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A convex function

x

f (x)
f0(x) = x2
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A non-convex function

x

f (x)

f0(x) = 0.1x2 + sin x
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Modern Optimization Techniques 1. Introduction

Convex Optimization Problem

An optimization problem

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

is said to be convex if f0, . . . fm are convex

How do we know if a function is convex or not?
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Modern Optimization Techniques 2. Convex Sets

Affine Sets

For any two points x1, x2 we can define the line through them as:

x = θx1 + (1− θ)x2 θ ∈ R

Example:

x1

x2

θ = 1

θ = 0

θ = 0.4

θ = 1.3

θ = −0.5
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Modern Optimization Techniques 2. Convex Sets

Affine Sets - Definition

An affine set is a set containing the line through any two distinct points
in it

Examples:

I Rn for n ∈ N+

I Solution set of linear equations {x |Ax = b}
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Modern Optimization Techniques 2. Convex Sets

Convex Sets

The line segment between any two points x1, x2 is the set of all points:

x = θx1 + (1− θ)x2 0 ≤ θ ≤ 1

Example:

x1

x2

θ = 1

θ = 0

A convex set contains the line segment between any two points in the set
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Modern Optimization Techniques 2. Convex Sets

Convex Sets - Examples
Convex Sets:

Non-convex Sets:
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Modern Optimization Techniques 2. Convex Sets

Convex Combination and Convex Hull

(standard) simplex:

∆N := {θ ∈ RN | θn ≥ 0, n = 1, . . . ,N;
N∑

n=1

θn = 1}

convex combination of some points x1, . . . xN ∈ RM : any point x with

x = θ1x1 + θ2x2 + . . .+ θNxN , θ ∈ ∆N

convex hull of a set X ⊆ RM of points:

conv(X ) := {θ1x1 + θ2x2 + . . .+ θNxN | N ∈ N, x1, . . . , xN ∈ X , θ ∈ ∆N}

i.e., the set of all convex combinations of points in X .
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Modern Optimization Techniques 3. Convex Functions

Convex Functions

A function f : X → R,X ⊆ Rn is convex iff:

I dom f = X is a convex set

I for all x1, x2 ∈ dom f and 0 ≤ θ ≤ 1 it satistfies

f (θx1 + (1− θ)x2) ≤ θf (x1) + (1− θ)f (x2)

(the function is below any of its chords/secant segments.)

(x1, f (x1))
(x2, f (x2))
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Convex functions

x

f (x)

I θx1 + (1− θ)x2
I (θx1 + (1− θ)x2, f (θx1 + (1− θ)x2))

I (θx1 + (1− θ)x2, θf (x1) + (1− θ)f (x2))
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Modern Optimization Techniques 3. Convex Functions

How are Convex Functions Related to Convex Sets?

epigraph of a function f : X → R,X ⊆ Rn:

epi(f ) := {(x , y) ∈ X × R | y ≥ f (x)}

f is convex (as function) ⇐⇒ epi(f) is convex (as set).

proof is straight-forward (try it!)
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Modern Optimization Techniques 3. Convex Functions

Concave Functions

A function f is called concave if −f is convex

A Concave Function

x

f (x)

f0(x) = −x2

A Convex Function

x

f (x)
f0(x) = x2
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Modern Optimization Techniques 3. Convex Functions

Strictly Convex Functions

A function f : X → R,X ⊆ Rn is strictly convex if:

I dom f is a convex set

I for all x1, x2 ∈ dom f , x 6= y and 0 < θ < 1 it satistfies

f (θx1 + (1− θ)x2) < θf (x1) + (1− θ)f (x2)
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Modern Optimization Techniques 3. Convex Functions

Examples

Examples of Convex functions:

I affine: f (x) = ax + b, with dom f = R and a, b ∈ R
I exponential: f (x) = eax , with a ∈ R
I powers: f (x) = xa, with dom f = R+

0 and a ≥ 1 or a ≤ 0

I powers of absolute value: f (x) = |x |a, with dom f = R and a ≥ 1

I negative entropy: f (x) = x log x , with dom f = R+

Examples of Concave Functions:

I affine: f (x) = ax + b, with dom f = R and a, b ∈ R
I powers: f (x) = xa, with dom f = R+

0 and 0 ≤ a ≤ 1

I logarithm: f (x) = log x , with dom f = R+
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I For x ∈ Rn, p ≥ 1:

p-norms: ||x||p = (
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i=1 |xi |p)
1
p ,
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Modern Optimization Techniques 3. Convex Functions

1st-Order Condition

f is differentiable if dom f is open and the gradient

∇f (x) =

(
∂f (x)

∂x1
,
∂f (x)

∂x2
, . . . ,

∂f (x)

∂xn

)
exists everywhere.

1st-order condition: a differentiable function f is convex iff

I dom f is a convex set

I for all x, y ∈ dom f

f (y) ≥ f (x) +∇f (x)T (y − x)

(the function is above any of its tangents.)
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Modern Optimization Techniques 3. Convex Functions

1st-Order Condition
1st-order condition: a differentiable function f is convex iff

I dom f is a convex set
I for all x, y ∈ dom f

f (y) ≥ f (x) +∇f (x)T (y − x)

f (x)

x
x

(x, f (x))

h(y) = f (x) +∇f (x)T (y − x)
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Modern Optimization Techniques 3. Convex Functions

1st-Order Condition / Proof

Let dom f = X be convex.

f : X → R convex⇔ f (y) ≥ f (x) +∇f (x)T (y − x) ∀x, y

“⇒ ” : f (x + t(y − x)) ≤ (1− t)f (x) + tf (y) | : t

f (y) ≥ f (x + t(y − x))− f (x)

t
+ f (x)

t→0+−→ ∇f (x)T (y − x) + f (x)

“⇐ ” : Apply twice to z := θx + (1− θ)y

f (x) ≥ f (z) +∇f (z)T (x − z)

f (y) ≥ f (z) +∇f (z)T (y − z)

 θf (x) + (1− θ)f (y) ≥ f (z) +∇f (z)T (θx + (1− θ)y)−∇f (z)T z

= f (z) +∇f (z)T z −∇f (z)T z = f (z) = f (θx + (1− θ)y)
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Modern Optimization Techniques 3. Convex Functions

1st-Order Condition / Strict Variant

strict 1st-order condition: a differentiable function f is strictly convex iff

I dom f is a convex set

I for all x, y ∈ dom f

f (y) > f (x) +∇f (x)T (y − x)
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Modern Optimization Techniques 3. Convex Functions

Global Minima

Let dom f = X be convex.

f : X → R convex⇔ f (y) ≥ f (x) +∇f (x)T (y − x) ∀x, y

Consequence: Points x with ∇f (x) = 0 are (equivalent) global minima.

I minima form a convex set

I if f is strictly convex: there is exactly one global minimum x∗.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 40



Modern Optimization Techniques 3. Convex Functions

2nd-Order Condition
f is twice differentiable if dom f is open and the Hessian ∇2f (x)

∇2f (x)ij =
∂2f (x)

∂xi∂xj

exists everywhere.

2nd-order condition: a differentiable function f is convex iff

I dom f is a convex set

I for all x ∈ dom f

∇2f (x) � 0 for all x ∈ dom f

I if ∇2f (x) � 0 for all x ∈ dom f , then f is strictly convex
I the converse is not true,

e.g., f (x) = x4 is strictly convex, but has 0 derivative at 0.
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Modern Optimization Techniques 3. Convex Functions

Positive Semidefinite Matrices (A Reminder)
A symmetric matrix A ∈ Rn×n is positive semidefinite (A � 0):

xTAx ≥ 0, ∀x ∈ Rn

Equivalent:

(i) all eigenvalues of A are ≥ 0.

(ii) A = BTB for some matrix B

A symmetric matrix A ∈ Rn×n is positive definite (A � 0):

xTAx > 0, ∀x ∈ Rn \ {0}

Equivalent:

(i) all eigenvalues of A are > 0.

(ii) A = BTB for some nonsingular matrix B
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Modern Optimization Techniques 3. Convex Functions

Recognizing Convex Functions

I There are a number of operations that preserve the convexity of a
function

I If f can be obtained by applying those operations to a function, f is
also convex

Nonnegative multiple:

I if f is convex and a ≥ 0 then af is convex

I Example: 5x2 is convex since x2 is convex

Sum:

I if f1 and f2 are convex functions then f1 + f2 is convex

I Example: f (x) = e3x + x log x with dom f = R+ is convex since e3x

and x log x are convex
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Modern Optimization Techniques 3. Convex Functions

Recognizing Convex Functions

Composition with the affine function:

I if f is convex then f (Ax + b) is convex

I Example: norm of an affine function ||Ax + b||

Pointwise Maximum:

I if f1, . . . , fm are convex functions then f (x) = max{f1(x), . . . , fm(x)}
is convex

I Example: f (x) = maxi=1,...,m(aTi x + bi ) is convex
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Modern Optimization Techniques 3. Convex Functions

Recognizing Convex Functions

Composition with scalar functions:

I if g : Rn → R, h : R→ R and

f (x) = h(g(x))

I f is convex if:
I g is convex, h is convex and h is nondecreasing or
I g is concave, h is convex and h is nonincreasing

I Examples:
I eg(x) is convex if g is convex
I 1

g(x) is convex if g is concave and positive
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Modern Optimization Techniques 3. Convex Functions

Recognizing Convex Functions

There are many different ways to establish the convexity of a function:

I Apply the definition

I Show that ∇2f (x) � 0 for twice differentiable functions

I Show that f can be obtained from other convex functions by
operations that preserve convexity
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Modern Optimization Techniques 4. Optimization Problems

Outline

1. Introduction

2. Convex Sets

3. Convex Functions

4. Optimization Problems
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Modern Optimization Techniques 4. Optimization Problems

Optimization Problem

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . , p

hi (x) = 0, i = 1, . . . , q

I f0 : Rn → R is the objective function

I x ∈ Rn is the optimization variable

I (fi )i=1,...,m : Rn → R are the inequality constraint functions

I (hi )i=1,...,q : Rn → R are the equality constraint functions
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Modern Optimization Techniques 4. Optimization Problems

Convex Optimization Problem
An optimization problem

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . , p

hi (x) = 0, i = 1, . . . , q

is said to be convex if f0, . . . fp are convex and h1, . . . , hq are affine:

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, . . . , p

Ax = b
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Modern Optimization Techniques 4. Optimization Problems

Practical Example: Household Spending

Suppose we have the following data about different households:

I Number of workers in the household (a1)

I Household composition (a2)

I Region (a3)

I Gross normal weekly household income (a4)

I Weekly household spending (y)

We want to create a model of the weekly household spending
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Practical Example: Household Spending

If we have data about m households, we can represent it as:

A =


1 a1,1 a1,2 a1,3 a1,4
1 a2,1 a2,2 a2,3 a2,4
...

...
...

...
...

1 am,1 am,2 am,3 am,4

 , y =


y1
y2
...
ym



We can model the household consumption is a linear combination of the
household features with parameters β:

ŷi =βTai = β01 + β1ai ,1 + β2ai ,2 + β3ai ,3 + β4ai ,4

ai :=Ai ,.
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Practical Example: Household Spending

We have: 
1 a1,1 a1,2 a1,3 a1,4
1 a2,1 a2,2 a2,3 a2,4
...

...
...

...
...

1 am,1 am,2 am,3 am,4

 ·

β0
β1
β2
β3
β4

 ≈

y1
y2
...
ym



We want to find parameters β such that the measured error of the
predictions is minimal:

m∑
i=1

(βTai − yi )
2 = ||Aβ − y||22
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The Least Squares Problem

minimize ||Aβ − y||22

||Aβ − y||22 = (Aβ − y)T (Aβ − y)

d

dβ
(Aβ − y)T (Aβ − y) = 2AT (Aβ − y)

2AT (Aβ − y) = 0

ATAβ − ATy = 0

ATAβ = ATy

β = (ATA)−1ATy
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Modern Optimization Techniques 4. Optimization Problems

The Least Squares Problem

minimize ||Aβ − y||22

I Convex Problem!

I Analytical solution: β∗ = (ATA)−1ATy

I Often applied for data fitting

I Aβ − y is usually called the residual or error

I Extensions such as regularized least squares
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Modern Optimization Techniques 4. Optimization Problems

Practical Example: Household Location

Suppose we have the following data about different households:

I Number of workers in the household (a1)

I Household composition (a2)

I Weekly household spending (a3)

I Gross normal weekly household income (a4)

I Region (y): north y = 1 or south y = 0

We want to create a model of the location of the household
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Modern Optimization Techniques 4. Optimization Problems

Practical Example: Household Location

If we have data about m households, we can represent it as:

A =


1 a1,2 . . . a1,n
1 a2,2 . . . a2,n
...

...
...

...
1 am,2 . . . am,n

 , y =


y1
y2
...
ym



We can model the probability of the household location to be north
(y = 1) as a linear combination of the household features with parameters
β:

ŷi = σ(βTai) = σ(β01 + β1ai ,1 + β2ai ,2 + β3ai ,3 + β4ai ,4)

where: σ(x) := 1
1+e−x (logistic function)
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Modern Optimization Techniques 4. Optimization Problems

Logistic Regression

The logistic regression learning problem is

maximize
m∑
i=1

yi log σ(βTai) + (1− yi ) log(1− σ(βTai))

A =


1 a1,1 a1,2 a1,3 a1,4
1 a2,1 a2,2 a2,3 a2,4
...

...
...

...
...

1 am,1 am,2 am,3 am,4

 , y =


y1
y2
...
ym


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Modern Optimization Techniques 4. Optimization Problems

Linear Programming

minimize cTx

subject to aT
i x ≤ bi i = 1, . . . ,m

I No simple analytical solution
I There are reliable algorithms available:

I Simplex
I Interior Points Method
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Modern Optimization Techniques 4. Optimization Problems

Summary (1/2)

I Convex sets are closed under line segments (convex combinations).

I Convex functions are defined on a convex domain and
I are below any of their chords / secants (definition)
I are globally above their tangents (1st-order condition)
I have a positive definite Hessian (2nd-order condition)

I For convex functions, points with vanishing gradients are (equivalent)
global minima.

I Operations that preserve convexity:
I scaling with a nonnegative constant
I sums
I pointwise maximum
I composition with an affine function
I composition with a nondecreasing convex scalar function
I composition of a nonincreasing convex scalar function with a concave

function
I esp. −g for a concave g
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Summary (2/2)

I General optimization problems consist of
I an objective function,
I inequality constraints and
I equality constraints.

I Convex optimization problems have
I a convex objective function,
I convex inequality constraints and
I affine equality constraints.

I Examples for convex optimization problems:
I linear regression / least squares
I linear classification / logistic regression
I linear programming
I quadratic programming
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Further Readings

I Convex sets:
I Boyd and Vandenberghe [2004], chapter 2, esp. 2.1
I see also ch. 2.2 and 2.3

I Convex functions:
I Boyd and Vandenberghe [2004], chapter 3, esp. 3.1.1–7, 3.2.1–5

I Convex optimization:
I Boyd and Vandenberghe [2004], chapter 4, esp. 4.1–3
I see also ch. 4.4
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