

Modern Optimization Techniques 0. Overview

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany

Syllabus

Mon.	30.10.	(0)	0. Overview
Mon.	6.11.	(1)	 Theory Convex Sets and Functions
Mon. Mon. Mon. Mon.	13.11. 20.11. 27.11. 4.12. 11.12. 18.12.	(2) (3) (4) (5) (6) (7)	 2. Unconstrained Optimization 2.1 Gradient Descent 2.2 Stochastic Gradient Descent 2.3 Newton's Method 2.4 Quasi-Newton Methods 2.5 Subgradient Methods 2.6 Coordinate Descent Christmas Break —
Mon. Mon.	8.1. 15.1.	(8) (9)	 Equality Constrained Optimization Duality Methods
Mon. Mon. Mon.	22.1. 29.1. 5.2.	(10) (11) (12)	4. Inequality Constrained Optimization4.1 Primal Methods4.2 Barrier and Penalty Methods4.3 Cutting Plane Methods

Outline

- 1. Linear Optimization
- 2. Optimization Problems
- 3. Application Areas
- 4. Classification of Optimization Problems
- 5. Overview of the Lecture
- 6. Organizational Stuff

Outline

1. Linear Optimization

- 2. Optimization Problems
- 3. Application Areas
- 4. Classification of Optimization Problems
- 5. Overview of the Lecture
- 6. Organizational Stuff

Optimization Problems

find an $x \in \mathcal{X}$ with f(x) maximal

or for short

 $\arg\max_{x\in\mathcal{X}}f(x)$

- $f : \mathbb{R}^N \to \mathbb{R}$: objective function
- $\mathcal{X} \subseteq \mathbb{R}^N$: feasible area, e.g., $\mathcal{X} := \mathbb{R}^N$
- $x \in \mathcal{X}$: optimization variables x_1, x_2, \ldots, x_N
- $x^* \in \arg \max_{x \in \mathcal{X}} f(x)$: optimum, solution

Example

Plastic Cup Factory

A local family-owned plastic cup manufacturer wants to optimize their production mix in order to maximize their profit. They produce personalized beer mugs and champagne glasses. The profit on a case of beer mugs is \$25 while the profit on a case of champagne glasses is \$20. The cups are manufactured with a machine called a plastic extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs. of plastic resins to produce while champagne glasses require 12 lbs. per case. The daily supply of plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be produced per hour. At the moment the family wants to limit their work day to 8 hours.

	resources			
product	materials	time	profit	amount
A	20	1/15	25	<i>x</i> ₁
В	12	1/15	20	<i>x</i> ₂
limit	≤ 1800	≤ 8	max.	

	resources			
product	materials	time	profit	amount
A	20	1/15	25	<i>x</i> ₁
В	12	1/15	20	<i>x</i> ₂
limit	≤ 1800	≤ 8	max.	

$$\begin{array}{l} \max \ 25x_1 + 20x_2 \\ \text{s.t.} \ 20x_1 + 12x_2 \leq 1800 \\ 1/15x_1 + 1/15x_2 \leq 8 \\ x_1, x_2 \geq 0 \end{array}$$

	resources			
product	materials	time	profit	amount
A	20	1/15	25	<i>x</i> ₁
В	12	1/15	20	<i>x</i> ₂
limit	≤ 1800	≤ 8	max.	

$$\begin{array}{ll} \max 25x_{1} + 20x_{2} & \max c^{T}x \\ \text{s.t. } 20x_{1} + 12x_{2} \leq 1800 & \text{s.t. } Bx \leq b \\ 1/15x_{1} + 1/15x_{2} \leq 8 & x \geq 0 \\ & x_{1}, x_{2} \geq 0 & \text{with } c, x \in \mathbb{R}^{N} \\ & B \in \mathbb{R}^{Q \times N} \\ & b \in \mathbb{R}^{Q} \end{array}$$

Linear Optimization Problems

• A problem $\max c^T x$

s.t.
$$Bx \leq b$$

 $x \geq 0$
with $c, x \in \mathbb{R}^N, \quad B \in \mathbb{R}^{Q \times N}, \quad b \in \mathbb{R}^Q$

is called linear optimization problem.

- linear objective $f(x) := c^T x$
- $Bx \leq b$ are called **inequality constraints**
 - Q linear constraints
 - define the feasible area $\mathcal{X} := \{x \in \mathbb{R}^N \mid Bx \leq b\}$
- most simple optimization problem
- Inear optimization problems without constraints are unbounded
 - no optimum exists, problem makes no sense
- ► the optimum always is at the border of the feasible area.

Slack Variables

► Introduce Q further variables x_{N+1},..., x_{N+Q} to measure the slack of each constraint:

$$x_{N+1:N+Q} := b - Bx \ge 0$$

- ► each variable x_n, n = 1:N + Q represents a constraint / a border of the feasible region:
 - $x_n, n = 1:N$ the constraint $x_n \ge 0$ and
 - $x_{N+q}, q = 1:Q$ the constraint $B_{q, \cdot}^T x \leq b_q$
 - $x_n = 0$ means the constraint is sharp, i.e., x is on the respective border
- a linear objective assumes its maximum at the border of the feasible region,
 - ► always *N* constraints are sharp

Simplex Tableau

• start with $x := 0_N$ and

$$x_{N+1:N+Q} = b - Bx$$

or equivalently

$$\left(\begin{array}{cc} B & I_{Q \times Q} \\ c & 0_Q \end{array}\right) x_{1:N+Q} = \left(\begin{array}{c} b \\ 0 \end{array}\right)$$

• coefficients can be collected in a matrix called **simplex tableau**:

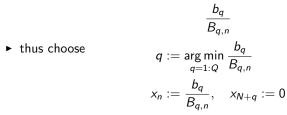
$$T := \left(\begin{array}{cc} B & I_{Q \times Q} & b \\ c & 0_Q & 0 \end{array}\right)$$

Pivot Step

$$T := \left(\begin{array}{cc} B & I_{Q \times Q} & b \\ c & 0_Q & 0 \end{array} \right)$$

• if $c_n > 0$, we can increase the objective by increasing x_n

- ▶ but increasing x_n may also decrease some slacks x_{N+q}: for each q = 1:Q check:
 - if $B_{q,n} > 0$, then we may increase x_n maximally by



- make column *n* the *q*-th unit vector I_q (same as in Gaussian elimin.):
 - ▶ normalize row q s.t. the pivot cell gets 1: $T_{q,.} := T_{q,.}/T_{q,n}$
 - eliminate column *n* in all other rows: $T_{r,.} := T_{r,.} T_{r,n}T_{q,.}$

Stop and Solution

- stop once there is no positive c_n anymore.
- solution x^* :
 - ▶ non-zero x_n^{*} are those having unit vector I_q (for a q ∈ 1:Q) in column n of the final tableau
 - their value is just $T_{q,N+Q+1}$

$$\max c^{T} x = (5 \ 4 \ 3)^{T} x$$

s.t.
$$Bx = \begin{pmatrix} 2 & 3 & 1 \\ 4 & 1 & 2 \\ 3 & 4 & 2 \end{pmatrix} x \le b = \begin{pmatrix} 5 \\ 11 \\ 8 \end{pmatrix}$$
$$x \ge 0$$

$$\max c^{T} x = (5 \ 4 \ 3)^{T} x$$

s.t.
$$Bx = \begin{pmatrix} 2 & 3 & 1 \\ 4 & 1 & 2 \\ 3 & 4 & 2 \end{pmatrix} x \le b = \begin{pmatrix} 5 \\ 11 \\ 8 \end{pmatrix}$$
$$x \ge 0$$

$$T^{(0)} := \begin{pmatrix} B & I_{Q \times Q} & b \\ c^T & 0_Q & 0 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 1 & 1 & 0 & 0 & 5 \\ 4 & 1 & 2 & 0 & 1 & 0 & 11 \\ 3 & 4 & 2 & 0 & 0 & 11 & 8 \\ 5 & 4 & 3 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$T^{(0)} = \begin{pmatrix} 2 & 3 & 1 & 1 & 0 & 0 & 5 \\ 4 & 1 & 2 & 0 & 1 & 0 & 11 \\ 3 & 4 & 2 & 0 & 0 & 11 & 8 \\ 5 & 4 & 3 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Note: $T^{(0)}$ pivot (1,1)

Shivers/

Worked Example

$$T^{(0)} = \begin{pmatrix} 2 & 3 & 1 & 1 & 0 & 0 & 5 \\ 4 & 1 & 2 & 0 & 1 & 0 & 11 \\ 3 & 4 & 2 & 0 & 0 & 11 & 8 \\ 5 & 4 & 3 & 0 & 0 & 0 & 0 \end{pmatrix}$$
$$T^{(1)} = \begin{pmatrix} 1 & 3/2 & 1/2 & 1/2 & 0 & 0 & 5/2 \\ 0 & -5 & 0 & -2 & 1 & 0 & 1 \\ 0 & -1/2 & 1/2 & -3/2 & 0 & 11 & 1/2 \\ 0 & -7/2 & 1/2 & -5/2 & 0 & 0 & -25/2 \end{pmatrix}$$

Note: $T^{(0)}$ pivot (1, 1)

Shillership

$$T^{(0)} = \begin{pmatrix} 2 & 3 & 1 & 1 & 0 & 0 & 5 \\ 4 & 1 & 2 & 0 & 1 & 0 & 11 \\ 3 & 4 & 2 & 0 & 0 & 11 & 8 \\ 5 & 4 & 3 & 0 & 0 & 0 & 0 \end{pmatrix}$$
$$T^{(1)} = \begin{pmatrix} 1 & 3/2 & 1/2 & 1/2 & 0 & 0 & 5/2 \\ 0 & -5 & 0 & -2 & 1 & 0 & 1 \\ 0 & -1/2 & 1/2 & -3/2 & 0 & 11 & 1/2 \\ 0 & -7/2 & 1/2 & -5/2 & 0 & 0 & -25/2 \end{pmatrix}$$
$$T^{(2)} = \begin{pmatrix} 1 & 2 & 0 & 2 & 0 & 11 & 2 \\ 0 & -5 & 0 & -2 & 1 & 0 & 1 \\ 0 & -1 & 1 & -3 & 0 & 22 & 1 \\ 0 & -3 & 0 & -1 & 0 & -11 & -13 \end{pmatrix}$$

Note: $T^{(0)}$ pivot (1,1), $T^{(1)}$ pivot (3,3).

Note:

Shivershaft

$$T^{(0)} = \begin{pmatrix} 2 & 3 & 1 & 1 & 0 & 0 & 5 \\ 4 & 1 & 2 & 0 & 1 & 0 & 11 \\ 3 & 4 & 2 & 0 & 0 & 11 & 8 \\ 5 & 4 & 3 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$T^{(1)} = \begin{pmatrix} 1 & 3/2 & 1/2 & 1/2 & 0 & 0 & 5/2 \\ 0 & -5 & 0 & -2 & 1 & 0 & 1 \\ 0 & -1/2 & 1/2 & -3/2 & 0 & 11 & 1/2 \\ 0 & -7/2 & 1/2 & -5/2 & 0 & 0 & -25/2 \end{pmatrix}$$

$$T^{(2)} = \begin{pmatrix} 1 & 2 & 0 & 2 & 0 & 11 & 2 \\ 0 & -5 & 0 & -2 & 1 & 0 & 1 \\ 0 & -1 & 1 & -3 & 0 & 22 & 1 \\ 0 & -3 & 0 & -1 & 0 & -11 & -13 \end{pmatrix}$$

$$x^* = (2 & 0 & 1)^T \text{ with } c^T x^* = 13$$

$$T^{(0)} \text{ pivot } (1, 1), T^{(1)} \text{ pivot } (3, 3).$$

Modern Optimization Techniques 1. Linear Optimization

0)

Simplex Algorithm (for
$$x = 0_N$$
 feasible, i.e. $b \ge 1$

1 max-simplex(c, B, b):
2
$$T := \begin{pmatrix} B & I_{Q \times Q} & b \\ c^T & 0_Q & 0 \end{pmatrix}$$

3 $(n,q) := find-pivot(T)$
4 while $(n,q) \neq (-1, -1)$:
5 $T_{q,.} = T_{q,.}/T_{q,n}$
6 for $r := 1:Q + 1, r \neq q$:
7 $T_{r,.} := T_{r,.} - T_{r,n}T_{q,.}$
8 $(n,q) := find-pivot(T)$
9
10 $x := 0_N$
11 for $n := 1:N$:
12 if $\exists q \in 1:Q : T_{.,n} = I_q$:
13 $x_n := T_{q,N+Q+1}$
14 return x

15 find -pivot(T): $Ns := \{n \in 1: N \mid T_{Q+1,n} > 0\}$ 16 if $\exists n \in \mathsf{Ns} : T_{-(Q+1),n} \leq 0_Q$ 17 raise exception "problem unbounded" 18 if $Ns = \emptyset$: 19 return (-1, -1)20 $n := \arg \max_{n \in Ns} T_{Q+1,n}$ $q := \operatorname{argmin}_{q=1:Q, T_{q,n}>0} \frac{T_{q,N+Q+1}}{T_{q,n}}$ 21 22 return (n, q)23

Note: $I_n := (\mathbb{I}(m = n))_{m \in 1:N} = (0 \dots 0 \ 1 \ 0 \dots 0)^T$ with a 1 at index *n*.

Outline

1. Linear Optimization

2. Optimization Problems

- 3. Application Areas
- 4. Classification of Optimization Problems
- 5. Overview of the Lecture
- 6. Organizational Stuff

Optimization Problems

An optimization problem has the form:

minimize f(x)

where

- $\blacktriangleright \ f: \mathbb{R}^N \to \mathbb{R}$
- An optimal x^* exists and $f(x^*) = p^*$

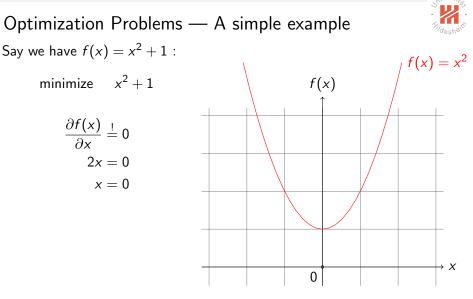
Optimization Problems — A simple example

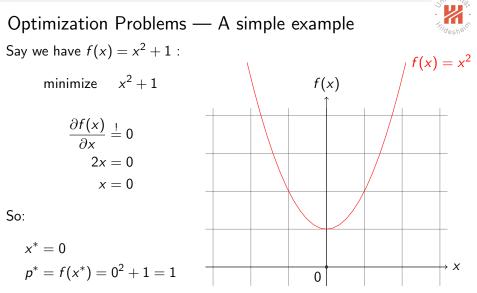
Say we have $f(x) = x^2 + 1$:

minimize $x^2 + 1$

Optimization Problems — A simple example Say we have $f(x) = x^2 + 1$: $f(x) = x^2$ minimize $x^2 + 1$ f(x)→ X 0

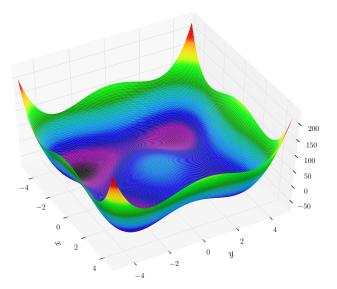
Modern Optimization Techniques 2. Optimization Problems





Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Optimization Problems



Optimization Problems — Constraints

A constrained optimization problem has the form:

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & h_q(x) \leq 0, \quad q=1,\ldots,Q \\ & Ax=b \end{array}$$

where

- $f: \mathbb{R}^N \to \mathbb{R}$
- $h_1, \ldots, h_Q : \mathbb{R}^N \to \mathbb{R}$
- $A \in \mathbb{R}^{L \times N}$, with rank A = L < N
- An optimal x^* exists and $f(x^*) = p^*$

Modern Optimization Techniques 2. Optimization Problems

Optimization Problems — Vocabulary

$$\begin{array}{ll} \mbox{minimize} & f(x) \\ \mbox{subject to} & h_q(x) \leq 0, \quad q=1,\ldots,Q \\ & Ax=b \end{array}$$

where

- $f : \mathbb{R}^N \to \mathbb{R}$ is the objective function
- $x \in \mathbb{R}^N$ is the optimization variable
- ▶ $(h_q)_{q=1:Q} : \mathbb{R}^N \to \mathbb{R}$ are the inequality constraint functions

Outline

- 1. Linear Optimization
- 2. Optimization Problems

3. Application Areas

- 4. Classification of Optimization Problems
- 5. Overview of the Lecture
- 6. Organizational Stuff

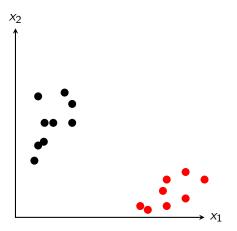
What is optimization good for?

The optimization problem is an abstraction of the problem of making the best possible choice of a vector in \mathbb{R}^N from a set of candidate choices

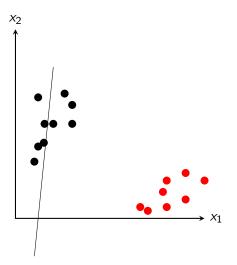
- Machine Learning
- Logistics
- Computer Vision
- Decision Making
- Scheduling

. . .

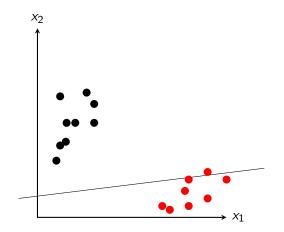
Application Areas — Machine Learning Task: Classification



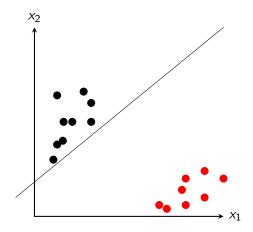
Application Areas — Machine Learning Task: Classification



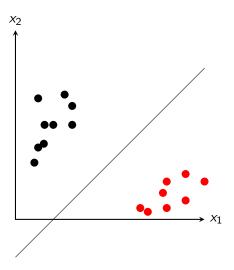
Application Areas — Machine Learning Task: Classification



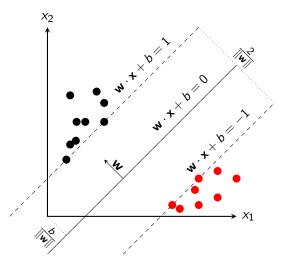
Application Areas — Machine Learning Task: Classification



Application Areas — Machine Learning Task: Classification



Application Areas — Machine Learning Task: Classification



Application Areas — Logistics

Suppose we have:

Application Areas — Logistics

Suppose we have:

Factories

Application Areas — Logistics

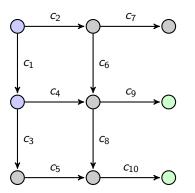
Suppose we have:

- Factories
- Warehouses

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

()

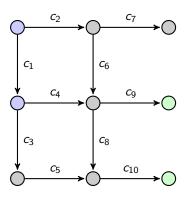
Application Areas — Logistics



Suppose we have:

- Factories
- Warehouses
- Roads with costs associated to them

Application Areas — Logistics



Suppose we have:

- Factories
- Warehouses
- Roads with costs associated to them

Determine how many products to ship from each factory to each warehouse to minimize shipping cost while meeting warehouse demands and not exceeding factory supplies

Outline

- 1. Linear Optimization
- 2. Optimization Problems
- 3. Application Areas
- 4. Classification of Optimization Problems
- 5. Overview of the Lecture
- 6. Organizational Stuff

Classification

There are many different ways to group mathematical optimization problems:

- ► Linear vs. Non-linear
- ► Convex vs. Non-convex
- ► Constrained vs. Unconstrained

Modern Optimization Techniques 4. Classification of Optimization Problems

Linear vs. Non-Linear Problems A function $f : \mathbb{R}^N \to \mathbb{R}$ is **linear** if it satistfies

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

where

- ► $x, y \in \mathbb{R}^N$
- $\blacktriangleright \ \alpha,\beta \in \mathbb{R}$

Linear vs. Non-Linear Problems A function $f : \mathbb{R}^N \to \mathbb{R}$ is **linear** if it satistfies

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

where

- ► $x, y \in \mathbb{R}^N$
- $\blacktriangleright \ \alpha,\beta \in \mathbb{R}$

An optimization problem

minimize f(x)

is said to be **linear** if

▶ the objective function *f* is linear.

Remember: linear **unconstrained** problems make no sense as they are unbounded.

Convex Functions

A function $f : \mathbb{R}^N \to \mathbb{R}$ is **convex** if it satisfies

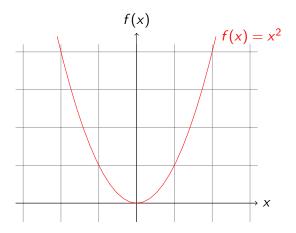
 $f(\alpha x + \beta y) \leq \alpha f(x) + \beta f(y)$

where

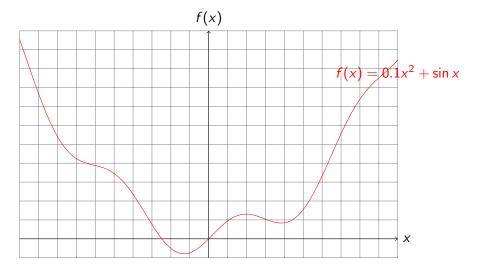
- ► $x, y \in \mathbb{R}^N$
- $\blacktriangleright \ \alpha,\beta \in \mathbb{R}$
- $\blacktriangleright \ \alpha + \beta = 1 \text{, } \alpha \geq \mathbf{0} \text{, } \beta \geq \mathbf{0}$

Juniversiter Hildeshein

A convex function



A non-convex function



Convex vs. Non-Convex Optimization Problem

An optimization problem

minimize f(x)

is said to be **convex** if

► the objective function *f* is convex.

Modern Optimization Techniques 4. Classification of Optimization Problems

Constrained vs. Unconstrained Problems An **unconstrained optimization problem** has only

• the objective function f

minimize f(x)

Constrained vs. Unconstrained Problems An **unconstrained optimization problem** has only

▶ the objective function *f*

minimize f(x)

- A constrained optimization problem has besides
 - ► objective function *f*
 - ▶ the equality constraint functions $g_1, \ldots g_P$ and/or
 - ▶ the inequality constraint functions $h_1, \ldots h_Q$

$$\begin{array}{ll} \mbox{minimize} & f(x) \\ \mbox{subject to} & g_p(x) = 0, \quad p = 1, \dots, P \\ & h_q(x) \leq 0, \quad q = 1, \dots, Q \end{array}$$

Linear vs. Non-Linear Constrained Problems

A constrained optimization problem

$$\begin{array}{ll} \mbox{minimize} & f(x) \\ \mbox{subject to} & g_p(x) = 0, \quad p = 1, \dots, P \\ & h_q(x) \leq 0, \quad q = 1, \dots, Q \end{array}$$

is said to be **linear** if

- ► the objective function *f*,
- the equality constraints $g_1, \ldots g_P$ and
- the inequality constraints $h_1, \ldots h_Q$ are linear.

Linear vs. Non-Linear Constrained Problems

A linear constrained optimization problem can be written as

minimize
$$f(x) := c^T x$$

subject to $g(x) := Ax - a = 0$
 $h(x) := Bx - b \le 0$

with

- ▶ a vector $c \in \mathbb{R}^N$,
- ▶ a matrix $A \in \mathbb{R}^{P \times N}$, a vector $a \in \mathbb{R}^{P}$ and
- ▶ a matrix $B \in \mathbb{R}^{Q \times N}$, a vector $b \in \mathbb{R}^{Q}$.

Convex vs. Non-Convex Constrained Problems

A constrained optimization problem

$$\begin{array}{ll} \mbox{minimize} & f(x) \\ \mbox{subject to} & g_p(x) = 0, \quad p = 1, \dots, P \\ & h_q(x) \leq 0, \quad q = 1, \dots, Q \end{array}$$

is said to be **convex** if

- ► the objective function *f* and
- ▶ the inequality constraints $h_1, \ldots h_Q$ are convex and
- the equality constraints $g_1, \ldots g_P$ are even linear.

Outline

- 1. Linear Optimization
- 2. Optimization Problems
- 3. Application Areas
- 4. Classification of Optimization Problems
- 5. Overview of the Lecture
- 6. Organizational Stuff

Syllabus

Mon.	30.10.	(0)	0. Overview
Mon.	6.11.	(1)	 Theory Convex Sets and Functions
Mon. Mon. Mon. Mon.	13.11. 20.11. 27.11. 4.12. 11.12. 18.12.	(2) (3) (4) (5) (6) (7)	 2. Unconstrained Optimization 2.1 Gradient Descent 2.2 Stochastic Gradient Descent 2.3 Newton's Method 2.4 Quasi-Newton Methods 2.5 Subgradient Methods 2.6 Coordinate Descent Christmas Break —
Mon. Mon.	8.1. 15.1.	(8) (9)	 Equality Constrained Optimization Duality Methods
Mon. Mon. Mon.	22.1. 29.1. 5.2.	(10) (11) (12)	 Inequality Constrained Optimization Primal Methods Barrier and Penalty Methods Cutting Plane Methods

Modern Optimization Techniques 5. Overview of the Lecture

2. Unconstrained Optimization Problems

An unconstrained optimization problem has the form:

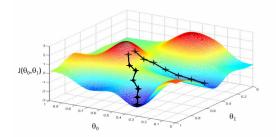
minimize f(x)

where

- $f: \mathbb{R}^N \to \mathbb{R}$
- An optimal x^* exists and $f(x^*) = p^*$

Gradient Descent

- 1: procedure GRADIENTDESCENT input: λ
- 2: Initialize x
- 3: repeat
- 4: $\mathbf{x} := \mathbf{x} \lambda \nabla f(\mathbf{x})$
- 5: **until** convergence
- 6: return x
- 7: end procedure



Newton Method

- 1: procedure NEWTON METHOD input: λ
- 2: Initialize **x**
- 3: repeat

4:
$$\Delta_{\mathbf{x}} := -\nabla^2 f(\mathbf{x})^{-1} \nabla f(\mathbf{x})$$

5: Choose step-size λ through line search

6:
$$\mathbf{x} := \mathbf{x} + \lambda \Delta_{\mathbf{x}}$$

- 7: **until** convergence
- 8: return x
- 9: end procedure

Shiversiter Hildeshein

3. Equality Constrained Minimization Problems

A problem of the form:

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$

where

• $f : \mathbb{R}^N \to \mathbb{R}$ is convex and twice differentiable

•
$$A \in \mathbb{R}^{L \times N}$$
, with rank $A = L < N$

• An optimal x^* exists and $f(x^*) = p^*$

Universiter Fildeshein

Methods for Equality Constrained Problems

Karush-Kuhn-Tucker (KKT) Conditions:

Conditions to assure the optimality of a solution

Goal:

► Find a solution that satisfies the KKT conditions

Methods:

- ► Newton Method for Equality Constrained Problems
- ► Infeasible Start Newton

4. Inequality Constrained Minimization (ICM) Problems

A problem of the form:

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & h_q(x) \leq 0, \quad q=1,\ldots,Q \\ & Ax=b \end{array}$$

where

- $f : \mathbb{R}^N \to \mathbb{R}$ is convex and twice differentiable
- ▶ $h_1, \ldots, h_Q : \mathbb{R}^N \to \mathbb{R}$ are convex and twice differentiable
- $A \in \mathbb{R}^{L \times N}$, with rank A = L < N
- An optimal x^* exists and $f(x^*) = p^*$

Interior-point Methods

Interior Point Methods solve inequality constrained minimization problems by

- 1. Reducing them to a sequence of linear equality constrained problems
- 2. Applying Newton's method to the approximation

Modern Optimization Techniques 5. Overview of the Lecture

Shiversiter

The Barrier Method - Algorithm

 procedure BARRIER METHOD input: strictly feasible x⁽⁰⁾, t⁰ > 0, step size μ > 1, tolerance ε > 0

2:
$$t := t^0$$

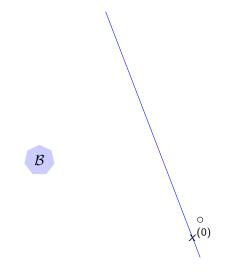
- 3: $x := x^0$
- 4: while $m/t < \epsilon$ do /* Centering Step */ 5: $x^*(t) := \arg \min_{x(t)} tf(x(t)) + \phi(x(t)),$ subject to Ax(t) = b,starting at x(t) = x6: $x := x^*(t)$ A problem of the form:

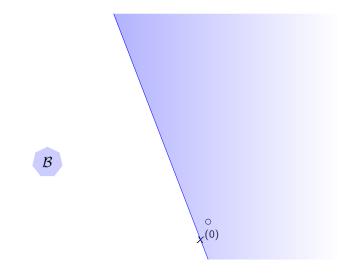
minimize
$$f(x)$$

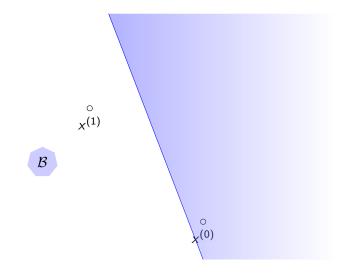
subject to $h_q(x) = 0$, $q = 1, \dots, Q$

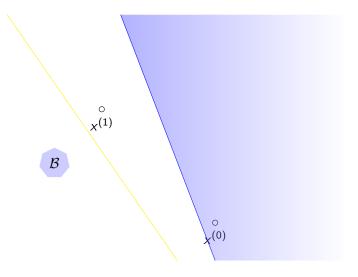
where

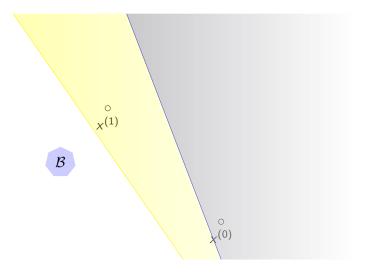
Modern Optimization Techniques 5. Overview of the Lecture

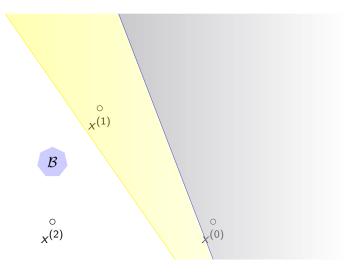


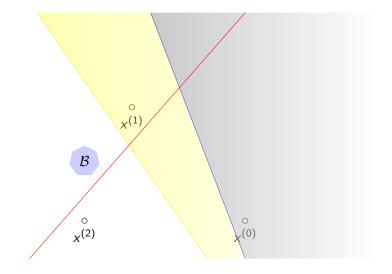


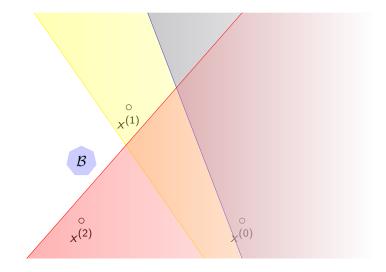


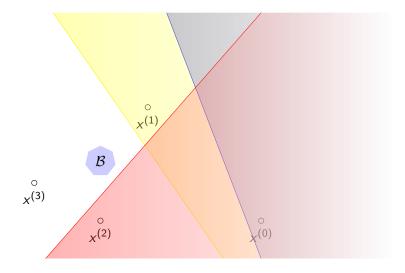


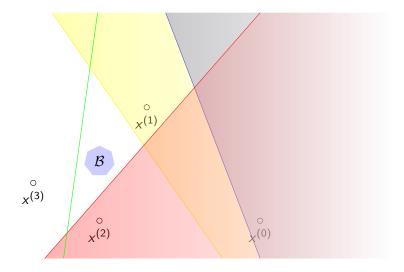


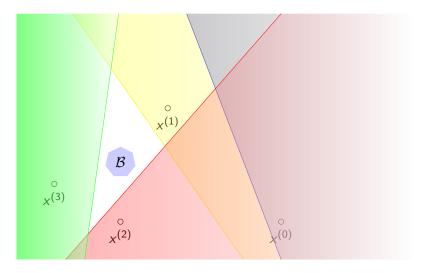












Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Outline

- 1. Linear Optimization
- 2. Optimization Problems
- 3. Application Areas
- 4. Classification of Optimization Problems
- 5. Overview of the Lecture

6. Organizational Stuff

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Exercises and Tutorials (1/2)

- ► weekly sheet with 2 exercises
 - handed out each Monday on the webpage https://www.ismll.uni-hildesheim.de/lehre/opt-17w/index_ en.html.
 - ▶ 1st sheet was handed out on 24.10.
- ► Solutions to the exercises can be submitted digitally via Learn Web
 - until next Monday 10:00pm
 - ▶ 1st sheet is due Monday 06.11.
- Exercises will be corrected.

Exercises and Tutorials (2/2)

- ► Tutorials:
 - ► Tue, 8am 10am (Samelsonplatz B026; Lydia Voß) and
 - ► Wed, 2pm 4am (Samelsonplatz B026; Eya Boumaiza) starting next week.
- Successful participation in the tutorial gives up to 10% bonus points for the exam.
 - group submissions are OK (but yield no bonus points)
 - ▶ Plagiarism is illegal and usually leads to expulsion from the program.
 - ► about plagiarism see https://en.wikipedia.org/wiki/Plagiarism

Shiversite Hidesheit

Exams and credit points

- There will be a written exam at the end of the term (2h, 4 problems).
- ► The course gives 6 ECTS (2+2 SWS)
- The course can be used in
 - ► Data Analytics MSc. (mandatory)
 - ► IMIT and AINF MSc. / Informatik / Gebiet KI & ML (elective)
 - ► Wirtschaftsinformatik MSc / Business Intelligence (elective)

Some books

- Stephen Boyd, Lieven Vandenberghe (2004): Convex Optimization, Cambridge University Press.
- David G. Luenberger, Yinyu Ye (2008; 3rd): Linear and Nonlinear Programming, Springer.
- Jorge Nocedal, Steven Wright (2006): Numerical Optimization, Springer.
- ► Igor Griva, Stephen G. Nash, Ariela Sofer (2009): Linear and nonlinear optimization, SIAM.
- Dimitri P. Bertsekas (2016; 3rd): Nonlinear Programming, Athena Scientific.

Further Readings

- ► to review linear optimization:
 - ▶ [Luenberger and Ye, 2008, ch. 2 and 31].
- general introduction to convex optimization:
 - ▶ [Boyd and Vandenberghe, 2004, ch. 1].
 - ▶ [Luenberger and Ye, 2008, ch. 1].
 - ▶ [Nocedal and Wright, 2006, ch. 1].
 - [Griva et al., 2009, ch. 1].

Acknowledgement: An earlier version of the slides for this lecture have been written by Lucas Rego Drumond (ISMLL).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

References I

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univ Press, 2004.

- Igor Griva, Stephen G. Nash, and Ariela Sofer. *Linear and nonlinear optimization*. Society for Industrial and Applied Mathematics, 2009.
- David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming. Springer, 2008. Fourth edition 2015.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2006.