Modern Optimization Techniques - Exercise Sheet 10

Lydia Voß

January 19, 2018
Solutions need to be handed in until Monday, January 29th, 2018 at 10:00 am

Exercise 1: Active set Method (12P)

Given the following Quadratic Programming problem:

$$
\begin{aligned}
\operatorname{minimize} & f_{0}\left(x_{1}, x_{2}\right)=\frac{1}{2} x^{T} P x+q^{T} x \\
\text { suject to } & 2 x_{1}+x_{2} \leq 2 \\
& x_{1}-x_{2} \leq 1 \\
& -x_{1}-x_{2} \leq 1 \\
& -2 x_{1}+x_{2} \leq 2
\end{aligned}
$$

With

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) \quad q=\binom{-4}{-4}
$$

Draw the feasible region and do the active set method with the initial point $x_{0}=$ $(-1,0)^{T}$ with the so called working set $\mathcal{Q}=\{3,4\}$.

Hint:First compute \tilde{g} you can use $\tilde{g}=P * x^{(k)}+q$. Then compute d as the solution of the quadratic programming problem below. λ are the Lagrangian multipliers. After the 1. iteration move until constraint 1 becomes active.

For solving the quadratic programming with respect to the working set

$$
\begin{array}{ll}
\text { minimize } & \frac{1}{2} d^{T} G d+\tilde{g}^{T} d \\
\text { subject to } & A d=0
\end{array}
$$

to find the descent direction you can use a program or

$$
\left(\begin{array}{cc}
P & A^{T} \\
A & 0
\end{array}\right) *\binom{d^{*}}{\nu^{*}}=\binom{-\tilde{g}}{0}
$$

Exercise 2: Gradient projection Method (8P)

Let us consider the following constrained optimization problem

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-2 x_{1}-3 x_{4} \\
\text { subject to } & 2 x_{1}+x_{2}+x_{3}+4 x_{4}=7 \\
& x_{1}+x_{2}+2 x_{3}+x_{4}=6 \\
& x_{i} \geq 0 \quad i=1,2,3,4
\end{aligned}
$$

Compute the direction of the projective negative gradient. Start in the feasible point $x=(2,2,1,0)^{T}$.

