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Unconstrained Convex Optimization Problem

arg min f(x)
xERN

where
» F X >R XCRNis
> convex
» twice continuously differentiable

» esp. domf = X =RV or open.

» An optimal x* exists and p* := f(x*) is finite
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Reminder: 1lst-order condition
1st-order condition: a differentiable function f is convex iff

» dom f is a convex set

» for all x,y € domf
fly) > f(x) + VF(x)" (y —x)
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Optimality condition
x is optimal iff

Vf(x) =0
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Methods for Unconstrained Optimization

» Start with an initial point: x(©)
» Generate a sequence of points: x(%) with

F(x()y — £(x*)

1 min-unconstrained(f, x(9)):

2 k=0

3  repeat

4 x(k+1) .= next-point(f, x(¥))
5 ki=k+1

6 until converged(x(¥), x(k=1) f)
7 return x(0), f(x(k))
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Methods for Unconstrained Optimization

» Start with an initial point: x(©)
» Generate a sequence of points: x(%) with

F(x9)) — F(x)

1 min-unconstrained(f,x(®) k™)

2 for k:=0: k™ —1:

3 x(k+1) = next-point(f,x(¥))

4 if converged(x(*t1), x(K) f):

5 return x| £(x(k+1)

6 raise exception "not converged in k™ iterations”
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Convergence Criterion

converged(x(**1) x(K) f)

» Different criteria in use
» different optimization methods may use different criteria

» One would like to use the optimality gap:

I — x| < e

» not possible as x* is unknown

» Minimum progress/change ¢ in x in last iteration:
converged(x(“+1) x(K) £y .= ||x(k+1) — x(K)2 < ¢
» cheap to compute
» can be used with any method

» requires parameter ¢ € RT
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2. Descent Methods
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Descent Methods

» A class/template of methods

» The next point is generated as:

with
» a search direction Ax(¥) and

» a step size u such that

F(xX) + pAxR) < £(xK)

» Specific descent methods differ in how they compute the
search direction Ax(¥)
» Gradient Descent

» Steepest Descent

» Newton's Method

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Descent Methods

1 min-descent(f,x(®) km*¥):

2 for k:=0: kM —1:

3 Ax(¥) = search-direction(f, x(K))

4 pk) = step-size(f, x(K), Ax(K)

5 x(k+1) = x (k) (k) A x ()

6 if converged(x(**1) x(K) f):

7 return x(kF1) | £(x(k+1))

8 raise exception "not converged in k™ iterations”
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NN
Computing the Step Size “

The step size can be computed in various ways:

» constant value

» line search

» various heuristics depending on the specific algorithm
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3. Gradient Descent
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. NN
Gradient Descent v

» The gradient of a function f : X — R, X C RV at x yields the
direction in which the function is maximally growing locally.

» Gradient Descent is a descent method that searches in the opposite
direction of the gradient:

Ax = —Vf(x)

» Gradient:

of

Vi(x) := Vxf(x) = (a—xn

(X))nzlzN
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Gradient Descent v

1 min-GD(f,x(©), kmax):

2 for k:=0: k™ —1:

3 Ax(F) .= —Vf(x(k))

4 pk) = step-size(f, x(K), Ax(¥)
5 x(KH1) = x() (k) A x (k) ;
6 if converged(x(k+1),x(k), f): \
7 return x(k+1) £(x(k+1))
8 raise exception "not converged in k™ iterauons
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Gradient Descent / Implementations
» for analysis usually all updated variables are indexed
x5k Ax(K) (k)

» in implementations, one usually does only need one copy
» or two, to compare against the last one

1 min-GD(f, x, k™):

2 for k:=0: k™ -1

3 Ax = —Vf(x)

4 u = step-size(f, x, Ax)

5 x%d = x

6 x := x°M 4 uAx

7 if converged(x,x°, f):

8 return x, f(x)

9 raise exception "not converged in k™® iterations”
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Gradient Descent / Considerations
» Stopping criterion: ||Vf(x)|]2 <€

converged(x,x°!9, f) :=
converged(Vf(x)) := [|[VF(x)|]]2 < e

» cheap to use as GD has to compute the gradient anyway

» GD is simple and straightforward

» GD has slow convergence
» esp. compared to Newton's method

» Out-of-the-box, GD works only well for convex problems,
otherwise will get stuck in local minima
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NN
Gradient Descent Example “

f(x) = x?
Task:
minimize  x°

» 1 =03 \Q /

» —VIf(x)=—2x
Initial point: x® = —1.5

X
x=-15

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Gradient Descent Example

Task: F(x)

W2
minimize  x? f(x) = x

» 1 =0.3

» —VIf(x) =—2x \ /

xX=-15
x=-15-03-(2--1.5) X
x=-0.6 x=-0.6
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Gradient Descent Example

Task:
minimize X

» =03
» —VIf(x) =—2x

x=—-0.6

x=—06—03-(2-

2

-6)

D.24

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 /38



Modern Optimization Techniques

Gradient Descent Example

Task:
f
minimize  x? () f(x) = x2

» =03

» —VIf(x) =—2x \ /
x=—0.24
x=-0.24-0.3-(2--0.24)
x = —0.0384 X

x = —0.0384
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Gradient Descent Example

f(x)

Task:
minimize X2
» 1=0.3
» —VF(x) =—2x
x = —0.0384
x = —0.0384 — 0.3 - (2- —0.0384)
x = —0.01536
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Considerations about the Step Size

» Crucial for the convergence of the algorithm
» Step size too small ~~ slow convergence

» Step size too large ~~ divergence!
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Gradient Descent Example - A perfect Step Size

f(x) = x?
Task:
minimize  x°

» =05 \Q /

» —VIf(x)=—2x
Initial point: x® = —1.5

o X
x=-15
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Gradient Descent Example - A perfect Step Size “
Task: £(x)

2
minimize  x2 F(x) = x
» =05
» —VF(x) =—2x \ /
xX=-15
x=—15-05-(2-—L5) .
x=0 X ; 0
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Gradient Descent Example - Too Large Step Size

fx) f(x) = x2
Task:
2 \ /
minimize x \ /
\ /
| 4 M= 1.5
» —VIf(x) =—2x \Q /
Initial point: x® = —1.5
X
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Gradient Descent Example - Too Large Step Size

Task:
f(x
minimize  x° () L}() = x?

» =15 \ /

\ /
» —VIf(x) =—2x \ /
xXX=-15 \ /
x=-15-15-(2-—15)
x=3 5> X

x—3
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Gradient Descent Example - Too Large Step Size

Task:
minimize  x? ks Flx) = x
» =15 \\ /
» —VF(x) =—2x \ /

x’=3 \ /

x=3-15-(2-3)

x=—6 X
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4. Line search
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Line search

» line search is the task to compute the step lenght in a descent
algorithm.

» a one-dimensional optimization problem in pu:

arg min f(x + pAx)
peRT
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Line Search Methods A

» exact line search
» Used if the problem can be solved analytically or with low cost

» e.g., for unconstrained quadratic optimization:

1
argmin f(x) := EXTAX +b"x, AeRN*N pos. def., b e RV
xERN
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Line Search Methods A

» exact line search
» Used if the problem can be solved analytically or with low cost

» e.g., for unconstrained quadratic optimization:
1
argmin f(x) := EXTAX +b"x, AeRN*N pos. def., b e RV

xERN

» backtracking line search
» only approximative

» guarantees that the new function value is lower than a specific bound

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Backtracking Line Search

1 stepsize-backtracking(f,x, Ax,«a € (0,0.5), 5 € (0,1)):
2 p:=1

3 while f(x+ pAx) > f(x) + auVF(x)T Ax:

4

5

wi=Bu
return u

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Backtracking Line Search

1 stepsize-backtracking(f,x, Ax,«a € (0,0.5), 5 € (0,1)):
2 p:=1

3 while f(x+ pAx) > f(x) + auVF(x)T Ax:

4 wi=Bu

5 return p

Loop eventually terminates: for sufficient small u:
f(x + pAx) = f(x) + uVF(x)T Ax < f(x) + auVF(x)" Ax

as for a descent direction: V£(x)T Ax <0
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Backtracking Line Search

f(x +tAx)

source: [Boyd and Vandenberghe, 2004, p. 465]
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5. Convergence of Gradient Descent
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Sublevel Sets .

sublevel set of f : X — R, X C RN at level a € R:

So ={xedomf | f(x) <a}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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M
Sublevel Sets v

sublevel set of f : X — R, X C RN at level a € R:

So ={xedomf | f(x) <a}
basic facts:

» if f is convex, then all its sublevel sets S, are convex sets.
» useful to show that a set is convex

» show that it can be represented as a sublevel set of a convex function

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Closed Functions
f: X =R, X CRN closed :«<= all its sublevel sets are closed.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Closed Functions
f: X =R, X CRN closed :«<= all its sublevel sets are closed.

examples:
» f(x) = x? is closed.
» f(x) =1/x on RT is closed.
» f(x) = xlogx on R is not closed.
» but f on R(J{ defined by
xlogx, ifx>0

f(x):=
() 0, else

is closed.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Closed Functions
f: X =R, X CRN closed :«<= all its sublevel sets are closed.

examples:
» f(x) = x? is closed.
f(x) =1/x on R is closed.
f(x) = xlog x on R is not closed.
but f on Rar defined by

vvyy

F(x) = xlogx, ifx>0
0, else

is closed.

Classes of closed functions:
» continuous functions on all of RV

» continuous functions on an open set
that go to infinity everywhere towards the border

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Semidefinite Matrices I

Let A, B € RV*N symmetric matrices:

A-B«~—A-B*>0

» A= ml,mecR":
» all eigenvalues of A are > m

» AXMI,McR":
» all eigenvalues of A are < M

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Strongly Convex Functions

Let f: X — R, X C RN be twice continuously differentiable.

f is strongly convex <=

» dom f = X is convex and
» the eigenvalues of the Hessian are uniformly bounded from below:

V2f(x) = ml, 3ImeR" V¥x € domf

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Strongly Convex Functions

Let f: X — R, X C RN be twice continuously differentiable.

f is strongly convex <=

» dom f = X is convex and
» the eigenvalues of the Hessian are uniformly bounded from below:

V2f(x) = ml, 3ImeR" V¥x € domf

Every strongly convex function f is also strictly convex.
» but not the other way around
» f(x) = x* on RY is strictly, but not strongly convex

» do not confuse strongly and strictly convex!

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Strongly Convex Functions / Basic Facts

(i) f is above a hyperbola:
m
F(y) 2 F()+ V) T(y = x) + S ly = x[13
N 1
P> () — 5 IVF()1B

(i) if f is closed and S one of its sublevel sets, then
a) the eigenvalues of the Hessian are also uniformly bounded from above
on S:

V2f(x) < MI, IMecR"VxeS

M
fly) < F(x)+ V)T (y —x) + 5|Iy—><||§, x,y €S
* 1 2
P < ()~ 5V

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Strongly Convex Functions / Basic Facts / Proofs
(i) for x,y € domf 3z € [x,y]
(Taylor expansion with Lagrange mean value remainder):

Fy) = 700+ VF)T(y =)+ 5 (v =0 AR ~ %)

>mlly—x|[3
F(y) = F()+ V)T (y = %) + Iy = xI3
> min £(x) + V()T (v = x) + 2 |ly = x|3
considered as function in y has
minimum at y := x — %Vf(x)
= F(x) + V) T(7 =) + 217 = I
= ()~ 5 V(1B

* * 1
Pt =Fly =) = () = oIV

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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B
Strongly Convex Functions / Basic Facts / Proofs (2/2%

(ii.a)  » due to (i) all sublevel sets are bounded

» the maximal eigenvalue of V2f(x) is a continuous function on a closed
bounded set and thus itself bounded,

> ie., it exists M € RT: V2f(x) < MI

(ii.b) as for (i), using (ii.a)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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N
Convergence of Gradient Descent / Exact Line Search i
If

» f is strongly convex,

> the initial sublevel set S := {x € dom f | f(x) < f(x(9))} is closed,
» an exact line search is used,
then
F9) = p* < (1= T)F (F(9) = p)
Equivalently, to guarantee f(x(K)) — p* < ¢, GD requires
log f(x%)—p*
k= ————— iterations.
|Og i—m
M

Especially,

» GD converges, i.e., f(x(¥)) approaches p*
> the convergence is exponential in k (with basis ¢ := 1 — {7
» called linear convergence in the optimization literature

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Convergence of Gradient Descent / Proof

f(t):=f(x — tVf(x)), te{tecR{|x—tVf(x)ec S}
f(XneXt) = ?(texact)
(

~ 1 ~ ~
< f(0) — WHV:‘(O)H%, f strongly convex (ii.b)
1
= f(x) — M IVF(X)|3 , f strongly convex (i)

>2m(f(x)—p*)

F0) — p* < F(x) — p* — 5 2m(F(x) — p7) = (1 TH)(F(x) — p°)

F(9) = p* < (1= T)H(F(D) = p)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Convergence of Gradient Descent / Backtracking

If

» f is strongly convex,
> the initial sublevel set S := {x € dom f | f(x) < f(x(®))} is closed,

and
» a backtracking line search is used,

then
f(x(k)) —pr<ck (f(x(o)) —p*), c:=1—min{2am,2fam/M}

Equivalently, to guarantee f(x(¥)) — p* < ¢, GD requires
f(x°)—p*
log ==+
k= gii iterations.
log =

Especially,
» GD converges, i.e., f(x(¥)) approaches p*
» the convergence is exponential in k (with basis c; linear convergence)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Outline

6. Example: Linear Ridge Regression via Gradient Descent
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. N
A More practical example “

We do not want to always minimize parabolas so let us discuss a more
practical example:

Linear Regression!

» have m many data instances a € R” with n many features / predictors

» want to learn a linear model parametrized by a vector § € R" to
predict a real value y € R

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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NN
Practical Example: Household Spending “

If we have data about m households, we can represent it as:

1 a7 a1 a13 aia yi

1 a1 ao a3 axg y2
Am,n: . . . . . y=

1 am1 am2 3m3 amas Ym

We can model the household consumption is a linear combination of the
household features with parameters 3:

9i = BTai = Bol + Prai1 + Baain + B3aiz + Paaia

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Practical Example: Household Spending

We have:

1 ail
1 3271

ai2
az 2

1 dm,1 dm,2

ai3  aia Po yi
a3 axa 1 y2
. . 2 | = .
B3
dm3 dmy4 /84 Ym

We want to find parameters 3 such that the measured error of the

predictions is minimal:

> (BTai—yi) 2+ 2B =AB—yl5+ \BI3

i=1

j=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Linear Regression
Let us look at the function to optimize:

L(B,A,y)+ AReg(B) = Z(ﬁTai —yi)2 + MBI
I:71 n 2 n
=> D Ba—yi| +A>_5
i=1 \j=1 Jj=1

Then we can compute the gradient component wise:

9

8 m n n
35, (8- Ay) + AReg(8) = 72 DO Bag—yi+A> 5

i=1 j=1 Jj=1

m n
222' Zﬁjaij—yl' - ajk + 2A Bk
i=1 j=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Linear Regression

We obtain the update for every component of 3 as
BT = B — uVs(L(B,A,y) + AReg(8))
k 4 . k
=B~ u 2> | D Biai—vi ai + 2285
i=1 =1

» see that (er]:l Bjaij — y;) is actually the error of the model on the
i-th instance

» error is the same for all k, can be precomputed

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Linear Regression

1: procedure LEARN LINEAR REGRESSION MODEL
input: Data A, Labels y, inital parameters 3%, Step Size y,
Regularization constant A, precision €

until [ VL(8,A,y)|3 < e
return 3, L(5,A,y)
10: end procedure

2: repeat

3: Compute Error: e; = (Z}’Zl Bjaij — y,-)

4 for k=1,...,ndo

5: ,((k—i_l) = l((k) — U (ernzl €iadjk + /\Bl((k)>
6: end for

7: t=t+1

8:

9:

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Summary (1/2)

» Unconstrained optimization is the minimization of a function over
all of RN or an open subset X C RV,

> In Unconstrained convex optimization X also has to be convex
(and f, too).

» Descent methods iteratively find a next iterate x(¥*1) with lower
function value than the last iterate and require:
» search direction: in which direction to search.
> Gradient Descent (GD): negative gradient of the target function

» step length: how far to go.

» convergence criterion: when to stop.
» small last step
» small gradient
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Summary (2/2) YA

» step length (aka line search) in rare cases can be computed exactly.
» one-dimensional optimization problem (exact line search)

» backtracking line search:
» Choose the largest stepsize that guarantees a decrease in function
value.

» guaranteed to terminate

» GD has linear convergence
» exponential in the number of steps
> with basis 1 — m/M
for smallest/largest eigenvalues m,M of the Hessian

» if f is strongly convex, its initial sublevel set closed and
exact line search is used.
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Further Readings
» Unconstrained minimization problems:

» Boyd and Vandenberghe [2004], chapter 9.1

» Descent methods:
» Boyd and Vandenberghe [2004], chapter 9.2

» Gradient descent:
» Boyd and Vandenberghe [2004], chapter 9.3

» also accessible from here:
» steepest descent — Boyd and Vandenberghe [2004], chapter 9.4
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