

2. Unconstrained Optimization / 2.1. Gradient Descent

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany

Syllabus

Mon.	30.10.	(0)	0. Overview
Mon.	6.11.	(1)	 Theory Convex Sets and Functions
Mon. Mon. Mon. Mon.	13.11. 20.11. 27.11. 4.12. 11.12. 18.12.	(2) (3) (4) (5) (6) (7)	 2. Unconstrained Optimization 2.1 Gradient Descent 2.2 Stochastic Gradient Descent 2.3 Newton's Method 2.4 Quasi-Newton Methods 2.5 Subgradient Methods 2.6 Coordinate Descent Christmas Break —
Mon. Mon.	8.1. 15.1.	(8) (9)	 Equality Constrained Optimization Duality Methods
Mon. Mon. Mon.	22.1. 29.1. 5.2.	(10) (11) (12)	 Inequality Constrained Optimization 1 Primal Methods 2 Barrier and Penalty Methods 3 Cutting Plane Methods

Outline

- 1. Unconstrained Optimization
- 2. Descent Methods
- 3. Gradient Descent
- 4. Line search
- 5. Convergence of Gradient Descent
- 6. Example: Linear Ridge Regression via Gradient Descent

Outline

1. Unconstrained Optimization

- 2. Descent Methods
- 3. Gradient Descent
- 4. Line search
- 5. Convergence of Gradient Descent
- 6. Example: Linear Ridge Regression via Gradient Descent

Unconstrained Convex Optimization Problem

 $\underset{x \in \mathbb{R}^{N}}{\arg\min} \ f(\mathbf{x})$

where

- $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ is
 - ► convex
 - twice continuously differentiable
 - esp. dom $f = X = \mathbb{R}^N$ or open.
- An optimal \mathbf{x}^* exists and $p^* := f(\mathbf{x}^*)$ is finite

Reminder: 1st-order condition

1st-order condition: a differentiable function *f* is convex iff

- dom f is a convex set
- ▶ for all $\mathbf{x}, \mathbf{y} \in \operatorname{dom} f$

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x})$$

University Fildesheit

Optimality condition

 \boldsymbol{x} is optimal iff

Methods for Unconstrained Optimization

- Start with an initial point: $\mathbf{x}^{(0)}$
- Generate a sequence of points: $\mathbf{x}^{(k)}$ with

$$f(\mathbf{x}^{(k)}) o f(\mathbf{x}^*)$$

- 1 min-unconstrained(f, $\mathbf{x}^{(0)}$):
- 2 k := 0
- 3 repeat
- 4 $\mathbf{x}^{(k+1)} := \mathbf{next-point}(f, \mathbf{x}^{(k)})$
- $5 \qquad k := k+1$
- 6 until **converged**($\mathbf{x}^{(k)}, \mathbf{x}^{(k-1)}, f$)
- 7 return $\mathbf{x}^{(k)}$, $f(\mathbf{x}^{(k)})$

Methods for Unconstrained Optimization

- Start with an initial point: x⁽⁰⁾
- Generate a sequence of points: $\mathbf{x}^{(k)}$ with

$$f(\mathbf{x}^{(k)}) o f(\mathbf{x}^*)$$

- 1 min-unconstrained($f, \mathbf{x}^{(0)}, k^{\max}$):
- 2 for $k := 0 : k^{\max} 1$:
- 3 $\mathbf{x}^{(k+1)} := \mathbf{next-point}(f, \mathbf{x}^{(k)})$
- 4 if converged $(\mathbf{x}^{(k+1)}, \mathbf{x}^{(k)}, f)$:
- 5 return $\mathbf{x}^{(k+1)}$, $f(\mathbf{x}^{(k+1)})$
- 6 raise exception "not converged in k^{\max} iterations"

Convergence Criterion

$$\textbf{converged}(\textbf{x}^{(k+1)},\textbf{x}^{(k)},f)$$

- Different criteria in use
 - different optimization methods may use different criteria
- One would like to use the **optimality gap**:

$$\|\mathbf{x}^{(k+1)} - \mathbf{x}^{\star}\|_2^2 < \epsilon$$

- ▶ not possible as x* is unknown
- Minimum progress/change ϵ in x in last iteration:

$$\mathsf{converged}(\mathbf{x}^{(k+1)}, \mathbf{x}^{(k)}, f) := \|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\|_2^2 < \epsilon$$

- cheap to compute
- can be used with any method
- requires parameter $\epsilon \in \mathbb{R}^+$

Outline

1. Unconstrained Optimization

2. Descent Methods

- 3. Gradient Descent
- 4. Line search
- 5. Convergence of Gradient Descent
- 6. Example: Linear Ridge Regression via Gradient Descent

Descent Methods

- ► A class/template of methods
- The next point is generated as:

$$\mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} + \mu \Delta \mathbf{x}^{(k)}$$

with

- a search direction $\Delta \mathbf{x}^{(k)}$ and
- a step size μ such that

$$f(\mathbf{x}^{(k)} + \mu \Delta \mathbf{x}^{(k)}) < f(\mathbf{x}^{(k)})$$

- ► Specific descent methods differ in how they compute the search direction ∆x^(k)
 - Gradient Descent
 - Steepest Descent
 - Newton's Method

Descent Methods

1 min-descent
$$(f, \mathbf{x}^{(0)}, k^{\max})$$
:
2 for $k := 0 : k^{\max} - 1$:
3 $\Delta \mathbf{x}^{(k)} :=$ search-direction $(f, \mathbf{x}^{(k)})$
4 $\mu^{(k)} :=$ step-size $(f, \mathbf{x}^{(k)}, \Delta \mathbf{x}^{(k)})$
5 $\mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} + \mu^{(k)}\Delta \mathbf{x}^{(k)}$
6 if converged $(\mathbf{x}^{(k+1)}, \mathbf{x}^{(k)}, f)$:
7 return $\mathbf{x}^{(k+1)}$, $f(\mathbf{x}^{(k+1)})$
8 raise exception "not converged in k^{\max} iterations"

Computing the Step Size

The step size can be computed in various ways:

- ► constant value
- ► line search
- ► various heuristics depending on the specific algorithm

Outline

- 1. Unconstrained Optimization
- 2. Descent Methods
- 3. Gradient Descent
- 4. Line search
- 5. Convergence of Gradient Descent
- 6. Example: Linear Ridge Regression via Gradient Descent

Gradient Descent

- ► The gradient of a function f : X → R, X ⊆ R^N at x yields the direction in which the function is maximally growing locally.
- Gradient Descent is a descent method that searches in the opposite direction of the gradient:

$$\Delta \mathbf{x} := -\nabla f(\mathbf{x})$$

Gradient:

$$abla f(\mathbf{x}) :=
abla_{\mathbf{x}} f(\mathbf{x}) := (\frac{\partial f}{\partial x_n}(\mathbf{x}))_{n=1:N}$$

Universite Hildeshein

Gradient Descent

1 min-GD(
$$f, \mathbf{x}^{(0)}, k^{\max}$$
):
2 for $k := 0 : k^{\max} - 1$:
3 $\Delta \mathbf{x}^{(k)} := -\nabla f(\mathbf{x}^{(k)})$
4 $\mu^{(k)} := \mathbf{step-size}(f, \mathbf{x}^{(k)}, \Delta \mathbf{x}^{(k)})$
5 $\mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} + \mu^{(k)} \Delta \mathbf{x}^{(k)}$
6 if converged($\mathbf{x}^{(k+1)}, \mathbf{x}^{(k)}, f$):
7 return $\mathbf{x}^{(k+1)}, f(\mathbf{x}^{(k+1)})$

8 raise exception "not converged in k^{max} iterations

Gradient Descent / Implementations

► for analysis usually all updated variables are indexed

 $x^{(k)}, \Delta \mathbf{x}^{(k)}, \mu^{(k)}$

- ► in implementations, one usually does only need one copy
 - or two, to compare against the last one

```
1 min-GD(f, x, k^{\max}):

2 for k := 0 : k^{\max} - 1:

3 \Delta x := -\nabla f(x)

4 \mu := step-size(f, x, \Delta x)

5 \mathbf{x}^{old} := x

6 \mathbf{x} := x^{old} + \mu \Delta x

7 if converged(x, \mathbf{x}^{old}, f):

8 return x, f(\mathbf{x})

9 raise exception "not converged in k^{\max} iterations"
```


- Gradient Descent / Considerations
 - Stopping criterion: $||\nabla f(\mathbf{x})||_2 \leq \epsilon$

 $\mathbf{converged}(\mathbf{x}, \mathbf{x}^{\mathsf{old}}, f) :=$ $\mathbf{converged}(\nabla f(\mathbf{x})) := ||\nabla f(\mathbf{x})||_2 \le \epsilon$

- cheap to use as GD has to compute the gradient anyway
- ► GD is simple and straightforward
- ► GD has slow convergence
 - esp. compared to Newton's method
- Out-of-the-box, GD works only well for convex problems, otherwise will get stuck in local minima

Gradient Descent Example

Shiversize Fildeshaif

Gradient Descent Example

Jriversite Jildesheif

Gradient Descent Example

Task:

Universiter.

Gradient Descent Example

Task:

Shiversizer Fildesheift

Gradient Descent Example

Considerations about the Step Size

- Crucial for the convergence of the algorithm
- \blacktriangleright Step size too small \rightsquigarrow slow convergence
- ► Step size too large ~→ divergence!

Gradient Descent Example - A perfect Step Size

Gradient Descent Example - A perfect Step Size

Gradient Descent Example - Too Large Step Size

Gradient Descent Example - Too Large Step Size

Task:

Gradient Descent Example - Too Large Step Size

Outline

- 1. Unconstrained Optimization
- 2. Descent Methods
- 3. Gradient Descent
- 4. Line search
- 5. Convergence of Gradient Descent
- 6. Example: Linear Ridge Regression via Gradient Descent

Line search

- ► line search is the task to compute the step lenght in a descent algorithm.
- a one-dimensional optimization problem in μ :

$$\underset{\mu \in \mathbb{R}^+}{\arg\min} f(\mathbf{x} + \mu \Delta \mathbf{x})$$

Line Search Methods

- ► exact line search
 - Used if the problem can be solved analytically or with low cost
 - e.g., for unconstrained quadratic optimization:

$$\underset{x \in \mathbb{R}^{N}}{\arg\min} f(x) := \frac{1}{2} x^{T} A x + b^{T} x, \quad A \in \mathbb{R}^{N \times N} \text{ pos. def.}, b \in \mathbb{R}^{N}$$

Line Search Methods

- ► exact line search
 - Used if the problem can be solved analytically or with low cost
 - e.g., for unconstrained quadratic optimization:

$$\underset{x \in \mathbb{R}^{N}}{\arg\min} f(x) := \frac{1}{2} x^{T} A x + b^{T} x, \quad A \in \mathbb{R}^{N \times N} \text{ pos. def.}, b \in \mathbb{R}^{N}$$

- backtracking line search
 - only approximative
 - ▶ guarantees that the new function value is lower than a specific bound

Backtracking Line Search

- 1 stepsize-backtracking($f, \mathbf{x}, \Delta \mathbf{x}, \alpha \in (0, 0.5), \beta \in (0, 1)$):
- 2 $\mu := 1$
- 3 while $f(\mathbf{x} + \mu \Delta \mathbf{x}) > f(\mathbf{x}) + \alpha \mu \nabla f(\mathbf{x})^T \Delta \mathbf{x}$:
- 4 $\mu := \beta \mu$
- 5 return μ

Backtracking Line Search

1 stepsize-backtracking($f, \mathbf{x}, \Delta \mathbf{x}, \alpha \in (0, 0.5), \beta \in (0, 1)$):

2
$$\mu := 1$$

4

3 while
$$f(\mathbf{x} + \mu \Delta \mathbf{x}) > f(\mathbf{x}) + \alpha \mu \nabla f(\mathbf{x})^T \Delta \mathbf{x}$$
:

$$\mu := \beta \mu$$

5 return
$$\mu$$

Loop eventually terminates: for sufficient small μ :

$$f(x + \mu \Delta x) \approx f(x) + \mu \nabla f(x)^{\mathsf{T}} \Delta x < f(x) + \alpha \mu \nabla f(x)^{\mathsf{T}} \Delta x$$

as for a descent direction: $\nabla f(x)^T \Delta x < 0$

Backtracking Line Search

source: [Boyd and Vandenberghe, 2004, p. 465]

Outline

- 1. Unconstrained Optimization
- 2. Descent Methods
- 3. Gradient Descent
- 4. Line search
- 5. Convergence of Gradient Descent
- 6. Example: Linear Ridge Regression via Gradient Descent

Sublevel Sets

sublevel set of $f : X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ at level $\alpha \in \mathbb{R}$:

$$S_{\alpha} := \{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}$$

Sublevel Sets

sublevel set of $f : X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ at level $\alpha \in \mathbb{R}$:

$$S_{\alpha} := \{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}$$

basic facts:

- if f is convex, then all its sublevel sets S_{α} are convex sets.
 - useful to show that a set is convex
 - ▶ show that it can be represented as a sublevel set of a convex function.

Closed Functions $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ closed : \iff all its sublevel sets are closed.

Closed Functions $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ closed : \iff all its sublevel sets are closed.

examples:

- $f(x) = x^2$ is closed.
- f(x) = 1/x on \mathbb{R}^+ is closed.
- $f(x) = x \log x$ on \mathbb{R}^+ is not closed.
- but f on \mathbb{R}_0^+ defined by

$$f(x) := egin{cases} x \log x, & ext{if } x > 0 \\ 0, & ext{else} \end{cases}$$

is closed.

Closed Functions $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ closed : \iff all its sublevel sets are closed.

examples:

- $f(x) = x^2$ is closed.
- f(x) = 1/x on \mathbb{R}^+ is closed.
- $f(x) = x \log x$ on \mathbb{R}^+ is not closed.
- but f on \mathbb{R}_0^+ defined by

$$f(x) := egin{cases} x \log x, & ext{if } x > 0 \\ 0, & ext{else} \end{cases}$$

is closed.

Classes of closed functions:

- continuous functions on all of \mathbb{R}^N
- continuous functions on an open set that go to infinity everywhere towards the border

Semidefinite Matrices II

Let $A, B \in \mathbb{R}^{N \times N}$ symmetric matrices:

$$A \succeq B : \iff A - B \succeq 0$$

•
$$A \succeq mI, m \in \mathbb{R}^+$$
:

• all eigenvalues of A are $\geq m$

- ► $A \preceq MI, M \in \mathbb{R}^+$:
 - all eigenvalues of A are $\leq M$

Shiversiter Shidesheif

Strongly Convex Functions

Let $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ be twice continuously differentiable.

- f is strongly convex : \iff
 - dom f = X is convex and
 - ► the eigenvalues of the Hessian are uniformly bounded from below:

 $\nabla^2 f(x) \succeq mI$, $\exists m \in \mathbb{R}^+ \ \forall x \in \text{dom } f$

Strongly Convex Functions

- Let $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ be twice continuously differentiable.
- f is strongly convex : \iff
 - dom f = X is convex and
 - ► the eigenvalues of the Hessian are uniformly bounded from below:

$$abla^2 f(x) \succeq mI, \quad \exists m \in \mathbb{R}^+ \ \forall x \in \operatorname{dom} f$$

Every strongly convex function f is also strictly convex.

- but not the other way around
 - $f(x) = x^4$ on \mathbb{R}^+ is strictly, but not strongly convex
- b do not confuse strongly and strictly convex!

Strongly Convex Functions / Basic Facts

(i) f is above a hyperbola:

$$egin{aligned} f(y) &\geq f(x) +
abla f(x)^T (y-x) + rac{m}{2} ||y-x||_2^2 \ p^* &\geq f(x) - rac{1}{2m} ||
abla f(x)||_2^2 \end{aligned}$$

(ii) if f is closed and S one of its sublevel sets, then

a) the eigenvalues of the Hessian are also uniformly bounded from above on S:

$$abla^2 f(x) \preceq MI, \quad \exists M \in \mathbb{R}^+ \ \forall x \in S$$

b)

$$f(y) \le f(x) + \nabla f(x)^{T}(y-x) + \frac{M}{2}||y-x||_{2}^{2}, \quad x, y \in S$$
$$p^{*} \le f(x) - \frac{1}{2M}||\nabla f(x)||_{2}^{2}$$

Strongly Convex Functions / Basic Facts / Proofs

(i) for
$$x, y \in \text{dom } f \exists z \in [x, y]$$

(Taylor expansion with Lagrange mean value remainder):

$$f(y) = f(x) + \nabla f(x)^{T}(y - x) + \frac{1}{2} \underbrace{(y - x)^{T} \nabla^{2} f(z)(y - x)}_{\geq m||y - x||_{2}^{2}}$$
$$f(y) \geq f(x) + \nabla f(x)^{T}(y - x) + \frac{m}{2}||y - x||_{2}^{2}$$
$$\geq \min_{y} f(x) + \nabla f(x)^{T}(y - x) + \frac{m}{2}||y - x||_{2}^{2}$$

considered as function in y has

$$\begin{aligned} \text{minimum at } \tilde{y} &:= x - \frac{1}{m} \nabla f(x) \\ &= f(x) + \nabla f(x)^T (\tilde{y} - x) + \frac{m}{2} ||\tilde{y} - x||_2^2 \\ &= f(x) - \frac{1}{2m} ||\nabla f(x)||_2^2 \\ &\rightsquigarrow p^* = f(y = x^*) \ge f(x) - \frac{1}{2m} ||\nabla f(x)||_2^2 \end{aligned}$$

Strongly Convex Functions / Basic Facts / Proofs $(2/2)_{ext}$

- (ii.a) due to (i) all sublevel sets are bounded
 - ► the maximal eigenvalue of ∇² f(x) is a continuous function on a closed bounded set and thus itself bounded,
 - i.e., it exists $M \in \mathbb{R}^+$: $\nabla^2 f(x) \preceq MI$

```
(ii.b) as for (i), using (ii.a)
```

Convergence of Gradient Descent / Exact Line Search is

- ► f is strongly convex,
- ▶ the initial sublevel set $S := \{x \in \text{dom } f \mid f(x) \leq f(x^{(0)})\}$ is closed,
- an exact line search is used,

then

$$f(x^{(k)}) - p^* \le (1 - \frac{m}{M})^k (f(x^{(0)}) - p^*)$$

Equivalently, to guarantee $f(x^{(k)}) - p^* \le \epsilon$, GD requires

$$k := \frac{\log \frac{f(x^0) - p^*}{\epsilon}}{\log \frac{1}{1 - \frac{m}{M}}} \quad \text{iterations.}$$

Especially,

- GD converges, i.e., $f(x^{(k)})$ approaches p^*
- ▶ the convergence is exponential in k (with basis $c := 1 \frac{m}{M}$)
 - ► called **linear convergence** in the optimization literature

f

Convergence of Gradient Descent / Proof

$$\begin{split} \tilde{f}(t) &:= f(x - t \nabla f(x)), \quad t \in \{t \in \mathbb{R}_{0}^{+} \mid x - t \nabla f(x) \in S\} \\ f(x^{\text{next}}) &= \tilde{f}(t_{\text{exact}}) \\ &\leq \tilde{f}(0) - \frac{1}{2M} ||\nabla \tilde{f}(0)||_{2}^{2}, \qquad \tilde{f} \text{ strongly convex (ii.b)} \\ &= f(x) - \frac{1}{2M} \underbrace{||\nabla f(x)||_{2}^{2}}_{\geq 2m(f(x) - p^{*})}, \qquad f \text{ strongly convex (i)} \\ f(x^{\text{next}}) - p^{*} &\leq f(x) - p^{*} - \frac{1}{2M} 2m(f(x) - p^{*}) = (1 - \frac{m}{M})(f(x) - p^{*}) \\ f(x^{(k)}) - p^{*} &\leq (1 - \frac{m}{M})^{k} (f(x^{(0)}) - p^{*}) \end{split}$$

Convergence of Gradient Descent / Backtracking If

- ► f is strongly convex,
- ► the initial sublevel set S := {x ∈ dom f | f(x) ≤ f(x⁽⁰⁾)} is closed, and
- ► a backtracking line search is used,

then

$$f(x^{(k)}) - p^* \le c^k \ (f(x^{(0)}) - p^*), \quad c := 1 - \min\{2\alpha m, 2\beta \alpha m/M\}$$

Equivalently, to guarantee $f(x^{(k)}) - p^* \le \epsilon$, GD requires

$$k := rac{\log rac{f(x^0) - p^*}{\epsilon}}{\log rac{1}{c}}$$
 iterations.

Especially,

- GD converges, i.e., $f(x^{(k)})$ approaches p^*
- the convergence is exponential in k (with basis c; linear convergence)

Outline

- 1. Unconstrained Optimization
- 2. Descent Methods
- 3. Gradient Descent
- 4. Line search
- 5. Convergence of Gradient Descent
- 6. Example: Linear Ridge Regression via Gradient Descent

Modern Optimization Techniques

A More practical example

We do not want to always minimize parabolas so let us discuss a more practical example:

Linear Regression!

▶ have *m* many data instances $\mathbf{a} \in \mathbb{R}^n$ with *n* many features / predictors

▶ want to learn a linear model parametrized by a vector $\beta \in \mathbb{R}^n$ to predict a real value $y \in \mathbb{R}$

Practical Example: Household Spending

If we have data about m households, we can represent it as:

$$A_{m,n} = \begin{pmatrix} 1 & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ 1 & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{m,1} & a_{m,2} & a_{m,3} & a_{m,4} \end{pmatrix} \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

We can model the household consumption is a linear combination of the household features with parameters β :

$$\hat{y}_i = \beta^T \mathbf{a_i} = \beta_0 \mathbf{1} + \beta_1 \mathbf{a}_{i,1} + \beta_2 \mathbf{a}_{i,2} + \beta_3 \mathbf{a}_{i,3} + \beta_4 \mathbf{a}_{i,4}$$

Shiversiter . Fildeshalf

Practical Example: Household Spending

We have:

$$\begin{pmatrix} 1 & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ 1 & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{m,1} & a_{m,2} & a_{m,3} & a_{m,4} \end{pmatrix} \cdot \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{pmatrix} \approx \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

We want to find parameters β such that the measured error of the predictions is minimal:

$$\sum_{i=1}^{m} (\beta^{T} \mathbf{a}_{i} - y_{i})^{2} + \lambda \sum_{j=1}^{n} \beta_{j}^{2} = \|A\beta - y\|_{2}^{2} + \lambda \|\beta\|_{2}^{2}$$

Linear Regression

Let us look at the function to optimize:

$$\mathcal{L}(\beta, A, y) + \lambda \operatorname{Reg}(\beta) = \sum_{i=1}^{m} (\beta^{\top} a_i - y_i)^2 + \lambda \|\beta\|_2^2$$
$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \beta_j a_{ij} - y_i\right)^2 + \lambda \sum_{j=1}^{n} \beta_j^2$$

Then we can compute the gradient component wise:

$$\frac{\partial}{\partial \beta_k} \mathcal{L}(\beta, A, y) + \lambda \operatorname{Reg}(\beta) = \frac{\partial}{\partial \beta_k} \sum_{i=1}^m (\sum_{j=1}^n \beta_j a_{ij} - y_i)^2 + \lambda \sum_{j=1}^n \beta_j^2$$
$$= \sum_{i=1}^m 2 \cdot \left(\sum_{j=1}^n \beta_j a_{ij} - y_i \right) \cdot a_{ik} + 2\lambda \beta_k$$

Linear Regression

We obtain the update for every component of β as

$$\beta_{k}^{(k+1)} = \beta_{k}^{(k)} - \mu \nabla_{\beta} (\mathcal{L}(\beta, A, y) + \lambda \operatorname{Reg}(\beta))$$
$$= \beta_{k}^{(k)} - \mu \left(2 \sum_{i=1}^{m} \cdot \left(\sum_{j=1}^{n} \beta_{j} a_{ij} - y_{i} \right) \cdot a_{ik} + 2\lambda \beta_{k}^{(k)} \right)$$

- ► see that $\left(\sum_{j=1}^{n} \beta_j a_{ij} y_i\right)$ is actually the error of the model on the *i*-th instance
- error is the same for all k, can be precomputed

Linear Regression

- procedure LEARN LINEAR REGRESSION MODEL input: Data A, Labels y, inital parameters β⁰, Step Size μ, Regularization constant λ, precision ε
- 2: repeat

3: Compute Error:
$$e_i = \left(\sum_{j=1}^n \beta_j a_{ij} - y_i\right)$$

4: **for**
$$k = 1, ..., n$$
 do

5:
$$\beta_k^{(k+1)} = \beta_k^{(k)} - \mu\left(\sum_{i=1}^m e_i a_{ik} + \lambda \beta_k^{(k)}\right)$$

6: end for

$$7: t = t + 1$$

8: until
$$\|
abla_{eta} \mathcal{L}(eta, A, y) \|_2^2 \leq \epsilon$$

9: return β , $\mathcal{L}(\beta, A, y)$

10: end procedure

Summary (1/2)

- ► Unconstrained optimization is the minimization of a function over all of R^N or an open subset X ⊆ R^N.
 - ► In Unconstrained convex optimization X also has to be convex (and f, too).
- Descent methods iteratively find a next iterate x^(k+1) with lower function value than the last iterate and require:
 - search direction: in which direction to search.
 - ► Gradient Descent (GD): negative gradient of the target function
 - step length: how far to go.
 - convergence criterion: when to stop.
 - small last step
 - small gradient

Summary (2/2)

- ▶ step length (aka line search) in rare cases can be computed exactly.
 - one-dimensional optimization problem (exact line search)
- backtracking line search:
 - Choose the largest stepsize that guarantees a decrease in function value.
 - guaranteed to terminate
- ► GD has linear convergence
 - exponential in the number of steps
 - ▶ with basis 1 m/M for smallest/largest eigenvalues m, M of the Hessian
 - ► if f is strongly convex, its initial sublevel set closed and exact line search is used.

Further Readings

Shiversire Fildeshelf

- Unconstrained minimization problems:
 - ► Boyd and Vandenberghe [2004], chapter 9.1
- Descent methods:
 - ► Boyd and Vandenberghe [2004], chapter 9.2
- ► Gradient descent:
 - ▶ Boyd and Vandenberghe [2004], chapter 9.3
- ► also accessible from here:
 - ► steepest descent Boyd and Vandenberghe [2004], chapter 9.4

References I

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univ Press, 2004.

