. Wrap up

Methods For Unconstrained Optimization
I Gradient Descent:

∆x = −∇f0(x)

I Stochastic Gradient Descent:
I If the function is if the form f0(x) =

∑m
i=1 g(x, i):

I

∆ix = −∇g(x, i)

I Coordinate Descent:

x
(t)
k ← arg min

xk
f0(x

(t)
1 , x

(t)
2 , . . . , xk , . . . , x

(t−1)
n )

I Newton’s Method:

∆x = −∇2f0(x)−1∇f0(x)
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Modern Optimization Techniques 2. Wrap up

Choosing the step size

I The step size µ is a crucial parameter to be tuned
I Possible alternatives:

I Fixed step size
I Line Search
I Bold-Driver
I Adagrad
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Modern Optimization Techniques 2. Wrap up

The Subgradient Method
Be f0 a nondifferentiable and convex function f0 : Rn → R and x ∈ Rn:

minimize f0(x)

Be gt any subgradient of f0 at xt

1. Start with an initial solution x(0)

2. t ← 0

3. Repeat until convergence

3.1 Find xt+1 = xt − µtgt

3.2 t ← t + 1

4. Return f0best = minj=1,...,t f0(xj)

The subgradient method is not a descent method!
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Modern Optimization Techniques 2. Wrap up

Convex Constrained Optimization Problems
A constrained optimization problem:

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, i = 1, . . . , p

is convex iff:

I f0, . . . , fm are convex
I h1, . . . , hp are affine

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b
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Modern Optimization Techniques 2. Wrap up

Lagrangian
The primal Lagrangian of a constrained optimization problem is a
function L : Rn × Rm × Rp → R:

L(x, λ, ν) = f0(x) +
m∑
i=1

λi fi (x) +

p∑
i=1

νihi (x)

Be D the domain of the problem, the dual Lagrangian of a constrained
optimization problem is a function g : ×Rm × Rp → R:

g(λ, ν) = inf
x∈D

L(x, λ, ν)

= inf
x∈D

(
f0(x) +

m∑
i=1

λi fi (x) +

p∑
i=1

νihi (x)

)
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Modern Optimization Techniques 2. Wrap up

Karush-Kuhn-Tucker (KKT) Conditions

The following conditions are called the KKT conditions:

1. Primal feasibility: fi (x) ≤ 0 and hj(x) = 0 for all i , j

2. Dual feasibility: λ � 0

3. Complementary Slackness: λi fi (x) = 0 for all i

4. Stationarity: ∇f0(x) +
∑m

i=1 λi∇fi (x) +
∑p

i=1 νi∇hi (x) = 0

If strong duality holds and x, λ, ν are optimal, then they must satisfy the
KKT conditions

If x, λ, ν satisfy the KKT conditions, then x is the primal solution
and (λ, ν) is the dual solution

Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Distributed Optimization and Review 22 / 26



Modern Optimization Techniques 2. Wrap up

Solving ECP through the KKT Conditions

Given the following problem:

minimize f0(x)

subject to Ax = b

The optimal solution x∗ must fulfil the KKT Conditions:

I Primal feasibility: hj(x
∗) = 0

I Stationarity: ∇f0(x∗) +
∑p

i=1 νi∇hi (x∗) = 0

[
P AT

A 0

] [
x∗

ν∗

]
=

[
−q
b

]
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Modern Optimization Techniques 2. Wrap up

Newton’s method for Equality Constrained Problems

1: procedure Newtons Method
input: f0, initial feasible point x ∈ dom f0 and Ax = b

2: repeat

3: Get ∆ by solving

[
∇2f0(x) AT

A 0

] [
∆x
w

]
=

[
−∇f0(x)

0

]
4: Get Step Size µ
5: x← x + µ∆x
6: until convergence
7: return x, f0(x)
8: end procedure

What if we don’t have a feasible x to start with?
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The Interior Point Methods

1: procedure Barrier Method
input: strictly feasible x(0), t0 > 0, step size µ > 1, tolerance ε > 0

2: t := t0

3: x := x0

4: while m/t < ε do
/* Centering Step */

5: x∗(t) := arg minx(t)tf0(x(t)) + φ(x(t)),
subject to Ax(t) = b,
starting at x(t) = x

6: x := x∗(t)
7: t := µt
8: end while
9: return x

10: end procedure
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Cutting Plane Methods

1: procedure Cutting Plane Method
input: Initial Polyhedron P0 = {α|Cα � d}

2: t ← 0
3: while not converged do
4: Get a point xt+1 ∈ Pt
5: Query the oracle at xt+1

6: if xt+1 ∈ B then
7: return xt+1

8: end if
9: Pt+1 ← Pt ∩ {α|uTt+1α ≤ vt+1}

10: if Pt+1 = ∅ then
11: Quit
12: end if
13: t ← t + 1
14: end while
15: end procedure
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