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Matrix Inversion

Given a matrix A ∈ Rn×n, its inverse A−1 is a matrix such that:

AA−1 = I

where

I I is the identity matrix

I If no such matrix A−1 exists A is called
I singular or
I non-invertible
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Matrix Inversion — Easy cases

1. small matrices:
I for A ∈ R2×2 the inverse can be computed analytically:

A =

(
a b
c d

)
, A−1 =

1

ad − bc

(
d −b
−c a

)
I slightly more complex closed formula for A ∈ R3×3

2. orthogonal matrices:
I A ∈ Rn×n is orthogonal if ATA = I
I thus A−1 = AT
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Matrix Inversion — Easy cases

3. diagonal matrices:
I A ∈ Rn×n is diagonal if Aij = 0 for all i 6= j
I thus A = diag(a1, a2, . . . , an) with

diag(a1, . . . , an) :=


a1 0 . . . 0

0 a2
. . .

...
...

. . .
. . . 0

0 . . . 0 an


I A−1 = diag( 1

a1
, 1
a2
, . . . , 1

an
)
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General Matrix Inversion

Generally, inverting a matrix A ∈ Rn×n is equivalent to solving a linear
system of equations with n different right sides:

AA−1 = I ⇐⇒ Ax i = e i , e i :=



0
...
0
1
0
...
0


← i-th position , i = 1, . . . , n

via A−1 = (x1, x2, . . . , xn)

If an inverse is used only once to compute x := A−1b for a vector b ∈ Rn,
it usually is faster to solve the linear system of equations Ax = b instead.
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General Matrix Inversion / Complexity

Inverting matrices and solving systems of linear equations can be
accomplished two ways:

1. algebraic algorithms (“direct algorithms”)
I like Gaussian elimination, LU decomposition, QR decomposition
I complexity generally O(n3)
I there exist specialized matrix inversion algorithms with lower costs

I Strassen algorithm O(n2.807)
I Coppersmith–Winograd algorithm O(n2.376)
I but they are impractical and not used in implementations

2. optimization algorithms (“iterative algorithms”)
I Gauss-Seidel, Gradient-descent type of algorithms
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Inverse of a Rank-One Update

Lemma (Inverse of a Rank-One Update – Sherman-Morrison formula)

For A ∈ Rn×n invertible and a, b ∈ Rn:

(A + abT )−1 = A−1 − A−1abTA−1

1 + bTA−1a

Meaning:
I the inverse of a rank-one update can be computed fast

I in O(n2) instead of in O(n3)
I if the inverse of the original matrix is available
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Inverse of a Rank-One Update / Proof

Show that the right side has the property of the inverse:

(A + abT )(A−1 − A−1abTA−1

1 + bTA−1a
)

= I + abTA−1 − abTA−1 + abTA−1abTA−1

1 + bTA−1a
)

= I + abTA−1 − a(1 + bTA−1a)bTA−1

1 + bTA−1a
)

= I + abTA−1 − abTA−1 = I
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Underlying Idea
I Approximate the Hessian with a matrix H that is fast to invert.

H ≈ ∇2f (x)

I Use a low-rank update

H(0) := I

Hnext = H +
K∑

k=1

akbT
k

I fast to invert using K -times inverses of rank-one updates

(H−1)(0) = I

(H−1)next = H−1 + . . .

I Compute the next direction using the inverse of the Hessian
approximation:

∆x = −H−1∇f (x)
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Properties of the Hessian ∇2f (x)
I It fulfills the secant condition

H(y − x) = ∇f (y)−∇f (x)

approximately:

∇2f (y)(y − x)
y→x→ ∇f (y)−∇f (x)

I due to first order Taylor expansion of ∇f :

∇f (x) ≈ ∇f (y) +∇2f (y)(x − y)

I if H fulfills the secant condition,
then the second order approximation of f by ∇f and H around x
has gradient ∇f (x) at x

I it is symmetric

I it is positive semidefinite

I it is positive definite
I for a strongly convex objective function
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Hessian Approximations

Idea: search for a matrix H that

I has some of the properties of the Hessian and
I is fast to compute

I e.g., by a low-rank update from the previous approximation:

H(0) := I

Hnext = H +
K∑

k=1

akbT
k , ak , bk ∈ Rn
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Symmetric Rank-One Update

Lemma (Symmetric Rank-One Update)

There exists exactly one low-rank update such that

i) H fulfils the secant condition

Hnexts = g , s := xnext − x , g := ∇f (xnext)−∇f (x)

ii) H is symmetric and

iii) which is a rank-one update:

a1 = b1 :=
g − Hs

((g − Hs)T s)
1
2

Hnext = H +
(g − Hs)(g − Hs)T

(g − Hs)T s
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Symmetric Rank-One Update / Proof
If H and Hnext are symmetric, then a1bT

1 must be also symmetric.

a1bT
1

!
= (a1bT

1 )T = b1aT1 | · a1

a1bT
1 a1

!
= b1aT1 a1  b1 = βa1, β ∈ R, β 6= 0

Hnext =
iii

H + βa1aT1

Hnexts =
i

g

βa1aT1 s = g − Hs  a1 = γ(g − Hs), γ ∈ R
βγ(g − Hs)γ(g − Hs)T s = g − Hs

βγ2(g − Hs)T s = 1

β = 1, γ = ((g − Hs)T s)−
1
2 , a1 =

g − Hs

((g − Hs)T s)
1
2
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Symmetric Rank-One Update / Inverse

Lemma (Symmetric Rank-One Update / Inverse)

The inverse H−1 of the approximate Hessian in the symmetric rank-one
update is

(H−1)next = H−1 +
(s − H−1g)(s − H−1g)T

(s − H−1g)Tg
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Symmetric Rank-One Update / Inverse / Proof

Apply Morrison-Sherman to the rank-one update of the Hessian
approximation:

(H−1)next = H−1 − H−1(g − Hs)(g − Hs)TH−1

(g − Hs)T s(1 + (g−Hs)TH−1(g−Hs)
(g−Hs)T s

)

= H−1 − (H−1g − s)(H−1g − s)T

(g − Hs)T s + (g − Hs)TH−1(g − Hs)

= H−1 − (H−1g − s)(H−1g − s)T

(H−1g − s)T (Hs + g − Hs)

= H−1 − (H−1g − s)(H−1g − s)T

(H−1g − s)Tg

= H−1 +
(s − H−1g)(s − H−1g)T

(s − H−1g)Tg
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Newton’s Method (Review)
1 min-newton(f ,∇f ,∇2f , x (0), µ, ε,K ) :
2 for k := 1, . . . ,K :

3 ∆x (k−1) := −∇2f (x (k−1))−1∇f (x (k−1))

4 if −∇f (x (k−1))T∆x (k−1) < ε:

5 return x (k−1)

6 µ(k−1) := µ(f , x (k−1),∆x (k−1))

7 x (k) := x (k−1) + µ(k−1)∆x (k−1)

8 return ”not converged”

where

I f objective function

I ∇f , ∇2f gradient and Hessian of objective function f

I x(0) starting value

I µ step length controller

I ε convergence threshold for Newton’s decrement

I K maximal number of iterations
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Quasi-Newton Method / SR1
1 min-qnewton-sr1(f ,∇f , x (0), µ, ε,K ) :

2 A(0) := I
3 for k := 1, . . . ,K :

4 ∆x (k−1) := −A(k−1)∇f (x (k−1))

5 if −∇f (x (k−1))T∆x (k−1) < ε:

6 return x (k−1)

7 µ(k−1) := µ(f , x (k−1),∆x (k−1))

8 x (k) := x (k−1) + µ(k−1)∆x (k−1)

9 s(k) := x (k) − x (k−1)

10 g (k) := ∇f (x (k))−∇f (x (k−1))

11 A(k) := A(k−1) + (s(k)−A(k−1)g (k))(s(k)−A(k−1)g (k))T

(s(k)−A(k−1)g (k))T g (k)

12 return ”not converged”

where

I A = H−1 the inverse of the approximative Hessian
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Positive Definite Hessian Approximations

I There is no rank-one update with positive definite Hessian
approximation H.

I There are many rank-two update schemes with positive definite
Hessian approximation H.

I Most widely used: BFGS
I developed independently by Broyden, Fletcher, Goldfarb and Shanno in

1970

Hnext = H − Hs(Hs)T

sTHs
+

ggT

gT s
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BFGS

Lemma (BFGS)

The BFGS update
Hnext = H − Hs(Hs)T

sTHs
+

ggT

gT s

i) fulfils the secant condition,

ii) yields symmetric H and

iii) yields positive definite H,
if gT s > 0.

The inverse H−1 of the approximate Hessian is

(H−1)next = H−1 +
(s − H−1g)sT + s(s − H−1g)T

sTg
− (s − H−1g)Tg

(sTg)2
ssT

= (I − sgT

sTg
)H−1(I − gsT

sTg
) +

ssT

sTg
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BFGS / Proof (1/3)
i) BFGS fulfils the secant condition:

Hnexts = Hs − Hs(Hs)T s

sTHs
+

ggT s

gT s

= Hs − Hs + g = g

ii) BFGS yields symmetric H: obvious.
iii) BFGS yields positive definite H:
If H is positive definite, it can be represented H = LLT

with a non-singular L (Cholesky decomposition).

Hnext = LWLT

W := I − s̃ s̃T

s̃T s̃
+

g̃ g̃T

g̃T s̃
, s̃ := LT s, g̃ := L−1g

Hnext will be pos.def., if W is.
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BFGS / Proof (2/3)
for any v ∈ Rn:

0
?
< vTWv = vT v − (vT s̃)2

s̃T s̃
+

(vT g̃)2

g̃T s̃

= ||v ||2 − ||v ||
2||s̃||2 cos2 θ1

||s̃||2
+

(vT g̃)2

g̃T s̃

= ||v ||2(1− cos2 θ1) +
(vT g̃)2

g̃T s̃

= ||v ||2 sin2 θ1 +
(vT g̃)2

g̃T s̃

g̃T s̃ = gT s >
assumption

0

I if v = λs̃, λ ∈ R, λ 6= 0:
I sin2 θ1 = 0, but
I (vT g̃)2 = λ2(s̃T g̃)2 > 0

I if v 6= λs̃, λ ∈ R, λ 6= 0:
I sin2 θ1 > 0
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BFGS / Proof (3/3)

To derive the inverse of the approximate Hessian,
apply Morrison-Sherman twice.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 28



Modern Optimization Techniques

Quasi-Newton Method / BFGS

1 min-qnewton-bfgs(f ,∇f , x (0), µ, ε,K ) :

2 A(0) := I
3 for k := 1, . . . ,K :

4 ∆x (k−1) := −A(k−1)∇f (x (k−1))

5 if −∇f (x (k−1))T∆x (k−1) < ε:

6 return x (k−1)

7 µ(k−1) := µ(f , x (k−1),∆x (k−1))

8 x (k) := x (k−1) + µ(k−1)∆x (k−1)

9 s(k) := x (k) − x (k−1)

10 g (k) := ∇f (x (k))−∇f (x (k−1))

11 A(k) := A(k−1) + (s(k)−A(k−1)g (k))(s(k))T +s(k)(s(k)−A(k−1)g (k))T

(s(k))T g (k)

12 − (s(k)−A(k−1)g (k))T g (k)

((s(k))T g (k))2 s(k)(s(k))T

13 return ”not converged”

where

I A = H−1 the inverse of the approximative Hessian
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Avoid Materialization of A

I In the previous form, BFGS still requires n2 storage to materialize the
inverse A of the approximate Hessian.

I For any vector v ∈ Rn, images A(K)v can be computed from the
recursive formula from vectors g (k), s(k) (k = 1, . . . ,K )
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Compute Image Av without Materialization of A
1 bfgs-image-iha(v , (s(k))k=1,...,K , (g (k))k=1,...,K , (ρ

(k))k=1,...,K ,A
(0)) :

2 q := v
3 for k := K , . . . , 1:

4 αk := ρ(k)(s(k))Tq

5 q := q − αkg (k)

6 r := A(0)q
7 for k := 1, . . . ,K :

8 β := ρ(k)(g (k))T r

9 r := r + s(k)(αi − β)
10 return r

where

I v ∈ Rn vector who’s image to compute, usually ∇f (x(k))

I (s(k))k=1,...,K , (g
(k))k=1,...,K as defined earlier

I ρ(k) := 1/(g (k))T s(k)

I A(0) initial inverse Hessian, e.g. I .
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Quasi-Newton Method / BFGS w/o Materialization of A

1 min-qnewton-bfgs-nomat(f ,∇f , x (0), µ, ε,K ) :
2 for k := 1, . . . ,K :

3 ∆x (k−1) := −bfgs-image-iha(∇f (x (k−1), s(1:k−1),

4 g (1:k−1), ρ(1:k−1), I )

5 if −∇f (x (k−1))T∆x (k−1) < ε:

6 return x (k−1)

7 µ(k−1) := µ(f , x (k−1),∆x (k−1))

8 x (k) := x (k−1) + µ(k−1)∆x (k−1)

9 s(k) := x (k) − x (k−1)

10 g (k) := ∇f (x (k))−∇f (x (k−1))

11 ρ(k) := 1/(gk)T s(k)

12 return ”not converged”
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Avoid Materialization of A

I Storing all vectors g (1:K), s(1:K) requires 2Kn storage,
i.e. is only memory efficient for K � n.

I Instead of computing the inverse A of the approximate Hessian by all
these vectors, we could

I forget the older ones, i.e.,
I just store and compute the M � n most recent ones.

I This approach is called Limited Memory BFGS (L-BFGS)
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Quasi-Newton Method / L-BFGS

1 min-qnewton-lbfgs(f ,∇f , x (0), µ, ε,K ,M) :
2 for k := 1, . . . ,K :
3 k0 := max{1, k − 1−M + 1}
4 ∆x (k−1) := −bfgs-image-iha(∇f (x (k−1), s(k0:k−1),

5 g (k0:k−1), ρ(k0:k−1), I )

6 if −∇f (x (k−1))T∆x (k−1) < ε:

7 return x (k−1)

8 µ(k−1) := µ(f , x (k−1),∆x (k−1))

9 x (k) := x (k−1) + µ(k−1)∆x (k−1)

10 s(k) := x (k) − x (k−1)

11 g (k) := ∇f (x (k))−∇f (x (k−1))

12 ρ(k) := 1/(gk)T s(k)

13 return ”not converged”

Implementations need to ensure that the old vectors s(1:k0−1), g (1:k0−1) do not consume any
memory (i.e., are overwritten by the more recent ones).
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Summary
I Rank One Updates A + abT of a matrix A can be inverted fast

(in O(n2); if an inverse of A is available; Sherman-Morrison formula).
I Quasi-Newton methods are Newton methods with approximated

Hessian.
I approximations should share properties of the Hessian

I secant condition, symmetry, positive definiteness
I maintain the inverse of the Hessian (not the Hessian itself)

I symmetric rank one update:
I only one such rank one update (not even pos.def.)

I BFGS rank two update:
I one out of many such rank two updates
I pos.def.

I Images of a vector under the inverse Hessian can be computed even
without materializing the inverse Hessian:

I compute the image recursively from the images under the rank one
update steps

I Limited Memory BFGS (L-BFGS)
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Further Readings

I Quasi-Newton methods are not covered by Boyd and Vandenberghe
[2004]

I BFGS:
I [Nocedal and Wright, 2006, ch. 6]
I [Griva et al., 2009, ch. 12.3]

the update formulas for the inverse are in ch. 13.5.
I [Sun and Yuan, 2006, ch. 5.1]

I L-BFGS:
I [Nocedal and Wright, 2006, ch. 7]
I [Griva et al., 2009, ch. 13.5]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 28



Modern Optimization Techniques

References I
Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univ Press, 2004.

Igor Griva, Stephen G. Nash, and Ariela Sofer. Linear and nonlinear optimization. Society for Industrial and Applied
Mathematics, 2009.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2006.

Wenyu Sun and Ya-Xiang Yuan. Optimization Theory and Methods, Nonlinear Programming. Springer, 2006.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

30 / 28


