

Modern Optimization Techniques

2. Unconstrained Optimization / 2.4. Quasi-Newton Methods

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany

Syllabus

Mon.	30.10.	(0)	0. Overview
Mon.	6.11.	(1)	 Theory Convex Sets and Functions
Mon. Mon. Mon. Mon.	13.11. 20.11. 27.11. 4.12. 11.12. 18.12.	(2) (3) (4) (5) (6) (7)	 2. Unconstrained Optimization 2.1 Gradient Descent 2.2 Stochastic Gradient Descent 2.3 Newton's Method 2.4 Quasi-Newton Methods 2.5 Subgradient Methods 2.6 Coordinate Descent Christmas Break —
Mon. Mon.	8.1. 15.1.	(8) (9)	 Equality Constrained Optimization Duality Methods
Mon. Mon. Mon.	22.1. 29.1. 5.2.	(10) (11) (12)	4. Inequality Constrained Optimization4.1 Primal Methods4.2 Barrier and Penalty Methods4.3 Cutting Plane Methods

Outline

1. Excursion: Inverting Matrices

2. The Idea of Quasi-Newton Methods

3. BFGS and L-BFGS

Outline

1. Excursion: Inverting Matrices

2. The Idea of Quasi-Newton Methods

3. BFGS and L-BFGS

Matrix Inversion

Given a matrix $A \in \mathbb{R}^{n \times n}$, its inverse A^{-1} is a matrix such that:

$$AA^{-1} = \mathbf{I}$$

where

- ► I is the identity matrix
- If no such matrix A^{-1} exists A is called
 - ► singular or
 - non-invertible

Matrix Inversion — Easy cases

1. small matrices:

▶ for $A \in \mathbb{R}^{2 \times 2}$ the inverse can be computed analytically:

$$A = \left(egin{array}{c} a & b \ c & d \end{array}
ight), \quad A^{-1} = rac{1}{ad-bc} \left(egin{array}{c} d & -b \ -c & a \end{array}
ight)$$

▶ slightly more complex closed formula for $A \in \mathbb{R}^{3 \times 3}$

2. orthogonal matrices:

- $A \in \mathbb{R}^{n \times n}$ is orthogonal if $A^T A = \mathbf{I}$
- thus $A^{-1} = A^T$

Matrix Inversion — Easy cases

3. diagonal matrices:

- $A \in \mathbb{R}^{n \times n}$ is **diagonal** if $A_{ij} = 0$ for all $i \neq j$
- thus $A = diag(a_1, a_2, \ldots, a_n)$ with

$$diag(a_1, \dots, a_n) := \left(egin{array}{ccccc} a_1 & 0 & \dots & 0 \\ 0 & a_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & a_n \end{array}
ight)$$

•
$$A^{-1} = \text{diag}(\frac{1}{a_1}, \frac{1}{a_2}, \dots, \frac{1}{a_n})$$

General Matrix Inversion

Generally, inverting a matrix $A \in \mathbb{R}^{n \times n}$ is equivalent to solving a linear system of equations with *n* different right sides:

$$AA^{-1} = I \iff Ax^{i} = e^{i}, \quad e^{i} := \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i \text{-th position }, \quad i = 1, \dots, n$$

via $A^{-1} = (x^1, x^2, \dots, x^n)$

If an inverse is used only once to compute $x := A^{-1}b$ for a vector $b \in \mathbb{R}^n$, it usually is faster to solve the linear system of equations Ax = b instead.

General Matrix Inversion / Complexity

Inverting matrices and solving systems of linear equations can be accomplished two ways:

- 1. algebraic algorithms ("direct algorithms")
 - ► like Gaussian elimination, LU decomposition, QR decomposition
 - complexity generally $O(n^3)$
 - there exist specialized matrix inversion algorithms with lower costs
 - Strassen algorithm $O(n^{2.807})$
 - Coppersmith–Winograd algorithm $O(n^{2.376})$
 - but they are impractical and not used in implementations
- 2. optimization algorithms ("iterative algorithms")
 - ► Gauss-Seidel, Gradient-descent type of algorithms

Inverse of a Rank-One Update

Lemma (Inverse of a Rank-One Update – Sherman-Morrison formula) For $A \in \mathbb{R}^{n \times n}$ invertible and $a, b \in \mathbb{R}^n$:

$$(A + ab^{T})^{-1} = A^{-1} - \frac{A^{-1}ab^{T}A^{-1}}{1 + b^{T}A^{-1}a}$$

Meaning:

- ► the inverse of a rank-one update can be computed fast
 - in $O(n^2)$ instead of in $O(n^3)$
 - if the inverse of the original matrix is available

Inverse of a Rank-One Update / Proof

Show that the right side has the property of the inverse:

$$(A + ab^{T})(A^{-1} - \frac{A^{-1}ab^{T}A^{-1}}{1 + b^{T}A^{-1}a})$$

= $I + ab^{T}A^{-1} - \frac{ab^{T}A^{-1} + ab^{T}A^{-1}ab^{T}A^{-1}}{1 + b^{T}A^{-1}a})$
= $I + ab^{T}A^{-1} - \frac{a(1 + b^{T}A^{-1}a)b^{T}A^{-1}}{1 + b^{T}A^{-1}a})$
= $I + ab^{T}A^{-1} - ab^{T}A^{-1} = I$

Outline

1. Excursion: Inverting Matrices

2. The Idea of Quasi-Newton Methods

3. BFGS and L-BFGS

Underlying Idea

• Approximate the Hessian with a matrix H that is fast to invert.

$$H\approx \nabla^2 f(x)$$

Use a low-rank update

$$H^{(0)} := I$$
$$H^{\text{next}} = H + \sum_{k=1}^{K} a_k b_k^T$$

► fast to invert using *K*-times inverses of rank-one updates

$$(H^{-1})^{(0)} = I$$

 $(H^{-1})^{\text{next}} = H^{-1} + ...$

 Compute the next direction using the inverse of the Hessian approximation:

$$\Delta x = -H^{-1}\nabla f(x)$$

Properties of the Hessian $\nabla^2 f(x)$

► It fulfills the secant condition

$$H(y-x) = \nabla f(y) - \nabla f(x)$$

approximately:

$$abla^2 f(y)(y-x) \stackrel{y \to x}{\to}
abla f(y) -
abla f(x)$$

• due to first order Taylor expansion of ∇f :

$$\nabla f(x) \approx \nabla f(y) + \nabla^2 f(y)(x-y)$$

- If H fulfills the secant condition, then the second order approximation of f by ∇f and H around x has gradient ∇f(x) at x
- ► it is symmetric
- ► it is positive semidefinite
- ► it is positive definite
 - for a strongly convex objective function

Hessian Approximations

Idea: search for a matrix H that

- ► has some of the properties of the Hessian and
- ▶ is fast to compute
 - ▶ e.g., by a low-rank update from the previous approximation:

$$H^{(0)} := I$$

 $H^{\text{next}} = H + \sum_{k=1}^{K} a_k b_k^T, \quad a_k, b_k \in \mathbb{R}^n$

Symmetric Rank-One Update

Jniversiter.

Lemma (Symmetric Rank-One Update) There exists exactly one low-rank update such that

i) *H* fulfils the secant condition

$$H^{next}s = g$$
, $s := x^{next} - x$, $g := \nabla f(x^{next}) - \nabla f(x)$

- ii) H is symmetric and
- iii) which is a rank-one update:

$$a_1 = b_1 := \frac{g - Hs}{\left((g - Hs)^T s\right)^{\frac{1}{2}}}$$
$$H^{next} = H + \frac{(g - Hs)(g - Hs)^T}{(g - Hs)^T s}$$

Symmetric Rank-One Update / Proof

If H and H^{next} are symmetric, then $a_1 b_1^T$ must be also symmetric.

$$\begin{aligned} \mathbf{a}_1 \mathbf{b}_1^T \stackrel{!}{=} (\mathbf{a}_1 \mathbf{b}_1^T)^T &= \mathbf{b}_1 \mathbf{a}_1^T \quad |\cdot \mathbf{a}_1 \\ \mathbf{a}_1 \mathbf{b}_1^T \mathbf{a}_1 \stackrel{!}{=} \mathbf{b}_1 \mathbf{a}_1^T \mathbf{a}_1 \quad \rightsquigarrow \mathbf{b}_1 &= \beta \mathbf{a}_1, \quad \beta \in \mathbb{R}, \beta \neq \mathbf{0} \end{aligned}$$

$$\begin{array}{l} \mathcal{H}^{\mathsf{next}} \stackrel{=}{=} \mathcal{H} + \beta a_1 a_1^T \\ \mathcal{H}^{\mathsf{next}} s \stackrel{=}{=} g \\ \beta a_1 a_1^T s = g - \mathcal{H} s \quad \rightsquigarrow \quad a_1 = \gamma(g - \mathcal{H} s), \quad \gamma \in \mathbb{R} \\ \beta \gamma(g - \mathcal{H} s)\gamma(g - \mathcal{H} s)^T s = g - \mathcal{H} s \\ \beta \gamma^2(g - \mathcal{H} s)^T s = 1 \\ \beta = 1, \quad \gamma = ((g - \mathcal{H} s)^T s)^{-\frac{1}{2}}, \quad a_1 = \frac{g - \mathcal{H} s}{((g - \mathcal{H} s)^T s)^{\frac{1}{2}}} \end{array}$$

Symmetric Rank-One Update / Inverse

Jriversite Jildesheif

Lemma (Symmetric Rank-One Update / Inverse)

The inverse H^{-1} of the approximate Hessian in the symmetric rank-one update is

$$(H^{-1})^{next} = H^{-1} + \frac{(s - H^{-1}g)(s - H^{-1}g)^T}{(s - H^{-1}g)^Tg}$$

Modern Optimization Techniques

Symmetric Rank-One Update / Inverse / Proof

Apply Morrison-Sherman to the rank-one update of the Hessian approximation:

$$\begin{aligned} (H^{-1})^{\text{next}} &= H^{-1} - \frac{H^{-1}(g - Hs)(g - Hs)^{T}H^{-1}}{(g - Hs)^{T}s(1 + \frac{(g - Hs)^{T}H^{-1}(g - Hs)}{(g - Hs)^{T}s})} \\ &= H^{-1} - \frac{(H^{-1}g - s)(H^{-1}g - s)^{T}}{(g - Hs)^{T}s + (g - Hs)^{T}H^{-1}(g - Hs)} \\ &= H^{-1} - \frac{(H^{-1}g - s)(H^{-1}g - s)^{T}}{(H^{-1}g - s)^{T}(Hs + g - Hs)} \\ &= H^{-1} - \frac{(H^{-1}g - s)(H^{-1}g - s)^{T}}{(H^{-1}g - s)^{T}g} \\ &= H^{-1} + \frac{(s - H^{-1}g)(s - H^{-1}g)^{T}}{(s - H^{-1}g)^{T}g} \end{aligned}$$

Newton's Method (Review)

1 min-newton
$$(f, \nabla f, \nabla^2 f, x^{(0)}, \mu, \epsilon, K)$$
:
2 for $k := 1, ..., K$:
3 $\Delta x^{(k-1)} := -\nabla^2 f(x^{(k-1)})^{-1} \nabla f(x^{(k-1)})$
4 if $-\nabla f(x^{(k-1)})^T \Delta x^{(k-1)} < \epsilon$:
5 return $x^{(k-1)}$
6 $\mu^{(k-1)} := \mu(f, x^{(k-1)}, \Delta x^{(k-1)})$
7 $x^{(k)} := x^{(k-1)} + \mu^{(k-1)} \Delta x^{(k-1)}$
8 return "not converged"

where

- ► f objective function
- ∇f , $\nabla^2 f$ gradient and Hessian of objective function f
- ► x⁽⁰⁾ starting value
- μ step length controller
- ϵ convergence threshold for Newton's decrement
- K maximal number of iterations

Quasi-Newton Method / SR1

1 min-qnewton-sr1(
$$f, \nabla f, x^{(0)}, \mu, \epsilon, K$$
):
2 $A^{(0)} := I$
3 for $k := 1, ..., K$:
4 $\Delta x^{(k-1)} := -A^{(k-1)} \nabla f(x^{(k-1)})$
5 if $-\nabla f(x^{(k-1)})^T \Delta x^{(k-1)} < \epsilon$:
6 return $x^{(k-1)}$
7 $\mu^{(k-1)} := \mu(f, x^{(k-1)}, \Delta x^{(k-1)})$
8 $x^{(k)} := x^{(k-1)} + \mu^{(k-1)} \Delta x^{(k-1)}$
9 $s^{(k)} := x^{(k)} - x^{(k-1)}$
10 $g^{(k)} := \nabla f(x^{(k)}) - \nabla f(x^{(k-1)})$
11 $A^{(k)} := A^{(k-1)} + \frac{(s^{(k)} - A^{(k-1)}g^{(k)})(s^{(k)} - A^{(k-1)}g^{(k)})^T}{(s^{(k)} - A^{(k-1)}g^{(k)})^T g^{(k)}}$
12 return "not converged"

where

• $A = H^{-1}$ the inverse of the approximative Hessian

Outline

1. Excursion: Inverting Matrices

2. The Idea of Quasi-Newton Methods

3. BFGS and L-BFGS

Positive Definite Hessian Approximations

- ► There is no rank-one update with positive definite Hessian approximation *H*.
- ► There are many rank-two update schemes with positive definite Hessian approximation *H*.
- ► Most widely used: BFGS
 - developed independently by Broyden, Fletcher, Goldfarb and Shanno in 1970

$$H^{\text{next}} = H - \frac{Hs(Hs)^{T}}{s^{T}Hs} + \frac{gg^{T}}{g^{T}s}$$

BFGS

Lemma (BFGS) The BFGS update

$$H^{next} = H - \frac{Hs(Hs)^{T}}{s^{T}Hs} + \frac{gg^{T}}{g^{T}s}$$

- i) fulfils the secant condition,
- ii) yields symmetric H and
- iii) yields positive definite H, if $g^T s > 0$.

The inverse H^{-1} of the approximate Hessian is

$$(H^{-1})^{next} = H^{-1} + \frac{(s - H^{-1}g)s^T + s(s - H^{-1}g)^T}{s^T g} - \frac{(s - H^{-1}g)^T g}{(s^T g)^2} ss^T$$
$$= (I - \frac{sg^T}{s^T g})H^{-1}(I - \frac{gs^T}{s^T g}) + \frac{ss^T}{s^T g}$$

BFGS / Proof
$$(1/3)$$

i) BFGS fulfils the secant condition:

$$H^{\text{next}}s = Hs - \frac{Hs(Hs)^Ts}{s^THs} + \frac{gg^Ts}{g^Ts}$$
$$= Hs - Hs + g = g$$

ii) BFGS yields symmetric H: obvious. iii) BFGS yields positive definite H: If H is positive definite, it can be represented $H = LL^T$ with a non-singular L (Cholesky decomposition).

$$\begin{aligned} \mathcal{H}^{\mathsf{next}} &= \mathcal{LWL}^{\mathcal{T}} \\ \mathcal{W} &:= \mathcal{I} - \frac{\tilde{s}\tilde{s}^{\mathsf{T}}}{\tilde{s}^{\mathsf{T}}\tilde{s}} + \frac{\tilde{g}\tilde{g}^{\mathsf{T}}}{\tilde{g}^{\mathsf{T}}\tilde{s}}, \quad \tilde{s} := \mathcal{L}^{\mathsf{T}}s, \quad \tilde{g} := \mathcal{L}^{-1}g \end{aligned}$$

 H^{next} will be pos.def., if W is.

BFGS / Proof (2/3)

for any $v \in \mathbb{R}^n$:

► if

$$0 \stackrel{?}{<} v^{T} W v = v^{T} v - \frac{(v^{T} \tilde{s})^{2}}{\tilde{s}^{T} \tilde{s}} + \frac{(v^{T} \tilde{g})^{2}}{\tilde{g}^{T} \tilde{s}}$$

$$= ||v||^{2} - \frac{||v||^{2} ||\tilde{s}||^{2} \cos^{2} \theta_{1}}{||\tilde{s}||^{2}} + \frac{(v^{T} \tilde{g})^{2}}{\tilde{g}^{T} \tilde{s}}$$

$$= ||v||^{2} (1 - \cos^{2} \theta_{1}) + \frac{(v^{T} \tilde{g})^{2}}{\tilde{g}^{T} \tilde{s}}$$

$$= ||v||^{2} \sin^{2} \theta_{1} + \frac{(v^{T} \tilde{g})^{2}}{\tilde{g}^{T} \tilde{s}}$$

$$\tilde{g}^{T} \tilde{s} = g^{T} s \xrightarrow{>} 0$$

$$v = \lambda \tilde{s}, \lambda \in \mathbb{R}, \lambda \neq 0: \qquad \flat \quad \text{if } v \neq \lambda \tilde{s}, \lambda \in \mathbb{R}, \lambda \neq$$

$$\flat \quad \sin^{2} \theta_{1} = 0, \text{ but} \qquad \flat \quad \sin^{2} \theta_{1} > 0$$

0:

Modern Optimization Techniques

BFGS / Proof (3/3)

To derive the inverse of the approximate Hessian, apply Morrison-Sherman twice.

Quasi-Newton Method / BFGS

1 min-qnewton-bfgs
$$(f, \nabla f, x^{(0)}, \mu, \epsilon, K)$$
:
2 $A^{(0)} := I$
3 for $k := 1, ..., K$:
4 $\Delta x^{(k-1)} := -A^{(k-1)} \nabla f(x^{(k-1)})$
5 if $-\nabla f(x^{(k-1)})^T \Delta x^{(k-1)} < \epsilon$:
6 return $x^{(k-1)}$
7 $\mu^{(k-1)} := \mu(f, x^{(k-1)}, \Delta x^{(k-1)})$
8 $x^{(k)} := x^{(k-1)} + \mu^{(k-1)} \Delta x^{(k-1)}$
9 $s^{(k)} := x^{(k)} - x^{(k-1)}$
10 $g^{(k)} := \nabla f(x^{(k)}) - \nabla f(x^{(k-1)})$
11 $A^{(k)} := A^{(k-1)} + \frac{(s^{(k)} - A^{(k-1)}g^{(k)})(s^{(k)})^T + s^{(k)}(s^{(k)} - A^{(k-1)}g^{(k)})^T}{(s^{(k)})^T g^{(k)}} s^{(k)}(s^{(k)})^T}$
12 $-\frac{(s^{(k)} - A^{(k-1)}g^{(k)})^T g^{(k)}}{((s^{(k)})^T g^{(k)})^2} s^{(k)}(s^{(k)})^T}$
13 return "not converged"

where

• $A = H^{-1}$ the inverse of the approximative Hessian

Modern Optimization Techniques

Avoid Materialization of A

- ► In the previous form, BFGS still requires n² storage to materialize the inverse A of the approximate Hessian.
- For any vector v ∈ ℝⁿ, images A^(K)v can be computed from the recursive formula from vectors g^(k), s^(k) (k = 1,...,K)

Compute Image Av without Materialization of A

1 **bfgs-image-iha**
$$(v, (s^{(k)})_{k=1,...,K}, (g^{(k)})_{k=1,...,K}, (\rho^{(k)})_{k=1,...,K}, A^{(0)})$$
:
2 $q := v$
3 for $k := K, ..., 1$:
4 $\alpha_k := \rho^{(k)}(s^{(k)})^T q$
5 $q := q - \alpha_k g^{(k)}$
6 $r := A^{(0)}q$
7 for $k := 1,...,K$:
8 $\beta := \rho^{(k)}(g^{(k)})^T r$
9 $r := r + s^{(k)}(\alpha_i - \beta)$
10 return r

where

• $v \in \mathbb{R}^n$ vector who's image to compute, usually $abla f(x^{(k)})$

•
$$\rho^{(k)} := 1/(g^{(k)})^T s^{(k)}$$

• $A^{(0)}$ initial inverse Hessian, e.g. *I*.

1 min-qnewton-bfgs-nomat
$$(f, \nabla f, x^{(0)}, \mu, \epsilon, K)$$
:
2 for $k := 1, ..., K$:
3 $\Delta x^{(k-1)} := -bfgs-image-iha(\nabla f(x^{(k-1)}, s^{(1:k-1)}, q^{(1:k-1)}, f))$
5 if $-\nabla f(x^{(k-1)})^T \Delta x^{(k-1)} < \epsilon$:
6 return $x^{(k-1)}$
7 $\mu^{(k-1)} := \mu(f, x^{(k-1)}, \Delta x^{(k-1)})$
8 $x^{(k)} := x^{(k-1)} + \mu^{(k-1)} \Delta x^{(k-1)}$
9 $s^{(k)} := x^{(k)} - x^{(k-1)}$
10 $g^{(k)} := \nabla f(x^{(k)}) - \nabla f(x^{(k-1)})$
11 $\rho^{(k)} := 1/(g^k)^T s^{(k)}$
12 return "not converged"

Avoid Materialization of A

- ► Storing all vectors g^(1:K), s^(1:K) requires 2Kn storage, i.e. is only memory efficient for K ≪ n.
- ► Instead of computing the inverse A of the approximate Hessian by all these vectors, we could
 - ► forget the older ones, i.e.,
 - ▶ just store and compute the $M \ll n$ most recent ones.
- ► This approach is called Limited Memory BFGS (L-BFGS)

Quasi-Newton Method / L-BFGS

1 min-qnewton-lbfgs $(f, \nabla f, x^{(0)}, \mu, \epsilon, K, M)$: for k := 1, ..., K: 2 3 $k_0 := \max\{1, k - 1 - M + 1\}$ $\Delta x^{(k-1)} := -\mathsf{bfgs-image-iha}(\nabla f(x^{(k-1)}, s^{(k_0:k-1)}, s^{(k_0:k-1)}))$ 4 $g^{(k_0:k-1)}, \rho^{(k_0:k-1)}, I$ 5 if $-\nabla f(x^{(k-1)})^T \Delta x^{(k-1)} < \epsilon$: 6 return $x^{(k-1)}$ 7 $\mu^{(k-1)} := \mu(f, x^{(k-1)}, \Delta x^{(k-1)})$ 8 $x^{(k)} := x^{(k-1)} + \mu^{(k-1)} \Delta x^{(k-1)}$ 9 $s^{(k)} := x^{(k)} - x^{(k-1)}$ 10 $g^{(k)} := \nabla f(x^{(k)}) - \nabla f(x^{(k-1)})$ 11 $\rho^{(k)} := 1/(g^k)^T s^{(k)}$ 12 return "not converged" 13

Implementations need to ensure that the old vectors $s^{(1:k_0-1)}, g^{(1:k_0-1)}$ do not consume any memory (i.e., are overwritten by the more recent ones).

Summary

- ► Rank One Updates A + ab^T of a matrix A can be inverted fast (in O(n²); if an inverse of A is available; Sherman-Morrison formula).
- Quasi-Newton methods are Newton methods with approximated Hessian.
 - approximations should share properties of the Hessian
 - secant condition, symmetry, positive definiteness
 - ▶ maintain the inverse of the Hessian (not the Hessian itself)
- symmetric rank one update:
 - ▶ only one such rank one update (not even pos.def.)
- BFGS rank two update:
 - one out of many such rank two updates
 - ► pos.def.
- Images of a vector under the inverse Hessian can be computed even without materializing the inverse Hessian:
 - compute the image recursively from the images under the rank one update steps
 - Limited Memory BFGS (L-BFGS)

Further Readings

- Quasi-Newton methods are not covered by Boyd and Vandenberghe [2004]
- ► BFGS:
 - ▶ [Nocedal and Wright, 2006, ch. 6]
 - ► [Griva et al., 2009, ch. 12.3] the update formulas for the inverse are in ch. 13.5.
 - [Sun and Yuan, 2006, ch. 5.1]
- L-BFGS:
 - ▶ [Nocedal and Wright, 2006, ch. 7]
 - ▶ [Griva et al., 2009, ch. 13.5]

References I

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univ Press, 2004.

- Igor Griva, Stephen G. Nash, and Ariela Sofer. *Linear and nonlinear optimization*. Society for Industrial and Applied Mathematics, 2009.
- Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2006.

Wenyu Sun and Ya-Xiang Yuan. Optimization Theory and Methods, Nonlinear Programming. Springer, 2006.