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Modern Optimization Techniques 1. Stochastic Gradient Descent (SGD)

Unconstrained Convex Optimization

arg min f(x)
x€dom f

» dom f C RV is open (unconstrained optimization)

» f is convex
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Modern Optimization Techniques 1. Stochastic Gradient Descent (SGD)

Stochastic Gradient

Gradient Descent makes use of the gradient

Vif(x)

Stochastic Gradient Descent: makes use of Stochastic Gradient only:

g(x) ~ p(g € R [ x), Ep(g(x)) = VF(x)

» for each point x € RV:
random variable over RV with distribution p (conditional on x)

» on average yields the gradient (at each point)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

44



Modern Optimization Techniques 1. Stochastic Gradient Descent (SGD)

Stochastic Gradient / Example: Big Sums

fis a “big sum”:
1.6
F(x) = = D)
c=1

with f. convex, ¢c=1,...,C

g is the gradient of a random summand:
p(g | x) :==Unif({Vf(x) | c=1,...,C})
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Modern Optimization Techniques 1. Stochastic Gradient Descent (SGD)

NN
Stochastic Gradient / Example: Least Squares “

min f = ||Ax — bl|2
min £(x) i= [|Ax — bl

» will find solution for Ax = b if there is any (then ||Ax — b||2 = 0)
» otherwise will find the x where the difference Ax — b of left and right

side is as small as possible (in the squared L2 norm)
> is a big sum:

M

F(x) = llAx = blI3 = > ((AX)m — bm)?

m=1

1 M
== > fnlx)s Fnlx) = M((A)m = bm)?
m=1

» stochastic gradient g:
» gradient for a random component m
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Modern Optimization Techniques 1. Stochastic Gradient Descent (SGD)

Stochastic Gradient / Example: Supervised Learning

N
f n7 ns +)\ 9 3
min £(x) Z:: Vs 9 (xn, ) + A[[6]13

» where
> (Xn, ¥n) € RM x R(K) are N training samples,
» ¥ is a parametrized model, e.g., logistic regression

Y0 =1+e ), P=MT =1
» [ is a loss, e.g., negative binomial loglikelihood:
Uy,y) == —ylogy — (1 —y)log(1—9)

» A€ Rar is the regularization weight.
» will find parametrization with best trade-off between low loss and low
model complexity
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Modern Optimization Techniques 1. Stochastic Gradient Descent (SGD)

B2
Stochastic Gradient / Example: Supervised Learning (2)‘{5

1 N

. L 5 2
6}ne]];%np f(x):= N ;E(yn,y(xn, 0)) + All6][3

» where

> (Xn,¥n) € RM x RT are N training samples,
>

> is a big sum:

» stochastic gradient g:
» gradient for a random sample n
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Modern Optimization Techniques 1. Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent

» the very same as Gradient Descent
» but use stochastic gradient g(x) instead of exact gradient Vf(x) in
each step

1 min-sgd (f, p, x©), u, K) :

2 for k:=1,...,K:

3 drav gV~ p(g | x)

4 Ax(k=1) .= _g(k=1)

5 ph =) = p(F, x(k=1) ) Ax(k=1))
6 x(k) = x(k=1) 4y (k=1) Ax(k=1)
7

return X(K)

where
» { objective function
» p (distribution of the) stochastic gradient of f
» x(© starting value
> 4 step length controller

P2 ' o .
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Modern Optimization Techniques 1. Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent / For Big Sums

1 min-sgd((fc)c=1,...,C7 (Vf)c— LCs X(0)7 H, K)

2 for k:=1,...,K:

3 draw c(kfl) ~ Unif(1,...,C)
4 g( Vf<k 1( (k= 1))

5 Ax(k D). _glk-1)

6 D) = (x| Ax(k=1)y
7 x(K) = x(k=1) 4y (k=1) Ax(k—1)
8 return x(¥)

where

> (fc)c=1,...,c objective function summands, f := % chzl fe

v

(Vfe)c=1,..c gradients of the objective function summands

x(0) starting value

v

v

1 step length controller

K number of iterations

v
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Modern Optimization Techniques 1. Stochastic Gradient Descent (SGD)

SGD / For Big Sums / Epochs

1 min—sgd((fc)c:l,...,c, (vﬁ:)c:l,...,C7 X(0)7 Hy K)

2 C:=(1,2,...,0)

3 x(0:9) .= x(0)

4 for k:=1,...,K:

5 randomly shuffle C

6 5(k,0) . (k=1,C)

7 for i=1,...,C:

3 gki=1) .= V£ (x(ki=1))

9 Axlki=1) = _ g(ki=1)

10 ki) = () xki=1) | Axlkii=1))
11 x(kil) = xkoi=1) oy (ki=1) Ax(kii=1)

12 return x(K:©)

where
» (fc)c=1,...,c objective function summands, f := % chzl fe
> .
» K number of epochs

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Modern Optimization Techniques 1. Stochastic Gradient Descent (SGD)

NN
Convergence of SGD “

Theorem (Convergence of SGD)
If

(i) f is strongly convex (||V3f(x)|| = ml,m € RT),
(ii) the expected squared norm of its stochastic gradient g is uniformly
bounded (3G € Ry Vx : E(||g(x)|]*) < G2) and

(iii) the steplength (%) = m is used, then

« 1 a2 G2
EP(HX(k) —x*[]?) < P max{||x(®) — x*|2, p}
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Modern Optimization Techniques 1. Stochastic Gradient Descent (SGD)

P2
Convergence of SGD / Proof i
f(x*) — f(x) > V()T (x* — x) + gHX* —x||? str. conv. (i)
F(x) = F(x*) = VF() T (x = x*) + ZlIx = x |12 = Zx" = x|
summing both yields
0> VF(x)T(x* = x) + m||x* — x||?
V()T (x = x*) = ml[x* —x||? (1)

E(|[x®*) — X*IIZ)

I]E(HX (k 1) (kfl) *X*Hz)
= B(|[x*D — x*|]?) -2 (k_l)E((g(k_l))T(X(k_l) —x*) + (W IYE(| g
= B(||x* D — x*|?) = 20, VE(VF ()T (A — ) 4 (uEDYE(| g5
("i) (1)

E(|[x*Y — x*|?) —2M(k_1)m]E(HX* — x5V 4 (w262
= (1—2u(k Dm)E(||x*D —x*[]?) + (uk V)62 (2)
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Modern Optimization Techniques 1. Stochastic Gradient Descent (SGD)

Convergence of SGD / Proof (2/2)

induction over k: k :=

0) _ x* 2 1L L= (0) *12 G2
WO P IL L= max(e - w2, S

k> 0:

@)
E(|x" —x*|?) < (1 = 264D m)E(|x* = x*|) + (u*Y)? 62

@a- %)E(Hx(k*l) —x"|1?) + mf;
ind.hyp. Gz

< (1_’)/(71 m2k?
def<_'l‘(17%)ll<L+*L
_ kkzlL < %L
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Qutline
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Modern Optimization Techniques 2. More on Line Search

NN
Choosing the step size for SGD “

» The step size p is a crucial parameter to be tuned

» Given the low cost of the SGD update, using line search for the step
size is a bad choice

» Possible alternatives:

» Fixed step size
» Armijo principle
» Bold-Driver

» Adagrad

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Modern Optimization Techniques 2. More on Line Search

Example: Body Fat prediction

We want to estimate the percentage of body fat based on various

attributes:

>

|

»

Age (years)

Weight (Ibs)

Height (inches)

Neck circumference (cm)

Chest circumference (cm)
Abdomen 2 circumference (cm)
Hip circumference (cm)

Thigh circumference (cm)

Knee circumference (cm)

|

http://1ib.stat.cmu.edu/datasets/bodyfat
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Modern Optimization Techniques 2. More on Line Search

Example: Body Fat prediction

The data is represented it as:

1 a1 a2 ... aim n

1 a1 a2 ... am y2
A= . . . ) y=

1 any1 an2 ... anm YN

with N =252, M = 14

We can model the percentage of body fat y
as a linear combination of the body measurements with parameters x:

Vn = xTan =xpl + X1an,1 + X2an2 + ...+ Xpmanm

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Modern Optimization Techniques 2. More on Line Search

SGD - Fixed Step Size on the Body Fat dataset

SGD Step Size
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P 001
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g \A\ i |
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Modern Optimization Techniques 2. More on Line Search

Bold Driver Heuristic

» The Bold Driver Heuristic makes the assumption that smaller step
sizes are needed when closer to the optimum

> It adjusts the step size based on the value of f(xt) — f(x(k—1))
» If the value of f(x) grows, the step size must decrease

» If the value of f(x) decreases, the step size can be larger for faster
convergence

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Modern Optimization Techniques 2. More on Line Search

Bold Driver Heuristic - Update Rule
We need to define
» an increase factor u™ > 1, e.g. ut :=1.05, and

» a decay factor = € (0,1), e.g.,, u= :=0.5.

Step size update rule:

» adapt stepsize only once after each epoch,
not for every (inner) iteration.

» Cycle through the whole data and update the parameters
» Evaluate the objective function f(x(¥))

> if F(x(K)) < F(x*~D) then pp — ptp

> else f(x(K)) > F(x(k=1) then p — p~p

» different from the bold driver heuristics for batch gradient descent,
there is no way to evaluate f(x + pAx) for different p.

» stepsize yu is adapted once after the step has been done

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Modern Optimization Techniques 2. More on Line Search

NN
Bold Driver v

1 stepsize=bd (1, fuen, foras it 117
2 if filew < ﬁald
3 po=ptp
4 else
5  pi=pp
6 return p
where
» 1 stepsize of last update

> foews fold = F(x¥), f(x¥~1) function values before and after the last
update

» 1T, stepsize increase and decay factors

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Modern Optimization Techniques 2. More on Line Search

Considerations

v

Works well for a range of problems

v

The initial @ just needs to be large enough

v

pT and = have to be adjusted to the problem at hand

v

May lead to faster convergence

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Modern Optimization Techniques 2. More on Line Search

AdaGrad A

v

Adagrad adjusts the step size individually for each variable to be
optimized

v

It uses information about the past gradients

v

Leads to faster convergence

» Less sensitive to the choice of the step size

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Modern Optimization Techniques 2. More on Line Search

AdaGrad - Update Rule
We have

M
Fx) = fmlx)
m=1
Update rule:
Update stepsize for every inner iteration
Pick a random instance m ~ Uniform(1, M)
Compute the gradient Vyfpn(x)
Update the gradient history h := h 4 Vyfp,(x) o Vfi(x)
The step size for variable x,, is ju, := \’/‘27
Update

vV v v vVvYYy

X" = x — 1 0 Vfm(xX)

ie., xh¥ = x, — ﬂ(vxfm(x))n

Vh,

o denotes the elementwise product.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Modern Optimization Techniques 2. More on Line Search

AdaGrad

1 stepsize-adagrad(g, h, uo):

2 h:=h+4+gog

3 = po/vVh, for n=1,....N
4 return (u,h)

where
» returns a vector of stepsizes, one for each variable
» g = Viy(x) current (stochastic) gradient
» h past gradient size history

» Lo initial stepsize

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Modern Optimization Techniques 2. More on Line Search

AdaGrad Step Size

ADAGRAD Step Size

& 4 \
S © 0.001
\ © 0.01
© 01
0 \ o1
2 -

qu S | S~
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8 | | |
=]
) |
TN N T | et A1 J
o
o 4
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T T T T T T
0 100 200 300 400 500
Iterations - & - -
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Modern Optimization Techniques 2. More on Line Search

AdaGrad vs Fixed Step Size

ADAGRAD Step Size
I
=) © AdaGrad
O Fixed Step Size
<
Q —
o
3
o
w
[4]
=
8 |\
o
s, YT PR .
-
g2 |
o
s
o
T T T T T
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Outline

3. Example: SGD for Linear Regression

3. Example: SGD for Linear Regression
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Modern Optimization Techniques 3. Example: SGD for Linear Regression

NN
Practical Example: Household Spending “

Suppose we have the following data about different households:

» Number of workers in the household (az)

v

Household composition (a2)

v

Region (a3)

v

Gross normal weekly household income (a4)

v

Weekly household spending (y)

We want to creat a model of the weekly household spending

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Modern Optimization Techniques 3. Example: SGD for Linear Regression

NN
Practical Example: Household Spending “

If we have data about m households, we can represent it as:

1 31’2 e 31’,, Y1

1 ap ... an y2
Am,n = : : : : y=

1 dmz2 --- dmn Ym

We can model the household consumption is a linear combination of the
household features with parameters x:

o T
Vi=x"ai=x0l +x13;1 + x2a;2 + X33;3 + X43; 4

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Modern Optimization Techniques 3. Example: SGD for Linear Regression

Least Square Problem Revisited

The following least square problem

minimize  ||Ax —y||3

Can be rewritten as
m
minimize Z(xTai —yi)?
i=1

1 a1 a12 a13 a4 yi
1 a1 an a3 azg y2

Amn

)

y:

1 am1 amp2 am3 amgs Ym

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Modern Optimization Techniques 3. Example: SGD for Linear Regression

The Gradient Descent update rule
For the problem

m
minimize E (x"a; — yi)?
i=1

The the gradient Vf(x) of the objective function is:

Vif(x) =2) (x"ai - yi)a
i—1

The Gradient Descent update rule is then:

X—X— [ (2 i(xTai - y,-)ai>
i=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Modern Optimization Techniques 3. Example: SGD for Linear Regression

The Gradient Descent update rule

We need to “see” all the data before updating x

m

X—=>x—pl2 Z(XTai — yi)ai
i—1

Can we make any progress before iterating over all the data?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Modern Optimization Techniques 3. Example: SGD for Linear Regression

. .. . N
Decomposing the objective function “
The objective function

F(x) =Y (x"ai— y)?

i=1

Can be expressed as a function of the objective on each data point (a, y):

fi(x) = (x"a — y)?
So that

m

f(x) = fi(x)

i=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Modern Optimization Techniques 3. Example: SGD for Linear Regression

A simpler update rule

Now that we have

m

f(x) = fi(x)

i=1
We can define the following update rule

» Pick a random instance i ~ Uniform(1, m)
» Update x

x = x + u (—Vxfi(x))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Modern Optimization Techniques 3. Example: SGD for Linear Regression

Stochastic Gradient Descent (SGD)

1: procedure STOCHASTICGRADIENDDESCENT
input: f, i

2 Get initial point x

3 repeat

4 foriel, ..., mdo

5: x — x — uVfi(x)

6: end for

7 until convergence

8 return x, 7(x)

9: end procedure

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Modern Optimization Techniques 3. Example: SGD for Linear Regression

SGD and Least Squares

We have
F(x) =Y fi(x)
i=1
with

The update rule is

Vifi(x) = 2(x"a; — y;)a

X—>X—p (2(xTai - y;)ai)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Modern Optimization Techniques 3. Example: SGD for Linear Regression

SGD vs. GD A

1: procedure SGD

. 1: procedure GRADIENTDESCENT
input: f, i .
S . input: f
2 Get initial point x . .
2 Get initial point x
3 repeat
. 3 repeat
4 foriel,...,mdo .
4 Get Step Size
5: x — x — pVfi(x) 5. X = x — uVF(x)
6: end for .
. 6 until convergence
7 until convergence
7 return x, 7(x)
8 return x, 7(x)
8: end procedure
9: end procedure

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Modern Optimization Techniques 3. Example: SGD for Linear Regression

NN
SGD vs. GD - Least Squares “

1: procedure SGD

. 1: procedure GD
input: 1, i

S . input: f
2: Get initial point x _ . .
2: Get initial point x
3: repeat 3 t
4: foricl,...,mdo ’ repea .
5. Y 4: Get Step Size
' 5:
—x—pu(2(xTa; — y)a
XX n20Ca - y)a) X x— 1 (20 (T - yi)ay)
' . : until convergence
7 until convergence return x, £(x)
8: return x, f(x) _ ’
8: end procedure
9: end procedure

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Modern Optimization Techniques

GD Step Size

4. Stochastic Gradient Descent in Practice

GD Step Size
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Modern Optimization Techniques 4. Stochastic Gradient Descent in Practice

NN
SGD vs GD - Body Fat Dataset “

SGD vs GD
o
&
o o SGD
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n
—
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w o
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Modern Optimization Techniques 4. Stochastic Gradient Descent in Practice

M
Year Prediction Data Set v

v

Least Squares Problem

v

Prediction of the release year of a song from audio features
90 features

v

v

Experiments done on a subset of 1000 instances of the data

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Modern Optimization Techniques 4. Stochastic Gradient Descent in Practice

NN
GD Step Size - Year Prediction “

GD Step Size
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Modern Optimization Techniques 4. Stochastic Gradient Descent in Practice

SGD Step Size - Year Prediction

SGD Step Size
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Modern Optimization Techniques 4. Stochastic Gradient Descent in Practice

NN
AdaGrad Step Size - Year Prediction “

ADAGRAD Step Size
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4. Stochastic Gradient Descent in Practice

AdaGrad vs SGD vs GD - Year Prediction
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Further Readings

>

SGD is not covered in Boyd and Vandenberghe [2004].

Leon Bottou, Frank E. Curtis, Jorge Nocedal (2016): Stochastic
Gradient Methods for Large-Scale Machine Learning, ICML 2016
Tutorial, http://users.iems.northwestern.edu/~nocedal/ICML

Francis Bach (2013): Stochastic gradient methods for machine
learning, Microsoft Machine Learning Summit 2013,
http://research.microsoft.com/en-us/um/cambridge/
events/mls2013/downloads/stochastic_gradient.pdf

for the convergence proof:
Ji Liu (2014), Notes “Stochastic Gradient Descent”,
http://www.cs.rochester.edu/~jliu/CSC-576-2014fall.html
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