

Modern Optimization Techniques 1. Theory

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany

Syllabus

Mon.	30.10.	(0)	0. Overview
Mon.	6.11.	(1)	 Theory Convex Sets and Functions
Mon. Mon. Mon. Mon. Mon.	13.11. 20.11. 27.11. 4.12. 11.12. 18.12.	(2) (3) (4) (5) (6) (7)	 2. Unconstrained Optimization 2.1 Gradient Descent 2.2 Stochastic Gradient Descent 2.3 Newton's Method 2.4 Quasi-Newton Methods 2.5 Subgradient Methods 2.6 Coordinate Descent Christmas Break —
Mon. Mon.	8.1. 15.1.	(8) (9)	 Equality Constrained Optimization Duality Methods
Mon. Mon. Mon.	22.1. 29.1. 5.2.	(10) (11) (12)	4. Inequality Constrained Optimization4.1 Primal Methods4.2 Barrier and Penalty Methods4.3 Cutting Plane Methods

Outline

- 1. Introduction
- 2. Convex Sets
- 3. Convex Functions
- 4. Optimization Problems

Outline

1. Introduction

- 2. Convex Sets
- 3. Convex Functions
- 4. Optimization Problems

A convex function

A non-convex function

Modern Optimization Techniques 1. Introduction

Convex Optimization Problem

Shiversiter

An optimization problem

$$\begin{array}{ll} \mbox{minimize} & f(x) \\ \mbox{subject to} & h_q(x) \leq 0, \quad q=1,\ldots,Q \\ & Ax=b \end{array}$$

is said to be convex if $f, h_1 \dots h_Q$ are convex

Modern Optimization Techniques 1. Introduction

Convex Optimization Problem

Shiversizer Fildesheift

An optimization problem

$$\begin{array}{ll} \mbox{minimize} & f(x) \\ \mbox{subject to} & h_q(x) \leq 0, \quad q=1,\ldots,Q \\ & Ax=b \end{array}$$

is said to be convex if $f, h_1 \dots h_Q$ are convex How do we know if a

function is convex or not?

Outline

- 1. Introduction
- 2. Convex Sets
- 3. Convex Functions
- 4. Optimization Problems

For any two points x_1, x_2 we can define the line through them as:

For any two points x_1, x_2 we can define the line through them as:

$$x = heta x_1 + (1 - heta) x_2 \qquad heta \in \mathbb{R}$$

For any two points x_1, x_2 we can define the line through them as:

$$x = heta x_1 + (1 - heta) x_2 \qquad heta \in \mathbb{R}$$

x₂ 0

Example:

*х*1 о

$$x = heta x_1 + (1 - heta) x_2 \qquad heta \in \mathbb{R}$$

Example:

$$x= heta x_1+(1- heta)x_2 \qquad heta\in\mathbb{R}$$

Example:

$$x= heta x_1+(1- heta)x_2 \qquad heta\in\mathbb{R}$$

Example:

Affine Sets - Definition

An **affine set** is a set containing the line through any two distinct points in it.

Affine Sets - Definition

An **affine set** is a set containing the line through any two distinct points in it.

Examples:

- ▶ \mathbb{R}^N for $N \in \mathbb{N}^+$
- ► Solution set of linear equations $\{x \in \mathbb{R}^N \mid Ax = b\}$

The **line segment** between any two points x_1, x_2 is the set of all points:

The **line segment** between any two points x_1, x_2 is the set of all points:

$$x = \theta x_1 + (1 - \theta) x_2 \quad 0 \le \theta \le 1$$

The **line segment** between any two points x_1, x_2 is the set of all points:

$$x = \theta x_1 + (1 - \theta) x_2 \quad 0 \le \theta \le 1$$

Example:

The **line segment** between any two points x_1, x_2 is the set of all points:

$$x = heta x_1 + (1 - heta) x_2 \quad 0 \le heta \le 1$$

Example:

x₂

The **line segment** between any two points x_1, x_2 is the set of all points:

$$x = heta x_1 + (1 - heta) x_2 \quad 0 \le heta \le 1$$

Example:

The **line segment** between any two points x_1, x_2 is the set of all points:

$$x = \theta x_1 + (1 - \theta) x_2 \quad 0 \le \theta \le 1$$

Example:

The **line segment** between any two points x_1, x_2 is the set of all points:

$$x = \theta x_1 + (1 - \theta) x_2 \quad 0 \le \theta \le 1$$

Example:

A **convex set** contains the line segment between any two points in the set.

Convex Sets - Examples Convex Sets:

Convex Sets - Examples Convex Sets:

Non-convex Sets:

Convex Combination and Convex Hull (standard) simplex:

$$\Delta^{\mathsf{N}} := \{ \theta \in \mathbb{R}^{\mathsf{N}} \mid \theta_n \ge 0, n = 1, \dots, \mathsf{N}; \sum_{n=1}^{\mathsf{N}} \theta_n = 1 \}$$

. .

convex combination of some points $x_1, \ldots x_N \in \mathbb{R}^M$: any point x with

$$x = \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_N x_N, \quad \theta \in \Delta^N$$

convex hull of a set $X \subseteq \mathbb{R}^M$ of points:

 $\operatorname{conv}(X) := \{\theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_N x_N \mid N \in \mathbb{N}, x_1, \ldots, x_N \in X, \theta \in \Delta^N\}$

i.e., the set of all convex combinations of points in X.

Outline

- 1. Introduction
- 2. Convex Sets
- 3. Convex Functions
- 4. Optimization Problems

A function $f : X \to \mathbb{R}, X \subseteq \mathbb{R}^n$ is **convex** iff:

A function $f : X \to \mathbb{R}, X \subseteq \mathbb{R}^n$ is **convex** iff:

• dom f = X is a convex set

A function $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^n$ is **convex** iff:

- dom f = X is a convex set
- ▶ for all $x_1, x_2 \in \text{dom } f$ and $0 \le \theta \le 1$ it satistfies

$$f(\theta x_1 + (1-\theta)x_2) \leq \theta f(x_1) + (1-\theta)f(x_2)$$

(the function is below of its secant segments/chords.)

A function $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^n$ is **convex** iff:

- dom f = X is a convex set
- ▶ for all $x_1, x_2 \in \text{dom } f$ and $0 \le \theta \le 1$ it satistfies

$$f(\theta x_1 + (1-\theta)x_2) \leq \theta f(x_1) + (1-\theta)f(x_2)$$

(the function is below of its secant segments/chords.)

 $\bullet \ \theta x_1 + (1-\theta)x_2$

•
$$\theta x_1 + (1 - \theta) x_2$$

• $(\theta x_1 + (1 - \theta) x_2, f(\theta x_1 + (1 - \theta) x_2))$

- $\blacktriangleright \theta x_1 + (1-\theta)x_2$
- $\bullet (\theta x_1 + (1-\theta)x_2, f(\theta x_1 + (1-\theta)x_2))$
- $(\theta x_1 + (1 \theta)x_2, \theta f(x_1) + (1 \theta)f(x_2))$

How are Convex Functions Related to Convex Sets?

epigraph of a function $f : X \to \mathbb{R}, X \subseteq \mathbb{R}^N$:

$$\operatorname{epi}(f) := \{(x, y) \in X \times \mathbb{R} \mid y \ge f(x)\}$$

How are Convex Functions Related to Convex Sets?

epigraph of a function $f : X \to \mathbb{R}, X \subseteq \mathbb{R}^N$:

$$epi(f) := \{(x, y) \in X \times \mathbb{R} \mid y \ge f(x)\}$$

f is convex (as function) $\iff epi(f)$ is convex (as set).

proof is straight-forward (try it!)

Concave Functions

A function f is called **concave** if -f is convex

Concave Functions

A function f is called **concave** if -f is convex

Concave Functions

A function f is called **concave** if -f is convex

Strictly Convex Functions

A function $f : X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ is strictly convex if:

Universiter Hildesheim

Strictly Convex Functions

A function $f : X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ is strictly convex if:

▶ dom f is a convex set

Un^{ivers}ie

Strictly Convex Functions

A function $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ is strictly convex if:

- ▶ dom f is a convex set
- ▶ for all $x_1, x_2 \in \text{dom } f$, $x \neq y$ and $0 < \theta < 1$ it satistfies

$$f(\theta x_1 + (1-\theta)x_2) < \theta f(x_1) + (1-\theta)f(x_2)$$

Examples of Convex functions:

Examples of Convex functions:

• affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$

Shiversiter Shideshelf

Examples of Convex functions:

- affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$
- exponential: $f(x) = e^{ax}$, with $a \in \mathbb{R}$

- affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$
- exponential: $f(x) = e^{ax}$, with $a \in \mathbb{R}$
- ▶ powers: $f(x) = x^a$, with dom $f = \mathbb{R}_0^+$ and $a \ge 1$ or $a \le 0$

Examples of Convex functions:

- ▶ affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$
- ▶ exponential: $f(x) = e^{ax}$, with $a \in \mathbb{R}$
- ▶ powers: $f(x) = x^a$, with dom $f = \mathbb{R}_0^+$ and $a \ge 1$ or $a \le 0$
- ▶ powers of absolute value: $f(x) = |x|^a$, with dom $f = \mathbb{R}$ and $a \ge 1$

Examples of Convex functions:

- ▶ affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$
- ▶ exponential: $f(x) = e^{ax}$, with $a \in \mathbb{R}$
- ▶ powers: $f(x) = x^a$, with dom $f = \mathbb{R}_0^+$ and $a \ge 1$ or $a \le 0$
- ▶ powers of absolute value: $f(x) = |x|^a$, with dom $f = \mathbb{R}$ and $a \ge 1$
- ▶ negative entropy: $f(x) = x \log x$, with dom $f = \mathbb{R}^+$

Examples of Convex functions:

- ▶ affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$
- exponential: $f(x) = e^{ax}$, with $a \in \mathbb{R}$
- ▶ powers: $f(x) = x^a$, with dom $f = \mathbb{R}_0^+$ and $a \ge 1$ or $a \le 0$
- ▶ powers of absolute value: $f(x) = |x|^a$, with dom $f = \mathbb{R}$ and $a \ge 1$
- negative entropy: $f(x) = x \log x$, with dom $f = \mathbb{R}^+$

Examples of Concave Functions:

Examples of Convex functions:

- ▶ affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$
- exponential: $f(x) = e^{ax}$, with $a \in \mathbb{R}$
- ▶ powers: $f(x) = x^a$, with dom $f = \mathbb{R}_0^+$ and $a \ge 1$ or $a \le 0$
- ▶ powers of absolute value: $f(x) = |x|^a$, with dom $f = \mathbb{R}$ and $a \ge 1$
- ▶ negative entropy: $f(x) = x \log x$, with dom $f = \mathbb{R}^+$

Examples of Concave Functions:

▶ affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$

Examples of Convex functions:

- ▶ affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$
- exponential: $f(x) = e^{ax}$, with $a \in \mathbb{R}$
- ▶ powers: $f(x) = x^a$, with dom $f = \mathbb{R}_0^+$ and $a \ge 1$ or $a \le 0$
- ▶ powers of absolute value: $f(x) = |x|^a$, with dom $f = \mathbb{R}$ and $a \ge 1$
- ▶ negative entropy: $f(x) = x \log x$, with dom $f = \mathbb{R}^+$

Examples of Concave Functions:

- ▶ affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$
- ▶ powers: $f(x) = x^a$, with dom $f = \mathbb{R}_0^+$ and $0 \le a \le 1$

Examples of Convex functions:

- ▶ affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$
- exponential: $f(x) = e^{ax}$, with $a \in \mathbb{R}$
- ▶ powers: $f(x) = x^a$, with dom $f = \mathbb{R}_0^+$ and $a \ge 1$ or $a \le 0$
- ▶ powers of absolute value: $f(x) = |x|^a$, with dom $f = \mathbb{R}$ and $a \ge 1$
- ▶ negative entropy: $f(x) = x \log x$, with dom $f = \mathbb{R}^+$

Examples of Concave Functions:

- ▶ affine: f(x) = ax + b, with dom $f = \mathbb{R}$ and $a, b \in \mathbb{R}$
- ▶ powers: $f(x) = x^a$, with dom $f = \mathbb{R}_0^+$ and $0 \le a \le 1$
- logarithm: $f(x) = \log x$, with dom $f = \mathbb{R}^+$

Examples of Convex functions:

All norms are convex!

 Immediate consequence of the triangle inequality and absolute homogeneity.

Examples of Convex functions:

All norms are convex!

- Immediate consequence of the triangle inequality and absolute homogeneity.
- ► For $\mathbf{x} \in \mathbb{R}^N$, $p \ge 1$: **p-norm**: $||\mathbf{x}||_p := (\sum_{n=1}^N |x_n|^p)^{\frac{1}{p}}$,

Examples of Convex functions:

All norms are convex!

- Immediate consequence of the triangle inequality and absolute homogeneity.
- ► For $\mathbf{x} \in \mathbb{R}^N$, $p \ge 1$: **p-norm**: $||\mathbf{x}||_p := (\sum_{n=1}^N |x_n|^p)^{\frac{1}{p}}$,
- $\blacktriangleright ||\mathbf{x}||_{\infty} := \max_{n=1:N} |x_n|$

Examples of Convex functions:

All norms are convex!

- Immediate consequence of the triangle inequality and absolute homogeneity.
- ► For $\mathbf{x} \in \mathbb{R}^N$, $p \ge 1$: **p-norm**: $||\mathbf{x}||_p := (\sum_{n=1}^N |x_n|^p)^{\frac{1}{p}}$,

$$\bullet ||\mathbf{x}||_{\infty} := \max_{n=1:N} |x_n|$$

Affine functions on vectors are also convex: $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} + b$

f is **differentiable** if dom f is open and the gradient

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_n}\right)$$

exists everywhere.

1st-order condition: a differentiable function f is convex iff

f is **differentiable** if dom f is open and the gradient

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_n}\right)$$

exists everywhere.

1st-order condition: a differentiable function f is convex iff

► dom *f* is a convex set

f is **differentiable** if dom f is open and the gradient

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_n}\right)$$

exists everywhere.

1st-order condition: a differentiable function f is convex iff

- ▶ dom f is a convex set
- ▶ for all $\mathbf{x}, \mathbf{y} \in \operatorname{dom} f$

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x})$$

(the function is above any of its tangents.)

1st-order condition: a differentiable function f is convex iff

- ▶ dom f is a convex set
- ▶ for all $\mathbf{x}, \mathbf{y} \in \operatorname{dom} f$

Let dom f = X be convex.

 $f: X \to \mathbb{R} \text{ convex} \Leftrightarrow f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y}$

Let dom f = X be convex.

 $f: X \to \mathbb{R} \text{ convex} \Leftrightarrow f(\mathbf{y}) \geq f(\mathbf{x}) +
abla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \quad orall \mathbf{x}, \mathbf{y}$

" \Rightarrow ": $f(x + t(y - x)) \leq (1 - t)f(x) + tf(y)$ |: t

Let dom f = X be convex.

$$f: X \to \mathbb{R} \text{ convex} \Leftrightarrow f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y}$$

$$" \Rightarrow ": f(x + t(y - x)) \le (1 - t)f(x) + tf(y) \quad |: t$$

$$f(y) \ge \frac{f(x + t(y - x)) - f(x)}{t} + f(x) \xrightarrow{t \to 0^+} \nabla f(x)^{\mathsf{T}}(y - x) + f(x)$$

Let dom f = X be convex.

$$f: X \to \mathbb{R} \text{ convex} \Leftrightarrow f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y}$$

$$" \Rightarrow ": f(x + t(y - x)) \le (1 - t)f(x) + tf(y) \quad |: t$$

$$f(y) \ge \frac{f(x + t(y - x)) - f(x)}{t} + f(x) \xrightarrow{t \to 0^+} \nabla f(x)^{\mathsf{T}}(y - x) + f(x)$$

"
$$\Leftarrow$$
 " : Apply twice to $z := \theta x + (1 - \theta)y$
 $f(x) \ge f(z) + \nabla f(z)^T (x - z)$
 $f(y) \ge f(z) + \nabla f(z)^T (y - z)$

Let dom f = X be convex.

$$f: X \to \mathbb{R} \text{ convex} \Leftrightarrow f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y}$$

$$" \Rightarrow ": f(x + t(y - x)) \le (1 - t)f(x) + tf(y) \quad |: t$$

$$f(y) \ge \frac{f(x + t(y - x)) - f(x)}{t} + f(x) \xrightarrow{t \to 0^+} \nabla f(x)^{\mathsf{T}}(y - x) + f(x)$$

"
$$\Leftarrow$$
 ": Apply twice to $z := \theta x + (1 - \theta)y$
 $f(x) \ge f(z) + \nabla f(z)^T (x - z)$
 $f(y) \ge f(z) + \nabla f(z)^T (y - z)$
 $\rightsquigarrow \theta f(x) + (1 - \theta)f(y) \ge f(z) + \nabla f(z)^T (\theta x + (1 - \theta)y) - \nabla f(z)^T z$
 $= f(z) + \nabla f(z)^T z - \nabla f(z)^T z = f(z) = f(\theta x + (1 - \theta)y)$

1st-Order Condition / Strict Variant

strict 1st-order condition: a differentiable function f is strictly convex iff

- ▶ dom f is a convex set
- ▶ for all $\mathbf{x}, \mathbf{y} \in \operatorname{dom} f$

$$f(\mathbf{y}) > f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x})$$

Global Minima

Let dom f = X be convex.

$$f: X \to \mathbb{R} \text{ convex} \Leftrightarrow f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y}$$

Consequence: Points x with $\nabla f(x) = 0$ are (equivalent) global minima.

- minima form a convex set
- if f is strictly convex: there is exactly one global minimum x^* .

2nd-Order Condition

f is **twice differentiable** if dom f is open and the Hessian $\nabla^2 f(x)$

$$\nabla^2 f(\mathbf{x})_{n,m} = \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_m}$$

exists everywhere.

2nd-order condition: a differentiable function f is convex iff

2nd-Order Condition

f is **twice differentiable** if dom f is open and the Hessian $\nabla^2 f(x)$

$$\nabla^2 f(\mathbf{x})_{n,m} = \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_m}$$

exists everywhere.

2nd-order condition: a differentiable function f is convex iff

▶ dom f is a convex set

2nd-Order Condition

f is **twice differentiable** if dom f is open and the Hessian $\nabla^2 f(x)$

$$\nabla^2 f(\mathbf{x})_{n,m} = \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_m}$$

exists everywhere.

2nd-order condition: a differentiable function f is convex iff

- ▶ dom f is a convex set
- for all $\mathbf{x} \in \operatorname{dom} f$

$$abla^2 f(\mathbf{x}) \succeq 0$$
 for all $\mathbf{x} \in \mathsf{dom}\, f$
2nd-Order Condition

f is **twice differentiable** if dom f is open and the Hessian $\nabla^2 f(x)$

$$\nabla^2 f(\mathbf{x})_{n,m} = \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_m}$$

exists everywhere.

2nd-order condition: a differentiable function f is convex iff

- ▶ dom f is a convex set
- ▶ for all $\mathbf{x} \in \operatorname{dom} f$

$$abla^2 f(\mathbf{x}) \succeq 0$$
 for all $\mathbf{x} \in \operatorname{dom} f$

- if $\nabla^2 f(\mathbf{x}) \succ 0$ for all $\mathbf{x} \in \text{dom } f$, then f is strictly convex
 - the converse is not true, e.g., $f(x) = x^4$ is strictly convex, but has 0 derivative at 0.

Positive Semidefinite Matrices (A Reminder) A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is **positive semidefinite** $(A \succeq 0)$:

$$x^T A x \ge 0, \quad \forall x \in \mathbb{R}^N$$

Equivalent:

- (i) all eigenvalues of A are ≥ 0 .
- (ii) $A = B^T B$ for some matrix B

Positive Semidefinite Matrices (A Reminder) A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite ($A \succeq 0$):

$$x^T A x \ge 0, \quad \forall x \in \mathbb{R}^N$$

Equivalent:

(i) all eigenvalues of A are ≥ 0 . (ii) $A = B^T B$ for some matrix B

A symmetric matrix $A \in \mathbb{R}^{N \times N}$ is **positive definite** $(A \succ 0)$:

$$x^T A x > 0, \quad \forall x \in \mathbb{R}^N \setminus \{0\}$$

Equivalent:

- (i) all eigenvalues of A are > 0.
- (ii) $A = B^T B$ for some nonsingular matrix B

- There are a number of operations that preserve the convexity of a function.
- If f can be obtained by applying those operations to a convex function, f is also convex.

- There are a number of operations that preserve the convexity of a function.
- If f can be obtained by applying those operations to a convex function, f is also convex.

Nonnegative multiple:

• if f is convex and $a \ge 0$ then af is convex.

- There are a number of operations that preserve the convexity of a function.
- If f can be obtained by applying those operations to a convex function, f is also convex.

Nonnegative multiple:

- if f is convex and $a \ge 0$ then af is convex.
- Example: $5x^2$ is convex since x^2 is convex

- There are a number of operations that preserve the convexity of a function.
- If f can be obtained by applying those operations to a convex function, f is also convex.

Nonnegative multiple:

- if f is convex and $a \ge 0$ then af is convex.
- Example: $5x^2$ is convex since x^2 is convex

Sum:

• if f_1 and f_2 are convex functions then $f_1 + f_2$ is convex.

- There are a number of operations that preserve the convexity of a function.
- If f can be obtained by applying those operations to a convex function, f is also convex.

Nonnegative multiple:

- if f is convex and $a \ge 0$ then af is convex.
- Example: $5x^2$ is convex since x^2 is convex

Sum:

- if f_1 and f_2 are convex functions then $f_1 + f_2$ is convex.
- ► Example: f(x) = e^{3x} + x log x with dom f = ℝ⁺ is convex since e^{3x} and x log x are convex

Composition with the affine function:

• if f is convex then $f(A\mathbf{x} + \mathbf{b})$ is convex.

Shiversiter Fildesheift

Composition with the affine function:

- if f is convex then $f(A\mathbf{x} + \mathbf{b})$ is convex.
- Example: norm of an affine function $||A\mathbf{x} + \mathbf{b}||$

Composition with the affine function:

- if f is convex then $f(A\mathbf{x} + \mathbf{b})$ is convex.
- Example: norm of an affine function $||A\mathbf{x} + \mathbf{b}||$

Pointwise Maximum:

▶ if f₁,..., f_m are convex functions then f(x) = max{f₁(x),..., f_m(x)} is convex.

Composition with the affine function:

- if f is convex then $f(A\mathbf{x} + \mathbf{b})$ is convex.
- Example: norm of an affine function $||A\mathbf{x} + \mathbf{b}||$

Pointwise Maximum:

- ▶ if f₁,..., f_m are convex functions then f(x) = max{f₁(x),..., f_m(x)} is convex.
- Example: $f(\mathbf{x}) = \max_{i=1,\dots,l} (a_i^T \mathbf{x} + b_i)$ is convex

Composition with scalar functions:

▶ if
$$g : \mathbb{R}^N \to \mathbb{R}$$
, $h : \mathbb{R} \to \mathbb{R}$ and

$$f(\mathbf{x}) = h(g(\mathbf{x}))$$

Composition with scalar functions:

▶ if $g : \mathbb{R}^N \to \mathbb{R}$, $h : \mathbb{R} \to \mathbb{R}$ and

$$f(\mathbf{x}) = h(g(\mathbf{x}))$$

- ► *f* is convex if:
 - ▶ g is convex, h is convex and nondecreasing or
 - ▶ g is concave, h is convex and nonincreasing

Composition with scalar functions:

▶ if $g : \mathbb{R}^N \to \mathbb{R}$, $h : \mathbb{R} \to \mathbb{R}$ and

$$f(\mathbf{x}) = h(g(\mathbf{x}))$$

- ► *f* is convex if:
 - ▶ g is convex, h is convex and nondecreasing or
 - g is concave, h is convex and nonincreasing
- ► Examples:
 - $e^{g(\mathbf{x})}$ is convex if g is convex
 - $\frac{1}{g(\mathbf{x})}$ is convex if g is concave and positive

Modern Optimization Techniques 3. Convex Functions

Recognizing Convex Functions

There are many different ways to establish the convexity of a function:

Apply the definition

There are many different ways to establish the convexity of a function:

- Apply the definition
- Show that $\nabla^2 f(\mathbf{x}) \succeq 0$ for twice differentiable functions

There are many different ways to establish the convexity of a function:

- Apply the definition
- Show that $\nabla^2 f(\mathbf{x}) \succeq 0$ for twice differentiable functions
- Show that f can be obtained from other convex functions by operations that preserve convexity

Outline

- 1. Introduction
- 2. Convex Sets
- 3. Convex Functions
- 4. Optimization Problems

Universiter Fildesheim

Optimization Problem

$$\begin{array}{ll} \mbox{minimize} & f(\mathbf{x}) \\ \mbox{subject to} & g_p(\mathbf{x}) = 0, \quad p = 1, \dots, P \\ & h_q(\mathbf{x}) \leq 0, \quad q = 1, \dots, Q \end{array}$$

- $f : \mathbb{R}^N \to \mathbb{R}$ is the objective function
- $\mathbf{x} \in \mathbb{R}^N$ are the optimization variables
- ▶ $g_p : \mathbb{R}^N \to \mathbb{R}, p = 1, ..., P$ are the equality constraint functions
- ▶ $h_q : \mathbb{R}^N \to \mathbb{R}, q = 1, \dots, Q$ are the inequality constraint functions

Convex Optimization Problem An optimization problem

$$\begin{array}{ll} \text{minimize} & f(\mathbf{x}) \\ \text{subject to} & g_p(\mathbf{x}) = 0, \quad p = 1, \dots, P \\ & h_q(\mathbf{x}) \leq 0, \quad q = 1, \dots, Q \end{array}$$

is said to be **convex** if

- ► f is convex,
- g_1, \ldots, g_P are affine and
- $h_1, \ldots h_Q$ are convex.

$$\begin{array}{ll} \text{minimize} & f(\mathbf{x})\\ \text{subject to} & A\mathbf{x} = a\\ & h_q(\mathbf{x}) \leq 0, \quad q = 1, \dots, Q \end{array}$$

Example 1: Linear Regression / Household Spending

Suppose we have the following data about different households:

- Number of workers in the household (a_1)
- ▶ Household composition (*a*₂)
- Region (a_3)
- ► Gross normal weekly household income (*a*₄)
- ► Weekly household spending (y)

Example 1: Linear Regression / Household Spending

Suppose we have the following data about different households:

- Number of workers in the household (a_1)
- ► Household composition (*a*₂)
- ► Region (*a*₃)
- ► Gross normal weekly household income (*a*₄)
- ► Weekly household spending (y)

We want to create a model of the weekly household spending

Example 1: Linear Regression

If we have data about M households, we can represent it as:

$$A = \begin{pmatrix} 1 & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ 1 & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{M,1} & a_{M,2} & a_{M,3} & a_{M,4} \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{pmatrix}$$

Example 1: Linear Regression

If we have data about M households, we can represent it as:

$$A = \begin{pmatrix} 1 & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ 1 & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{M,1} & a_{M,2} & a_{M,3} & a_{M,4} \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{pmatrix}$$

We can model the household consumption is a linear combination of the household features with parameters β :

$$\hat{y}_m = \beta^T A_{m,.} = \beta_0 1 + \beta_1 a_{m,1} + \beta_2 a_{m,2} + \beta_3 a_{m,3} + \beta_4 a_{m,4}, \quad m = 1, \dots, M$$

Modern Optimization Techniques 4. Optimization Problems

Juniversiter.

Example 1: Linear Regression

We have:

$$\begin{pmatrix} 1 & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ 1 & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{M,1} & a_{M,2} & a_{M,3} & a_{M,4} \end{pmatrix} \cdot \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{pmatrix} \approx \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{pmatrix}$$

Universiter - Hildesheit

Example 1: Linear Regression

We have:

$$\begin{pmatrix} 1 & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ 1 & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{M,1} & a_{M,2} & a_{M,3} & a_{M,4} \end{pmatrix} \cdot \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{pmatrix} \approx \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{pmatrix}$$

We want to find parameters β such that the measured error of the predictions is minimal:

$$\sum_{m=1}^{M} (\beta^{T} A_{m,.} - y_{m})^{2} = ||A\beta - \mathbf{y}||_{2}^{2}$$

minimize $||A\beta - \mathbf{y}||_2^2$

$$||A\beta - \mathbf{y}||_2^2 = (A\beta - \mathbf{y})^T (A\beta - \mathbf{y})$$

minimize $||A\beta - \mathbf{y}||_2^2$

$$||Aeta - \mathbf{y}||_2^2 = (Aeta - \mathbf{y})^T (Aeta - \mathbf{y})$$

$$\frac{d}{d\beta}(A\beta - \mathbf{y})^T(A\beta - \mathbf{y}) = 2A^T(A\beta - \mathbf{y})$$

minimize $||A\beta - \mathbf{y}||_2^2$

$$||Aeta - \mathbf{y}||_2^2 = (Aeta - \mathbf{y})^T (Aeta - \mathbf{y})$$

$$\frac{d}{d\beta}(A\beta - \mathbf{y})^T(A\beta - \mathbf{y}) = 2A^T(A\beta - \mathbf{y})$$

$$2A^T(A\beta - \mathbf{y}) = 0$$

minimize $||A\beta - \mathbf{y}||_2^2$

$$||Aeta - \mathbf{y}||_2^2 = (Aeta - \mathbf{y})^T (Aeta - \mathbf{y})$$

$$rac{d}{deta}(Aeta-\mathbf{y})^{T}(Aeta-\mathbf{y})=2A^{T}(Aeta-\mathbf{y})$$

$$2A^{T}(A\beta - \mathbf{y}) = 0$$
$$A^{T}A\beta - A^{T}\mathbf{y} = 0$$

minimize $||A\beta - \mathbf{y}||_2^2$

$$||Aeta - \mathbf{y}||_2^2 = (Aeta - \mathbf{y})^T (Aeta - \mathbf{y})$$

$$rac{d}{deta}(Aeta-\mathbf{y})^T(Aeta-\mathbf{y})=2A^T(Aeta-\mathbf{y})$$

$$2A^{T}(A\beta - \mathbf{y}) = 0$$
$$A^{T}A\beta - A^{T}\mathbf{y} = 0$$
$$A^{T}A\beta = A^{T}\mathbf{y}$$

minimize $||A\beta - \mathbf{y}||_2^2$

$$||Aeta - \mathbf{y}||_2^2 = (Aeta - \mathbf{y})^T (Aeta - \mathbf{y})$$

$$\frac{d}{d\beta}(A\beta - \mathbf{y})^T(A\beta - \mathbf{y}) = 2A^T(A\beta - \mathbf{y})$$

$$2A^{T}(A\beta - \mathbf{y}) = 0$$
$$A^{T}A\beta - A^{T}\mathbf{y} = 0$$
$$A^{T}A\beta = A^{T}\mathbf{y}$$
$$\beta = (A^{T}A)^{-1}A^{T}\mathbf{y}$$

Modern Optimization Techniques 4. Optimization Problems

minimize
$$||A\beta - \mathbf{y}||_2^2$$

Modern Optimization Techniques 4. Optimization Problems

Example 1: Linear Regression / Least Squares Problem

minimize
$$||A\beta - \mathbf{y}||_2^2$$

- Convex Problem!
- Analytical solution: $\beta^* = (A^T A)^{-1} A^T \mathbf{y}$
- Often applied for data fitting
- $A\beta \mathbf{y}$ is usually called the residual or error
- Extensions such as regularized least squares

Example 2: Linear Classification / Household Location

Suppose we have the following data about different households:

- Number of workers in the household (a_1)
- ► Household composition (*a*₂)
- ▶ Weekly household spending (*a*₃)
- ► Gross normal weekly household income (*a*₄)
- **Region** (y): north y = 1 or south y = 0

Suppose we have the following data about different households:

- ▶ Number of workers in the household (*a*₁)
- ► Household composition (*a*₂)
- ▶ Weekly household spending (*a*₃)
- ► Gross normal weekly household income (*a*₄)
- **Region** (y): north y = 1 or south y = 0

We want to create a model of the location of the household

Example 2: Linear Classification

If we have data about M households, we can represent it as:

$$A = \begin{pmatrix} 1 & a_{1,1} & \dots & a_{1,4} \\ 1 & a_{2,1} & \dots & a_{2,4} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & a_{M,1} & \dots & a_{M,4} \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{pmatrix}$$

Example 2: Linear Classification

If we have data about M households, we can represent it as:

$$A = \begin{pmatrix} 1 & a_{1,1} & \dots & a_{1,4} \\ 1 & a_{2,1} & \dots & a_{2,4} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & a_{M,1} & \dots & a_{M,4} \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{pmatrix}$$

We can model the probability of the household location to be north (y = 1) as a linear combination of the household features with parameters β :

$$\hat{y}_{m} = \sigma(\beta^{T} A_{m,.}) = \sigma(\beta_{0} 1 + \beta_{1} a_{m,1} + \beta_{2} a_{m,2} + \beta_{3} a_{m,3} + \beta_{4} a_{m,4}), \quad m = 1, \dots, M$$

where: $\sigma(x) := \frac{1}{1+e^{-x}}$ (logistic function)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

r

Example 2: Linear Classification / Logistic Regression

The logistic regression learning problem is

maximize
$$\sum_{m=1}^{M} y_m \log \sigma(\beta^T A_{m,.}) + (1 - y_m) \log(1 - \sigma(\beta^T A_{m,.}))$$

$$A = \begin{pmatrix} 1 & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ 1 & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{M,1} & a_{M,2} & a_{M,3} & a_{M,4} \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{pmatrix}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Example 3: Linear Programming

$$\begin{array}{ll} \mbox{minimize} & \mathbf{c}^T \mathbf{x} \\ \mbox{subject to} & \mathbf{a}_q^T \mathbf{x} \leq b_q & q = 1, \dots, Q \\ & \mathbf{x} \geq 0 \\ \mathbf{c}, \mathbf{a}_q, \mathbf{x} \in \mathbb{R}^N, b_q \in \mathbb{R} \end{array}$$

- ► No simple analytical solution.
- There are reliable algorithms available:
 - Simplex
 - Interior Points Method

Summary (1/2)

- **Convex sets** are closed under line segments (convex combinations).
- Convex functions are defined on a convex domain and
 - ▶ are below any of their secant segments / chords (definition)
 - ► are globally above their tangents (1st-order condition)
 - ▶ have a positive semidefinite Hessian (2nd-order condition)
- For convex functions, points with vanishing gradients are (equivalent) global minima.
- Operations that preserve convexity:
 - scaling with a nonnegative constant
 - ► sums
 - pointwise maximum
 - composition with an affine function
 - composition with a nondecreasing convex scalar function
 - composition of a nonincreasing convex scalar function with a concave function
 - esp. -g for a concave g

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Summary (2/2)

- General optimization problems consist of
 - an objective function,
 - equality constraints.
 - inequality constraints and

Convex optimization problems have

- a convex objective function,
- affine equality constraints and
- convex inequality constraints.
- Examples for convex optimization problems:
 - Inear regression / least squares
 - ► linear classification / logistic regression
 - linear programming
 - quadratic programming

Further Readings

- Convex sets:
 - ▶ Boyd and Vandenberghe [2004], chapter 2, esp. 2.1
 - see also ch. 2.2 and 2.3
- Convex functions:
 - ► Boyd and Vandenberghe [2004], chapter 3, esp. 3.1.1–7, 3.2.1–5
- Convex optimization:
 - ► Boyd and Vandenberghe [2004], chapter 4, esp. 4.1–3
 - ▶ see also ch. 4.4

References I

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univ Press, 2004.

