Modern Optimization Techniques - Exercise Sheet 8

Lydia Voß

Solutions need to be handed in until Monday, January 15th, 2018 at 10:00 am via Postbox or Learnweb

Exercise 1: linear Regression with Coordinate Descent (10P)

Let us revisit our toy linear regression example from last time with data given by design matrix A and labels y :

$$
A=\left(\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 1 \\
1 & 1 & 1
\end{array}\right) \quad y=\left(\begin{array}{c}
11 \\
10 \\
8
\end{array}\right)
$$

We want to find the parameter vector $\beta=\left(\beta_{0}, \beta_{1}, \beta_{2}\right)$ that minimizes the loss over all instances a_{i} :

$$
\mathcal{L}(A, \beta, y)=\sum_{i=1}^{3}\left(\beta^{\top} a_{i}-y_{i}\right)^{2}
$$

a) Explain in your own words, what is the difference of Coordinate Descent compared to a normal Gradient Descent!
b) Do two epochs using coordinate descent. Report the errors and the overall loss after each epoch, with an initial $\beta=(1,1,1)$.

Exercise 2: Constrained Minimization (10P)

For the two following constrained problems, plot the level sets of f_{0} and the given constraints to then graphically find x^{\star}.
a)

$$
\begin{aligned}
\operatorname{minimize} & f_{0}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & h\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2}=3
\end{aligned}
$$

Write down the KKT conditions for this optimization problem and analytically compute x^{\star} !
b)

$$
\begin{aligned}
\operatorname{minimize} & f_{0}\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \\
\text { subject to } & h\left(x_{1}, x_{2}\right)=x_{1}-x_{2}=2 \\
& f_{1}\left(x_{1}, x_{2}\right)=x_{1} \geq 0 \\
& f_{2}\left(x_{1}, x_{2}\right)=x_{2} \geq 0
\end{aligned}
$$

Reason why you cannot compute the dual problem for a linear program as this one!

Bonus Exercises to earn extra points!

Bonus Exercise 1: Coordinate Descent (10P)

a) Show that coordinate descent fails for the function

$$
g(x)=\left|x_{1}-x_{2}\right|+0.1\left(x_{1}+x_{2}\right)
$$

Hint: Verify that the algorithm terminates after one step while $\inf _{x} g(x)=-\infty$
b) Let

$$
\mathcal{L}(x)=f(x)+\lambda\|x\|_{1}
$$

be l_{1}-regularized minimization with $f(x)$ convex and differential and $\lambda \geq 0$. Assume we converge in a fixed point x^{*}. show that x^{*} is optimal, i.e. it minimizes \mathcal{L}.
Hint:Use the subdifferential you have seen in the previous lecture and exercise sheet. $\|x\|_{1}=|x|$

Bonus Exercise 2: Newton Algorithm for Equality Constrained Problems (10P)

Let us again consider the following equality constrained optimization problem

$$
\begin{aligned}
\operatorname{minimize} & f_{0}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & h\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2}=3
\end{aligned}
$$

Optimize this problem using the Newton Algorithm for Equality Constrained Problems with a step size of $\mu=1$. Start it once in the feasible point $x=(0,1.5)$ and once in the non-feasible point $x=(0,-5)$. How many iterations does the algorithm need to converge? Explain your findings!

