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Modern Optimization Techniques

Syllabus
Tue. 18.10. (0) 0. Overview

1. Theory
Tue. 25.10. (1) 1. Convex Sets and Functions

2. Unconstrained Optimization
Tue. 1.11 (2) 2.1 Gradient Descent
Tue. 8.11. (3) 2.2 Stochastic Gradient Descent

Tue. 15.11. (4) (ctd.)
Tue. 22.11. (5) 2.3 Newton’s Method
Tue. 29.11. (6) 2.4 Quasi-Newton Methods
Tue. 6.12. (7) 2.5 Subgradient Methods

Tue. 13.12. (8) 2.6 Coordinate Descent

3. Equality Constrained Optimization
Tue. 20.12. (9) 3.1 Duality

— — Christmas Break —
Tue. 10.1. (10) 3.2 Methods

4. Inequality Constrained Optimization
Tue. 17.1. (11) 4.1 Primal Methods
Tue. 24.1. (12) 4.2 Barrier and Penalty Methods
Tue. 31.1. (13) 4.3 Cutting Plane Methods

5. Distributed Optimization
— 5.1 Alternating Direction Method of Multipliers
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Modern Optimization Techniques 1. Inequality Constrained Minimization Problems

Inequality Constrained Minimization (ICM) Problems

A problem of the form:

arg min
x∈RN

f (x)

subject to gp(x) = 0, p = 1, . . . ,P

hq(x) ≤ 0, q = 1, . . . ,Q

where:

I f : RN → R convex and twice differentiable

I g1, . . . , gP : RN → R convex and twice differentiable

I h1, . . . , hQ : RN → R convex and twice differentiable

I A feasible optimal x∗ exists, p∗ := f (x∗)
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Modern Optimization Techniques 1. Inequality Constrained Minimization Problems

Inequality Constrained Minimization (ICM) Problems /
Affine

arg min
x∈RN

f (x)

subject to Ax− a = 0

Bx− b ≤ 0

where:

I f : RN → R convex and twice differentiable

I A ∈ RP×N , a ∈ RP : P affine equality constraints

I B ∈ RQ×N , b ∈ RQ : Q affine inequality constraints

I A feasible optimal x∗ exists, p∗ := f (x∗)
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Modern Optimization Techniques 2. Cutting Plane Methods: Basic Idea

Cutting Plane Methods

I We have seen how to solve inequality constrained problems using
interior point methods

I Interior point methods assume h to be
I convex and
I twice differentiable

I What to do if h is nondifferentiable?

I Cutting plane methods:

I Are able to handle nondifferentiable convex problems

I Can also be applied to unconstrained minimization problems

I Require the computation of a subgradient per step

I Can be much faster than subgradient methods
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Modern Optimization Techniques 2. Cutting Plane Methods: Basic Idea

Cutting Plane Methods - Basic Idea

I Let us denote by B ⊆ RN the set of all solutions x∗ to our problem:

B := {x∗ | f (x∗) = p∗, Ax∗ − a = 0, h(x∗) ≤ 0}

I Assume we have an oracle who can “answer” x
?
∈ B

I The oracle returns a plane that separates x from B

I A cutting plane method starts with an initial solution x(k) and then:

1. Query the oracle x(k)
?
∈ B

2. If x(k) ∈ B then stop and return x(k)

3. Generate a new point xt+1 on the other side of the plane returned by
the oracle

4. Go back to step 1
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Modern Optimization Techniques 2. Cutting Plane Methods: Basic Idea

Cutting Plane Methods - Basic Idea

B

x(0)

x(1)

x(2)

x(3)
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Modern Optimization Techniques 3. The Oracle

Cutting Plane Oracle
Goal: Determine if x

?
∈ B

I There are two possible outcomes of a query to the oracle:

I A positive answer if x ∈ B
I If x /∈ B it returns a separating hyperplane (u, v) between x and B:

uTx∗ ≤ v , for x∗ ∈ B
uTx ≥ v

with u ∈ RN and v ∈ R.

I Thus we can eliminate (cut) all points in the halfspace

{x | uTx > v}

from our search.
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Modern Optimization Techniques 3. The Oracle

Neutral cuts

If x is on the boundary of the halfspace the cut is called neutral:

uTx = v

B

x(0)
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Modern Optimization Techniques 3. The Oracle

Deep cuts

If x is in the interior of the halfspace that is cut we have a deep cut:

uTx > v

B

x(0)
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Modern Optimization Techniques 3. The Oracle

Oracle for an Unconstrained Minimization Problem

I Let f : RN → R be convex.

I The oracle can be implemented by the subdifferential ∂f (x):
I For g ∈ ∂f (x), by definition of subgradients:

f (y) ≥ f (x) + gT (y − x), ∀y ∈ dom f

I Thus

gT (y − x) > 0  f (y) > f (x), esp. y /∈ B
gTy > gTx

I (g, gTx) is a neutral cut.
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Modern Optimization Techniques 3. The Oracle

Subgradient as a cut criterion

x∗

x

g
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Modern Optimization Techniques 4. The General Cutting Plane Method

Deep cut for Unconstrained Minimization
I To get a deep cut we need to know a number f̄ such that

f (x) > f̄ ≥ f ∗

I Recall the subgradient definition:

f (y) ≥ f (x) + gT (y − x)

I Thus

gT (y − x) > f̄ − f (x)  f (y) > f̄ ≥ f ∗, esp.y /∈ B
gTy > gTx + f̄ − f (x)

I Which gives the deep cut (g, gTx + f̄ − f (x))

I To get f̄ , maintain the lowest value for f found so far:

f̄ (k) := min
k ′=1,...,k−1

f (x (k ′))
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Modern Optimization Techniques 4. The General Cutting Plane Method

Feasibility problem

Find a feasible x ∈ RN

find x

subject to h(x) ≤ 0

For a given infeasible x:

I get a subgradient gq ∈ ∂hq(x) for a violated constraint q: hq(x) > 0

I Since hq(y) ≥ hq(x) + gT
q (y − x)

hq(x) + gT
q (y − x) > 0 =⇒ hq(y) > 0 =⇒ y /∈ B

I Thus every feasible y ∈ B must satisfy: hq(x) + gT
q (y − x) ≤ 0

I Deep cut!
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Modern Optimization Techniques 4. The General Cutting Plane Method

Inequality constrained Problem

I Now assume a general inequality constrained problem:

minimize f (x)

subject to h(x) ≤ 0

I Start with a point x:
I If x is not feasible, i.e. hq(x) > 0:

I Perform a feasibility cut (for gq ∈ ∂hq(x)):

hq(x) + gT
q (y − x) ≤ 0

I If x is feasible:
I Perform a (neutral) objective cut (for g ∈ ∂f (x)):

gT (y − x) ≤ 0

I or if we know f̄ : f (x∗) ≤ f̄ < f (x), a deep objective cut:

gT (y − x) + f (x)− f̄ ≤ 0
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Modern Optimization Techniques 4. The General Cutting Plane Method

General Cutting Plane Method

I We start with a polyhedron P(0) known to contain B:

P(0) = {x | C (0)x ≤ d(0)}

I We only query the oracle at points inside P0

I For each query point we get a cutting plane (u, v)

I We get a new polyhedron by inserting the new cutting plane:

P(k+1) := P(k) ∩ {x | uTx ≤ v} = {x | C (k+1)x ≤ d(k+1)}

with C (k+1) :=

[
C (k)

uT

]
, d(k+1) :=

[
d (k)

v

]
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Modern Optimization Techniques 4. The General Cutting Plane Method

General Cutting Plane Method

1 min-cuttingplane(f , ∂f , h, ∂h,C (0), d (0), ε,K):

2 for k := 1, . . . ,K:

3 x (k) := compute-next-query(C (0), d (0))

4 if ||x (k) − x (k−1)|| < ε:

5 return x (k)

6 if h(x (k)) > 0:

7 choose q with hq(x (k)) > 0

8 choose g ∈ ∂hq(x (k))

9 u := g , v := gT x (k) − hq(x (k))
10 else:

11 choose g ∈ ∂f (x (k))

12 u := g , v := gT x (k)

13 C (k) :=

[
C (k)

uT

]
, d (k) :=

[
d (k−1)

v

]
14 return "not converged"
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Modern Optimization Techniques 4. The General Cutting Plane Method

General Cutting Plane Method / Arguments

where

I f : RN → R, ∂f objective function and its subgradient

I h : RN → RQ , ∂h inequality constraints, h(x) ≤ 0, and its subgradient

I C (0) ∈ RN×R , d (0) ∈ RR starting polyhedron (containing the solution x∗)
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Modern Optimization Techniques 4. The General Cutting Plane Method

How to choose the next point

(From Stephen Boyd’s Lecture Notes)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 25



Modern Optimization Techniques 4. The General Cutting Plane Method

How to choose the next point

How do we choose the next x(k+1)?

I The size of P(k+1) is a measure of our uncertainty

I We want to choose a x(k+1) so that P(k+1) is small as possible no
matter the cut

I Strategy: choose x(k+1) close to the center of P(k+1)

Pt

x(k+1)

Pt

x(k+1)
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Modern Optimization Techniques 4. The General Cutting Plane Method

Specific Cutting Plane Methods

Specific Cutting Plane Methods differ in the choice of the query point

I Center of Gravity (CG): x(k+1) is the center of gravity of P(k)

I Maximum volume ellipsoid (MVE): x(k+1) is the center of the
maximum volume ellipsoid contained in P(k)

I Chebyshev Center: x(k+1) the Chebyshev center of P(k)

I Analytic Center: x(k+1) is the analytic center of the inequalites
defining P(k)
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Modern Optimization Techniques 4. The General Cutting Plane Method

Center of gravity Method

x(k+1) is the center of gravity of P(k): CG (P(k))

CG (P(k)) =

∫
P(k) xdx∫
P(k) dx

Theorem: be P ⊂ RN , xcg = CG (P), g 6= 0:

vol
(
P ∩ {x|gT (x− xcg ) ≤ 0}

)
≤ (1− 1

e
)vol(P) ≈ 0.63vol(P)

which means that, at epoch k, vol(P(k)) ≤ 0.63kvol(P(0))
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Modern Optimization Techniques 4. The General Cutting Plane Method

Maximum Volume Ellipsoid (MVE) Method

x(k+1) is the center of the maximum volume ellipsoid E contained in P(k)

The ellipsoid can be parametrized by a positive definite matrix E ∈ RN×N
++

and a vector h ∈ RN :

E = {Eα + h | ||α||2 ≤ 1}

The Maximum Volume Ellipsoid in a polyhedron
{x | cTr x ≤ dr , r = 1, . . . ,R} can be found by solving:

maximize log det E

subject to ||Ecr ||2 + cTr h ≤ dr , r = 1, . . . ,R

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 25



Modern Optimization Techniques 4. The General Cutting Plane Method

Maximum Volume Ellipsoid (MVE) Method

I Computing the MVE is done by solving a convex optimization problem

I It is affine invariant

I One can show that:

vol(P(k+1)) ≤ (1− 1

N
)vol(P(k))
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Modern Optimization Techniques 4. The General Cutting Plane Method

Chebyshev Center

I x(k+1) the center of the largest Euclidean ball in P(k)

I Can be computed by linear programming:

I The Chebyshev center of {x|cTr α ≤ dr , r = 1, . . . ,R}
is the center of the largest ball {xcenter + x | ||x||2 ≤ ρ}

I We can find xcenter and ρ by solving:

maximize ρ

subject to cTr x + ρ||cr ||2 ≤ dr , r = 1, . . . ,R
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Modern Optimization Techniques 4. The General Cutting Plane Method

MVE vs. Chebyshev Center

P

xMVE

P

xCheb
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Modern Optimization Techniques 4. The General Cutting Plane Method

Analytic Center

I x(k+1) is the analytic center of the inequalites defining P(k)

I Be P(k) = {x | cTr x ≤ dr , r = 1, . . . ,R}:

x(k+1) = arg min
x
−

R∑
r=1

log(dr − crx)

I Can be solved using Newton’s method
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Modern Optimization Techniques

Further Readings

I Cutting plane methods are not covered by Boyd and Vandenberghe
[2004].

I Cutting plane methods:
I [Luenberger and Ye, 2008, ch. 14.8]

I Cutting plane methods are not covered by Griva et al. [2009] and
Nocedal and Wright [2006] either.
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Modern Optimization Techniques
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