Modern Optimization Techniques - Exercise Sheet 9

Lydia Voß
voss@ismll.de

January 15, 2018
Solutions need to be handed in until Monday, January 22th, 2018 at 10:00

Exercise 1: Computing the Dual Problem (10P)

Let us consider the following optimization problem:

$$
\begin{aligned}
\operatorname{minimize} & f_{0}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & f_{1}\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \leq 1 \\
& h\left(x_{1}, x_{2}\right)=x_{2}-2 x_{1}=1 / 2
\end{aligned}
$$

Compute the dual optimization problem as a function of λ and ν. Plot the resulting function and reason about its concavity.

Exercise 2: Newton Algorithm for Equality Constrained Problems (10P)

Same exercise as Bonus exercise 2, you can earn the missing points from exercise sheet 8 if you submit again

Let us again consider the following equality constrained optimization problem

$$
\begin{aligned}
\operatorname{minimize} & f_{0}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & h\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2}=3
\end{aligned}
$$

Optimize this problem using the Newton Algorithm for Equality Constrained Problems with a step size of $\mu=1$. Start it once in the feasible point $x=(0,1.5)$ and once in the non-feasible point $x=(0,-5)$. How many iterations does the algorithm need to converge? Explain your findings!

