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Modern Optimization Techniques

An idea using second order approximations

Be f : X → R,X ⊆ RN open and f convex:

arg min
x∈X

f (x)

I Let x(k) the last iterate

I Compute a quadratic approximation f̂ of f around x(k)

I Find the minimum of the quadratic approximation f̂
and take it as next iterate:

x(k+1) := arg min
x∈X

f̂ (x)
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Modern Optimization Techniques

Taylor Approximation
Be f : X → R,X ⊆ RN an infinitely differentiable function,

a ∈ X any point.

f can be represented by its Taylor expansion:

f (x) =
∞∑
k=0

∇k f (a)

k!
(x− a)k

= f (a) +
∇f (a)

1!
(x− a) +

∇2f (a)

2!
(x− a)2 +

∇3f (a)

3!
(x− a)3 + · · ·

For x close enough to a and K large enough,
f can be approximated by its truncated Taylor expansion:

f (x) ≈
K∑

k=0

∇k f (a)

k!
(x− a)k
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Note: For N > 1, ∇k f (x) is a tensor of order k and ∇k f (x)(x − a)k a tensor product.



Modern Optimization Techniques

Second Order Approximation

Let us take the second order approximation of a twice differentiable
function f : X → R,X ⊆ RN at a point x:

f̂ (y) := f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (x)(y − x)

We want to find the point xnext := arg miny f̂ (y):

∇y f̂ (y) = ∇f (x) +∇2f (x)(y − x)
!

= 0

 y = x−∇2f (x)−1∇f (x)
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Modern Optimization Techniques

Newton’s Step

I Newton’s method is a descent method

I It uses the descent direction

∆x := −∇2f (x)−1∇f (x)

called Newton step.
I the negative gradient

I twisted by the local curvature (Hessian)

I Newton’s step is affine invariant,
while the gradient step is not.
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Modern Optimization Techniques

Newton’s Step / Proof
(i) Show that the Gradient step is not affine invariant.
for g(y) := f (Ay) with a pos.def. matrix A

∇yg(y) = AT∇x f (Ay)
?
= A−1∇x f (x), for x := Ay

No, as in general AT 6= A−1.

(ii) Show that Newton’s step is affine invariant.

∇2
yg(y) = AT∇2

x f (Ay)A

∆y = (∇2
yg(y))−1∇yg(y)

= A−1∇2
x f (Ay)−1(AT )−1AT∇x f (Ay)

= A−1∇2
x f (Ay)−1∇x f (Ay)

= A−1∇2
x f (x)−1∇x f (x), for x := Ay
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Modern Optimization Techniques

Newton’s Stepsize

I For quadratic objective functions f :
I Newton’s method will find the optimum in a single step

I with stepsize 1

(pure Newton)

I For general objective functions:
I a possibly smaller stepsize has to be used

(damped Newton)

I any stepsize controller is applicable
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Modern Optimization Techniques

Newton Decrement

λ(x) := (∇f (x)T∇2f (x)−1∇f (x))
1
2

is called newton decrement.
Basic properties:

(i)

λ(x) = (∆xT∇2f (x)∆x)
1
2

(ii)

λ(x)2 = −∇f (x)T∆x

(iii)

f (x)− inf
y
f̂ (y) = f (x)− f̂ (x + ∆x) =

1

2
λ(x)2

(iv) The Newton decrement is affine invariant.
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Modern Optimization Techniques

Newton Decrement / Proofs

ad (i), (ii) insert the definition of ∆x = −∇2f (x)−1∇f (x)

ad (iii)

f (x)− f̂ (x + ∆x) = f (x)− f (x)−∇f (x)T∆x︸ ︷︷ ︸
ii
=λ(x)2

−1

2
∆xT∇2f (x)∆x︸ ︷︷ ︸

i
=λ(x)2

ad (iv) for g(y) := f (Ay) with a pos.def. matrix A

∇yg(y) = AT∇x f (Ay), ∇2
yg(y) = AT∇2

x f (Ay)A

λg (y) = ∇x f (Ay)TAA−1∇2
x f (Ay)−1(AT )−1AT∇x f (Ay)T

= ∇x f (Ay)T∇2
x f (Ay)−1∇x f (Ay)T

= λf (x) at x := Ay
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Modern Optimization Techniques

Newton’s Method

1 min-newton(f ,∇f ,∇2f , x (0), µ, ε,K ):
2 for k := 1, . . . ,K :

3 ∆x (k−1) := −∇2f (x (k−1))−1∇f (x (k−1))

4 if −∇f (x (k−1))T∆x (k−1) < ε:

5 return x (k−1)

6 µ(k−1) := µ(f , x (k−1),∆x (k−1))

7 x (k) := x (k−1) + µ(k−1)∆x (k−1)

8 return ”not converged”

where

I f objective function
I ∇f , ∇2f gradient and Hessian of objective function f
I x(0) starting value
I µ step length controller
I ε convergence threshold for Newton’s decrement
I K maximal number of iterations
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Modern Optimization Techniques

Considerations

I Works extremely well for a lot of problems

I requires f to be twice differentiable

I Computing, storing and inverting the Hessian limits scalability for
high dimensional problems

I as the Hessian has N2 elements.
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Modern Optimization Techniques

Newton’s method - Example
For x ∈ R

min
x

(2x− 4)4

Algorithm:
I ∇f (x) = 8 (2x− 4)3

I ∇2f (x) = 48 (2x− 4)2

I Step:

∆x = ∇2f (x)−1∇f (x)

= −1

6
(2x− 4)

I Update:

x (k+1) = x (k) + µ(k)∆x (k)

= x (k) − 1

6
(2x (k) − 4)
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Modern Optimization Techniques

Newton’s method - Example

x (0) := 10

x (1) = 10.0− 1

6
(2 · 10.0− 4) = 7.33333

x (2) = 7.33333− 1

6
(2 · 7.33333− 4) = 5.55556

x (3) = 5.55556− 1

6
(2 · 5.55556− 4) = 4.37037

x (4) = 4.37037− 1

6
(2 · 4.37037− 4) = 3.58025

x (5) = 3.58025− 1

6
(2 · 3.58025− 4) = 3.0535

x (6) = 3.0535− 1

6
(2 · 3.0535− 4) = 2.70233

x (7) = 2.70233− 1

6
(2 · 2.70233− 4) = 2.46822

x (8) = 2.46822− 1

6
(2 · 2.46822− 4) = 2.31215

x (9) = 2.31215− 1

6
(2 · 2.31215− 4) = 2.2081

x (10) = 2.2081− 1

6
(2 · 2.2081− 4) = 2.13873
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Modern Optimization Techniques

Newton Decrement / Strongly Convex Functions

If f is strongly convex (∇2f (x) � mI ,m ∈ R+), then

(i)

m||∆x ||22 ≤ λ(x)2 ≤ M||∆x ||22

(ii)

1

M
||∇f (x)||22 ≤ λ(x)2 ≤ 1

m
||∇f (x)||22

where ∇2f (x) � MI ,M ∈ R+.
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Modern Optimization Techniques

Newton Decrement / Strongly Convex Functions / Proofs

ad (i)

λ(x)2 = ∆xT∇2f (x)∆x ≥ m||∆x ||22
λ(x)2 = ∆xT∇2f (x)∆x ≤ M||∆x ||22

ad (ii) The inverse of ∇2f (x) has inverse eigenvalues, thus

∇2f (x)−1 � 1

m
I

∇2f (x)−1 � 1

M
I

Then proceed as (i).
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Modern Optimization Techniques

Convergence / Assumptions

Until the end of this section, assume

I. f is strongly convex (m,M),

II. ∇2f (x) is Lipschitz-continuous:
||∇2f (y)−∇2f (x)||2 ≤ L||y − x ||2, L ∈ R+ and

III. backtracking steplength control is used (α ≤ 1
2 , β)
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Modern Optimization Techniques

Convergence / Damped Phase

Theorem (Convergence of Newton’s Algorithm / Damped Phase)

Far away from the optimum,

(i) backtracking may select stepsizes t ≤ 1 (be damped) and

(ii) f is reduced by at least a constant each step.

for ∇||f (x)||2 ≥ η : f (xnext)− f (x) ≤ −γ

with γ := αβ
m

M2
η2
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Modern Optimization Techniques

Convergence / Damped Phase / Proof

f (x + t∆x) ≤
s.c. ii

f (x) + t∇f (x)T∆x +
M

2
||∆x ||22t2

≤
dec. ii

f (x)− tλ(x)2 +
M

2m
t2λ(x)2 (1)

t̂ := m/M satisfies exit condition of backtracking:

f (x + t̂∆x) ≤
(1)

f (x)− m

M
λ(x)2 +

m

2M
λ(x)2

= f (x)− m

2M
λ(x)2

≤
α≤ 1

2

f (x)− αt̂λ(x)2

and thus stepsize

t ≥ βm

M
(2)
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Modern Optimization Techniques

Convergence / Damped Phase / Proof (2/2)

f (xnext)− f (x) ≤ −αtλ(x)2

≤
(2)
−αβm

M
λ(x)2

≤
dec s.c. ii

−αβ m

M2
||∇f (x)||22

≤
||∇f (x)||2≥η

−αβ m

M2
η2 = −γ
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Modern Optimization Techniques

Convergence / Pure Phase

Theorem (Convergence of Newton’s Algorithm / Pure Phase)

Close to the optimum,

(i) backtracking always selects stepsize t = 1 and

(ii) ∇f (x) is shrunken quadratically.

for ||∇f (x)||2 < η : ||∇f (xnext)||2 ≤
L

2m2
(||∇f (x)||2)2

with η ≤ 3(1− 2α)
m2

L

(iii) it stays close to the optimum.

for ||∇f (x)||2 < η : ||∇f (xnext)||2 < η

with η := min{1, 3(1− 2α)}m
2

L
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Modern Optimization Techniques

Convergence / Pure Phase / Proof (1/6)

(i) show backtracking accepts stepsize t = 1, if η ≤ 3(1− 2α)m
2

L

||∇2f (x + t∆)−∇2f (x)||2 ≤
II
tL||∆x ||2

 |∆xT (∇2f (x + t∆x)−∇2f (x))∆x |
≤ ||∇2f (x + t∆x)−∇2f (x)||2||∆x ||22
= tL||∆x ||32 (1)
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Modern Optimization Techniques

Convergence / Pure Phase / Proof (2/6)
Compute a lower bound for

f̃ (t) :=f (x + t∆x)

f̃ ′(t) =∆xT∇f (x + t∆x)

f̃ ′′(t) =∆xT∇2f (x + t∆x)∆x

|f̃ ′′(t)− f̃ ′′(0)| ≤
(1)

tL||∆x ||32

f̃ ′′(t) ≤ f̃ ′′(0) + tL||∆x ||32

≤
dec i, dec s.c. i

λ(x)2 + t
L

m
3
2

λ(x)3 |
∫ 1

0
(. . .)dt

f̃ ′(t) ≤ f̃ ′(0) + tλ(x)2 + t2 L

2m
3
2

λ(x)3

≤
dec ii
−λ(x)2 + tλ(x)2 + t2 L

2m
3
2

λ(x)3
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Modern Optimization Techniques

Convergence / Pure Phase / Proof (3/6)

f̃ ′(t) ≤ −λ(x)2 + tλ(x)2 + t2 L

2m
3
2

λ(x)3 |
∫ 1

0
(. . .)dt

f̃ (t) ≤ f̃ (0)− tλ(x)2 +
1

2
t2λ(x)2 + t3 L

6m
3
2

λ(x)3 |t = 1

f (x + ∆x) = f̃ (1) ≤ f̃ (0)− λ(x)2 +
1

2
λ(x)2 +

L

6m
3
2

λ(x)3

= f (x)− λ(x)2(
1

2
− L

6m
3
2

λ(x)) (2)
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Modern Optimization Techniques

Convergence / Pure Phase / Proof (4/6)

λ(x) ≤
dec s.c. ii

1

m
1
2

||∇f (x)||2

<
||∇f (x)||2<η

1

m
1
2

η =
1

m
1
2

3(1− 2α)
m2

L
= 3(1− 2α)

m
3
2

L
(3)

f (x + ∆x) ≤
(2)

f (x)− λ(x)2(
1

2
− L

6m
3
2

λ(x))

≤
(3)

f (x)− λ(x)2(
1

2
− L

6m
3
2

3(1− 2α)
m

3
2

L
)

= f (x)− αλ(x)2

and thus stepsize t = 1 fulfils the exit condition.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 37



Modern Optimization Techniques

Convergence / Pure Phase / Proof (5/6)
(ii) show decrease in ∇f (xnext):

||∇f (xnext)||2 =
t=1
||∇f (x + ∆x)||2

=
def ∆x

||∇f (x + ∆x)−∇f (x)−∇2f (x)∆x ||2

=
(∗)
||
∫ 1

0

(∇2f (x + t∆x)−∇2f (x))∆x dt||2

≤
∫ 1

0

||(∇2f (x + t∆x)−∇2f (x))||2dt ||∆x ||2

≤
II

∫ 1

0

Lt||∆x ||2dt||∆x ||2 =
1

2
L||∆x ||22

=
def ∆x

1

2
L||∇2f (x)−1∇f (x)||22

≤
dec s.c. ii

L

2m2
||∇f (x)||22

where (*) ∇f (x + ∆x) = ∇2f (x)∆x +

∫ 1

0

∇2f (x + t∆x)∆x dt
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Modern Optimization Techniques

Convergence / Pure Phase / Proof (6/6)

(iii) show that Newton stays close to the optimum:

||∇f (xnext)||2 ≤
ii

L

2m2
||∇f (x)||22 ≤

L

2m2
η2 ≤

def η

1

2
η < η
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Modern Optimization Techniques

Convergence

Theorem (Convergence of Newton’s Algorithm)

If

(i) f is strongly convex (m,M),

(ii) ∇2f (x) is Lipschitz-continuous:
||∇2f (y)−∇2f (x)||2 ≤ L||y − x ||2, L ∈ R+ and

(iii) backtracking steplength control is used (α ≤ 1
2 , β)

then

f (x (k))− p∗ ≤ 2m3

L2

(
1

2

)2k−l+1

, k ≥ l

l := d f (x (0))− p∗

γ
e, γ := αβ

m

M2
η2, η := min{1, 3(1− 2α)}m

2

L

(quadratic convergence)
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Modern Optimization Techniques

Convergence / Proof
I If initially we are far away from the minimum, latest after l steps we

must be close (damped phase ii) and then

L

2m2
∇f (x (l)) ≤ L

2m2
η ≤ L

2m2

m2

L
≤ 1

2
(1)

I In the pure phase k > l we have (pure phase ii)

L

2m2
∇f (x (k)) ≤ (

L

2m2
∇f (x (k−1)))2 ≤

rec
(

L

2m2
∇f (x (l)))2k−l ≤

(1)
(

1

2
)2k−l

∇f (x (k)) ≤ 2m2

L
(

1

2
)2k−l

(2)

f (x (k))− p∗ ≤
s.c. i

1

2m
||∇f (x (k))||22 ≤

(2)

1

2m

(
2m2

L
(

1

2
)2k−l

)2

=
2m3

L2
(

1

2
)2k−l+1
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Modern Optimization Techniques

Practical Example: Household Location

Suppose we have the following data about different households:

I Number of workers in the household (a1)

I Household composition (a2)

I Weekly household spending (a3)

I Gross normal weekly household income (a4)

I Region (y): North y = 1 or south y = 0

We want to creat a model of the location of the household
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Modern Optimization Techniques

Practical Example: Household Spending

If we have data about m households, we can represent it as:

Am,n =


1 a1,2 . . . a1,n

1 a2,2 . . . a2,n
...

...
...

...
1 am,2 . . . am,n

 y =


y1

y2
...
ym


We can model the household location is a linear combination of the
household features with parameters x:

ŷi = σ(xTai) = σ(x01 + x1ai ,1 + x2ai ,2 + x3ai ,3 + x4ai ,4)

where: σ(x) = 1
1+e−x
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Modern Optimization Techniques

Example II - Logistic Regression

The logistic regression learning problem is

minimize
m∑
i=1

yi log σ(xTai) + (1− yi ) log(1− σ(xTai))

Am,n =


1 a1,1 a1,2 a1,3 a1,4

1 a2,1 a2,2 a2,3 a2,4
...

...
...

...
...

1 am,1 am,2 am,3 am,4

 y =


y1

y2
...
ym
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Modern Optimization Techniques

Logistic Regression
First we need to compute the gradient of our objective function:

minimize
m∑
i=1

yi log σ(xTai) + (1− yi ) log(1− σ(xTai))

∂f

∂xk
=

m∑
i=1

yi
1

σ(xTai)
σ(xTai)

(
1− σ(xTai)

)
aik

−(1− yi )
1

1− σ(xTai)
σ(xTai)

(
1− σ(xTai)

)
aik

=
m∑
i=1

yiaik

(
1− σ(xTai)

)
− (1− yi )aikσ(xTai)

=
m∑
i=1

aik

(
yi − σ(xTai)

)
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Logistic Regression

∂f

∂xk
=

m∑
i=1

aik

(
yi − σ(xTai)

)
Now we need to compute the Hessian matrix:

∂2f

∂xk∂xj
=

m∑
i=1

−aikσ(xTai)
(

1− σ(xTai)
)
aij

=
m∑
i=1

aikaijσ(xTai)
(
σ(xTai)− 1

)
The Hessian H is an n × n matrix such that:

Hk,j =
m∑
i=1

aikaijσ(xTai)
(
σ(xTai)− 1

)
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Logistic Regression

So we have our gradient ∇f ∈ Rn such that

∇xk f =
m∑
i=1

aik

(
yi − σ(xTai)

)
And the Hessian H ∈ Rn×n:

Hk,j =
m∑
i=1

aikaijσ(xTai)
(
σ(xTai)− 1

)
the newton update rule is:

x(k+1) = x(k) − µH−1∇f
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Newton’s Method for Logistic Regression - Considerations

The newton update rule is:

x(k+1) = x(k) − µH−1∇f

Biggest problem:

How to efficiently compute H−1 for:

Hk,j =
m∑
i=1

aikaijσ(xTai)
(
σ(xTai)− 1

)

Considerations:

I H is symmetric: Hk,j = Hj ,k
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Summary

I Newton’s method approximates the objective function by means of a
quadratic truncated Taylor expansion around last iterate x (k).

f̂ (x) = f0 + gT
0 (x − x0) +

1

2
(x − x0)TH0 (x − x0)

I requires current position x0 := x (k), function value f0 := f (x (k)),
gradient g0 := ∇f (x (k)) and Hessian H0 := ∇2f (x (k))

I Newton’s method is a descent method where the descent direction
called Newton step ∆x is computed as solution of a linear system of
equations:

H0∆x = −g0

I Newton step is affine invariant.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

36 / 37



Modern Optimization Techniques

Summary (2/2)

I Newton’s method works very well for many problems.
I requires objective to be twice differentiable.

I but often too slow for high-dimensional problems (with many variables)
I as Hessian has size N2 and solving for the Newton step is O(N3)

I Convergence of Newton’s method decomposes in two phases:
I damped phase:

I far away from the optimum

I requires step length control

I f reduced by at least a constant per step

I pure phase:
I close to the optimum

I always steplength 1 can be chosen

I f -distance to minimum shrinks double exponentially in the number of
steps

(( 1
2
)2k ; quadratic convergence).
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Further Readings

I Newton’s method including convergence proof
I [Boyd and Vandenberghe, 2004, ch. 9.5]

Acknowledgement: Thanks to John Rothman for pointing out several typos in an earlier
version of these slides.
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