

Modern Optimization Techniques

2. Unconstrained Optimization / 2.5. Subgradient Methods

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute of Computer Science
University of Hildesheim, Germany

Syllabus

Mon. 30.10.	(0)	0. Overview
Mon. 6.11.	(1)	 Theory Convex Sets and Functions
Mon. 13.11. Mon. 20.11. Mon. 27.11. Mon. 4.12. Mon. 11.12. Mon. 18.12.	(2) (3) (4) (5) (6) (7)	 2. Unconstrained Optimization 2.1 Gradient Descent 2.2 Stochastic Gradient Descent 2.3 Newton's Method 2.4 Quasi-Newton Methods 2.5 Subgradient Methods 2.6 Coordinate Descent Christmas Break
Mon. 8.1. Mon. 15.1.	(8) (9)	3. Equality Constrained Optimization 3.1 Duality 3.2 Methods
Mon. 22.1. Mon. 29.1. Mon. 5.2.	(10) (11) (12)	4. Inequality Constrained Optimization4.1 Primal Methods4.2 Barrier and Penalty Methods4.3 Cutting Plane Methods

Jnivers/tage

Outline

- 1. Subgradients
- 2. Subgradient Calculus
- 3. The Subgradient Method
- 4. Convergence

Shivers/total

Outline

- 1. Subgradients
- Subgradient Calculus
- 3. The Subgradient Method
- 4. Convergence

Still desirate

Motivation

- ► If a function is once differentiable we can optimize it using
 - Gradient Descent,
 - Stochastic Gradient Descent,
 - Quasi-Newton Methods

(1st order information)

- ► If a function is twice differentiable we can optimize it using
 - ► Newton's method (2nd order information)
- ► What if the objective function is not differentiable?

1st-Order Condition for Convexity

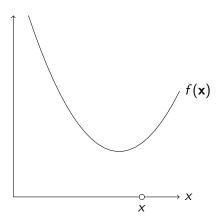
1st-order condition: a differentiable function f is convex iff

- ▶ dom f is a convex set and
- ▶ for all $\mathbf{x}, \mathbf{y} \in \text{dom } f$

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x})$$

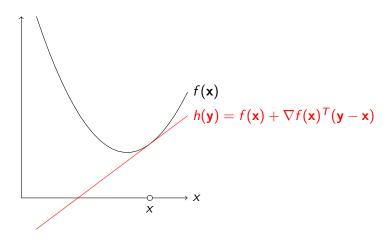
▶ i.e., the tangent (= first order Taylor approximation) of *f* at **x** is a global underestimator

Tangent as a global underestimator

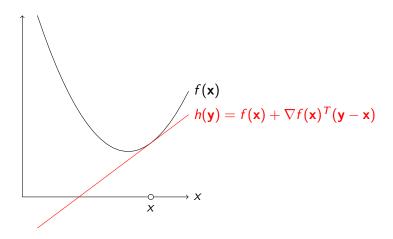


Still dans to

Tangent as a global underestimator



Tangent as a global underestimator



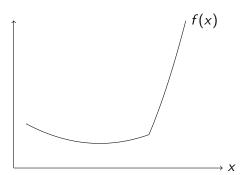
What happens if f is not differentiable?

Jaivers/tage

Subgradient

Given a function f and a point $\mathbf{x} \in \text{dom } f$, $\mathbf{g} \in \mathbb{R}^n$ is called a **subgradient** of f at \mathbf{x} if: the hypersurface with slopes \mathbf{g} through $(\mathbf{x}, f(\mathbf{x}))$ is a global underestimator of f, i.e.

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{g}^T(\mathbf{y} - \mathbf{x}), \text{ for all } \mathbf{y} \in \text{dom } f$$

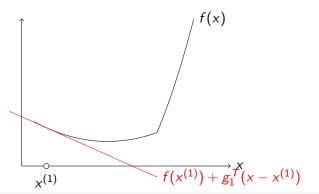


Jrivers/

Subgradient

Given a function f and a point $\mathbf{x} \in \text{dom } f$, $\mathbf{g} \in \mathbb{R}^n$ is called a **subgradient** of f at \mathbf{x} if: the hypersurface with slopes \mathbf{g} through $(\mathbf{x}, f(\mathbf{x}))$ is a global underestimator of f, i.e.

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{g}^T(\mathbf{y} - \mathbf{x}), \text{ for all } \mathbf{y} \in \text{dom } f$$



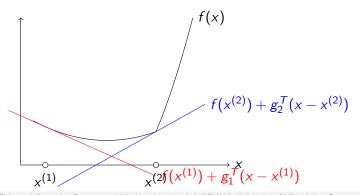
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Shivers/ray

Subgradient

Given a function f and a point $\mathbf{x} \in \text{dom } f$, $\mathbf{g} \in \mathbb{R}^n$ is called a **subgradient** of f at \mathbf{x} if: the hypersurface with slopes \mathbf{g} through $(\mathbf{x}, f(\mathbf{x}))$ is a global underestimator of f, i.e.

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{g}^T(\mathbf{y} - \mathbf{x}), \text{ for all } \mathbf{y} \in \text{dom } f$$



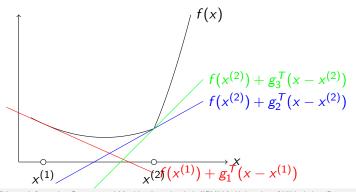
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Jnivers/tag

Subgradient

Given a function f and a point $\mathbf{x} \in \text{dom } f$, $\mathbf{g} \in \mathbb{R}^n$ is called a **subgradient** of f at \mathbf{x} if: the hypersurface with slopes \mathbf{g} through $(\mathbf{x}, f(\mathbf{x}))$ is a global underestimator of f, i.e.

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{g}^T(\mathbf{y} - \mathbf{x}), \quad \text{for all } \mathbf{y} \in \text{dom } f$$



Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Subgradient

In the last example,

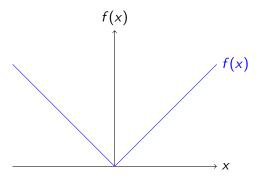
- ▶ $\mathbf{g_1}$ is a subgradient of f at $x^{(1)}$
- ▶ g_2 and g_3 are subgradients of f at $x^{(2)}$

Stivers/top

Example

For $f: \mathbb{R} \to \mathbb{R}$ and f(x) = |x|:

- ▶ For $x \neq 0$ there is one subgradient $g = \nabla f(x) = \text{sign}(x)$
- ▶ For x = 0 the subgradient is $g \in [-1, 1]$

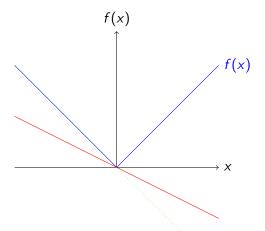


Shiversite.

Example

For $f: \mathbb{R} \to \mathbb{R}$ and f(x) = |x|:

- ▶ For $x \neq 0$ there is one subgradient $g = \nabla f(x) = \text{sign}(x)$
- ▶ For x = 0 the subgradient is $g \in [-1, 1]$

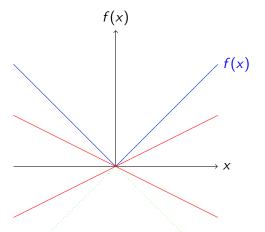


Shiversite.

Example

For $f: \mathbb{R} \to \mathbb{R}$ and f(x) = |x|:

- ▶ For $x \neq 0$ there is one subgradient $g = \nabla f(x) = \text{sign}(x)$
- ▶ For x = 0 the subgradient is $g \in [-1, 1]$



Sniversite,

Subdifferential

Subdifferential $\partial f(\mathbf{x})$: set of all subgradients of f at \mathbf{x}

$$\partial f(\mathbf{x}) := \{ \mathbf{g} \in \mathbb{R}^n \mid f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{g}^T(\mathbf{y} - \mathbf{x}) \ \forall \mathbf{y} \in \text{dom } f \}$$

For a **convex** function f:

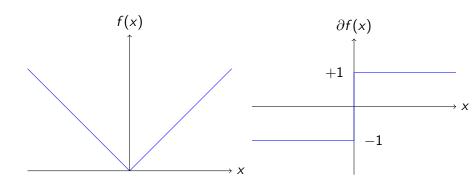
- ▶ subgradients always exist: $\partial f(\mathbf{x}) \neq \emptyset$
- ► f is differentiable at x iff the subdifferential contains a single element (the gradient)

$$f$$
 differentiable at $x \Longleftrightarrow \partial f(x) = \{\nabla f(x)\}$

Sciversite.

Example

For f(x) = |x|:



Subdifferential

For a **non-convex** function f:

- ► subgradients make less sense
 - ► see generalized subgradients, defined on local information

Jniversite.

Outline

- 1. Subgradients
- 2. Subgradient Calculus
- 3. The Subgradient Method
- 4. Convergence

Jainers/

Subgradient Calculus

Assume f convex and $\mathbf{x} \in \text{dom } f$

Some algorithms require only **one** subgradient for optimizing nondifferentiable functions f

Other algorithms, and optimality conditions require the *whole* subdifferential at \mathbf{x}

Tools for finding subgradients:

- ▶ Weak subgradient calculus: finding *one* subgradient $\mathbf{g} \in \partial f(\mathbf{x})$
- ▶ **Strong subgradient calculus**: finding the *whole* subdifferential $\partial f(\mathbf{x})$

Jrivers/tay

Subgradient Calculus

We know that if f is differentiable at \mathbf{x} then $\partial f(\mathbf{x}) = {\nabla f(\mathbf{x})}$ There are a couple of additional rules:

- ► Scaling: for a > 0: $\partial(a \cdot f) = \{a \cdot \mathbf{g} \mid \mathbf{g} \in \partial(f)\}$
- ▶ Addition: $\partial(f_1 + f_2) = \partial f_1 + \partial f_2$
- ▶ **Affine composition**: for h(x) = f(Ax + b) then

$$\partial h(\mathbf{x}) = A^T \partial f(A\mathbf{x} + \mathbf{b})$$

▶ Finite pointwise maximum: if $f(\mathbf{x}) = \max_{m=1...,M} f_m(\mathbf{x})$ then

$$\partial f(\mathbf{x}) = \text{conv} \bigcup_{m: f_m(\mathbf{x}) = f(\mathbf{x})} \partial f_m(\mathbf{x})$$

the subdifferential is the convex hull of the union of subdifferentials of all active functions at \mathbf{x}

Still de alegin

Subgradients / More Examples

$$f(x) := ||x||_2$$

$$\partial f(x) =$$

Subgradients / More Examples

$$f(x) := ||x||_{2}$$

$$\partial f(x) = \begin{cases} \{\frac{x}{||x||_{2}}\}, & \text{if } x \neq 0_{N} \\ \{g \in \mathbb{R}^{N} \mid ||g||_{2} \leq 1\}. & \text{if } x = 0_{N} \end{cases}$$

proof:

$$\begin{split} \partial \big(||x||_2\big) &= \partial \big(\max_{z:||z||_2 \leq 1} z^T x\big) \\ &= \operatorname{conv} \bigcup_{z:||z||_2 \leq 1, z^T x \text{ max.}} z, \quad \text{for } x = 0 \\ &= \operatorname{conv} \bigcup_{z:||z||_2 \leq 1} z \\ &= \{z \in \mathbb{R}^N \mid ||z||_2 < 1\} \end{split}$$

Jrivers/to

Outline

- 1. Subgradients
- Subgradient Calculus
- 3. The Subgradient Method
- 4. Convergence

Shiversites.

Descent Direction

- ► idea:
 - choose an arbitrary subgradient $g \in \partial f$
 - use its negative -g as next direction
- negative subgradients are in general no descent directions
 - example:

$$f(x) := |x|$$

$$x^{(0)} := 0$$

Still ersitate

Optimality Condition

For a convex $f: \mathbb{R}^n \to \mathbb{R}$:

$$\mathbf{x}^*$$
 is a global minimizer \Leftrightarrow $\mathbf{0}$ is a subgradient of f at \mathbf{x}^*

$$f(\mathbf{x}^*) = \min_{\mathbf{x} \in \text{dom } f} f(\mathbf{x}) \qquad \mathbf{0} \in \partial f(\mathbf{x}^*)$$

Proof:

If **0** is a subgradient of f at \mathbf{x}^* , then for all $\mathbf{y} \in \mathbb{R}^n$:

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \mathbf{0}^T (\mathbf{y} - \mathbf{x}^*)$$

 $f(\mathbf{y}) \ge f(\mathbf{x}^*)$

Gradient Descent (Review)

```
1 min-gd(f, \nabla f, x^{(0)}, \mu, \epsilon, K):

2 for k := 1, \dots, K:

3 \Delta x^{(k-1)} := -\nabla f(x^{(k-1)})

4 if ||\nabla f(x^{(k-1)})||_2 < \epsilon:

5 return x^{(k-1)}

6 \mu^{(k-1)} := \mu(f, x^{(k-1)}, \Delta x^{(k-1)})

7 x^{(k)} := x^{(k-1)} + \mu^{(k-1)} \Delta x^{(k-1)}

8 return "not converged"
```

where

- f objective function
- $ightharpoonup \nabla f$ gradient of objective function f
- ► x⁽⁰⁾ starting value
- $\blacktriangleright \mu$ step length controller
- ightharpoonup ϵ convergence threshold for gradient norm
- K maximal number of iterations

Subgradient Method

```
1 min-subgrad(f, \partial f, x^{(0)}, \mu, K):
 2 x_{\text{best}}^{(0)} := x^{(0)}
 3 for k := 1, ..., K:
 4 if 0 \in \partial f(x^{(k-1)}):
               return x_{host}^{(k-1)}
            choose g \in \partial f(x^{(k-1)}) arbitrarily
       \Delta x^{(k-1)} := -\varphi
 8 \mu^{(k-1)} := \mu_{k-1}
     x^{(k)} := x^{(k-1)} + \mu^{(k-1)} \Delta x^{(k-1)}
           x_{\text{best}}^{(k)} := \begin{cases} x^{(k)}, & \text{if } f(x^{(k)}) < f(x_{\text{best}}^{(k-1)}) \\ x_{\text{total}}^{(k-1)}, & \text{else} \end{cases}
10
         return "not converged"
11
```

where

 $\blacktriangleright \quad \mu \in \mathbb{R}^*$ step length schedule

Jnivers/tage

Outline

- 1. Subgradients
- 2. Subgradient Calculus
- 3. The Subgradient Method
- 4. Convergence

Still deship

Slowly Diminishing Stepsizes

Proof of convergence requires slowly diminishing stepsizes:

$$\lim_{k \to \infty} \mu^{(k)} = 0, \quad \sum_{j=0}^{\infty} \mu^{(j)} = \infty, \quad \sum_{j=0}^{\infty} (\mu^{(j)})^2 < \infty$$

for example:

$$\mu^{(k)} := \frac{1}{k+1}$$

but not:

- constant stepsizes $\mu^{(k)} := \mu \in \mathbb{R}$
- ▶ too fast shrinking stepsizes, e.g., $\mu^{(k)} := \frac{1}{(k+1)^2}$
- ▶ adaptive stepsize chosen by a step length controller

Jrivers/to

Convergence

Theorem (convergence of subgradient method)

Under the assumptions

- 1. $f: X \to \mathbb{R}$ is convex, $X \subseteq \mathbb{R}^n$ is open
- II. f is Lipschitz-continuous with constant G > 0, i.e.

$$|f(\mathbf{x}) - f(\mathbf{y})| \le G||\mathbf{x} - \mathbf{y}||_2, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$

- ▶ Equivalently: $||\mathbf{g}||_2 \le G$ for any subgradient of f at any \mathbf{x}
- III. slowly diminishing stepsizes $\mu^{(k)}$, i.e.,

$$\lim_{k \to \infty} \mu^{(k)} = 0, \quad \sum_{j=0}^{\infty} \mu^{(j)} = \infty, \quad \sum_{j=0}^{\infty} (\mu^{(j)})^2 < \infty$$

the subgradient method converges and

$$f_{\text{best}}^{(k)} - f(\mathbf{x}^*) \le \frac{||\mathbf{x}^{(0)} - \mathbf{x}^*||^2 + G^2 \sum_{j=0}^k (\mu^{(j)})^2}{2 \sum_{i=0}^k \mu^{(j)}}$$

Convergence / Proof (1/2)

$$\begin{aligned} ||\mathbf{x}^{(k+1)} - \mathbf{x}^*||_2^2 \\ &= ||\mathbf{x}^{(k)} - \mu^{(k)}\mathbf{g}^{(k)} - \mathbf{x}^*||_2^2 \\ &= ||\mathbf{x}^{(k)} - \mathbf{x}^*||_2^2 - 2\mu^{(k)}(\mathbf{g}^{(k)})^T(\mathbf{x}^{(k)} - \mathbf{x}^*) + (\mu^{(k)})^2||\mathbf{g}^{(k)}||_2^2 \\ &\leq ||\mathbf{x}^{(k)} - \mathbf{x}^*||_2^2 - 2\mu^{(k)}(f(\mathbf{x}^{(k)}) - f(\mathbf{x}^*)) + (\mu^{(k)})^2||\mathbf{g}^{(k)}||_2^2 \\ &\leq ||\mathbf{x}^{(0)} - \mathbf{x}^*||_2^2 - 2\sum_{j=0}^k \mu^{(j)}(f(\mathbf{x}^{(j)}) - f(\mathbf{x}^*)) + \sum_{j=0}^k (\mu^{(j)})^2||\mathbf{g}^{(j)}||_2^2 \\ &\leq ||\mathbf{x}^{(0)} - \mathbf{x}^*||_2^2 - 2\sum_{j=0}^k \mu^{(j)}(f(\mathbf{x}^{(j)}) - f(\mathbf{x}^*)) + G\sum_{j=0}^k (\mu^{(j)})^2 \end{aligned}$$

Convergence / Proof (2/2)

$$f_{\text{best}}^{(k)} - f(\mathbf{x}^*) \leq \frac{\sum_{j=0}^{k} (f_{\text{best}}^{(k)} - f(\mathbf{x}^*)) \mu^{(j)}}{\sum_{j=0}^{k} \mu^{(j)}}$$

$$\leq \frac{\sum_{j=0}^{k} (f(\mathbf{x}^{(j)}) - f(\mathbf{x}^*)) \mu^{(j)}}{\sum_{j=0}^{k} \mu^{(j)}}$$

$$\leq \frac{2 \sum_{j=0}^{k} (f(\mathbf{x}^{(j)}) - f(\mathbf{x}^*)) \mu^{(j)} + ||\mathbf{x}^{(k+1)} - \mathbf{x}^*||_2^2}{2 \sum_{j=0}^{k} \mu^{(j)}}$$

$$\leq \frac{||\mathbf{x}^{(0)} - \mathbf{x}^*||_2^2 + G \sum_{j=0}^{k} (\mu^{(j)})^2}{2 \sum_{j=0}^{k} \mu^{(j)}}$$

$$\lim_{k \to \infty} f_{\text{best}}^{(k)} - f(\mathbf{x}^*) \le \lim_{k \to \infty} \frac{||\mathbf{x}^{(0)} - \mathbf{x}^*||_2^2 + G \sum_{j=0}^k (\mu^{(j)})^2}{2 \sum_{j=0}^k \mu^{(j)}} = \frac{1}{||\mathbf{x}^{(0)} - \mathbf{x}^*||_2^2 + G \sum_{j=0}^k (\mu^{(j)})^2}{2 \sum_{j=0}^k \mu^{(j)}}$$

Further Readings

- Subgradient methods are not covered by Boyd and Vandenberghe [2004]
- Subgradients:
 - ► [Bertsekas, 1999, ch. B.5 and 6.1]
- ► Subgradient methods:
 - ► [Bertsekas, 1999, ch. 6.3.1]

Stildeshell

References I

Dimitri P. Bertsekas. Nonlinear Programming. Springer, 1999.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univ Press, 2004.

Example: Text Classification

Features A: normalized word frequecies in text documents

Category y: topic of the text documents

$$A_{m,n} = \begin{pmatrix} 1 & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ 1 & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{m,1} & a_{m,2} & a_{m,3} & a_{m,4} \end{pmatrix} \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

$$\hat{y}_i = \sigma(\mathbf{x}^T \mathbf{a_i})$$

Sniversite.

Text Classification: L1-Regularized Logistic Regression

For $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{y} \in \mathbb{R}^m$ and $\mathbf{A} \in \mathbb{R}^{m \times n}$ we have the following problem

minimize
$$-\sum_{i=1}^{m} y_i \log \sigma(\mathbf{x}^T \mathbf{a_i}) + (1 - y_i) \log (1 - \sigma(\mathbf{x}^T \mathbf{a_i})) + \lambda ||\mathbf{x}||_1$$

Which can be rewritten as:

$$\text{minimize} \quad -\sum_{i=1}^m y_i \log \sigma(\mathbf{x}^T \mathbf{a_i}) + (1-y_i) \log(1-\sigma(\mathbf{x}^T \mathbf{a_i})) + \lambda \sum_{k=1}^n |x_k|$$

f is convex and non-smooth

Example: L1-Regularized Logistic Regression

The subgradients of

$$f(\mathbf{x}) = -\sum_{i=1}^{m} y_i \log \sigma(\mathbf{x}^T \mathbf{a_i}) + (1 - y_i) \log(1 - \sigma(\mathbf{x}^T \mathbf{a_i})) + \lambda ||\mathbf{x}||_1 \text{ are:}$$

$$\mathbf{g} = -\mathbf{A}^T(\mathbf{y} - \hat{\mathbf{y}}) + \lambda \mathbf{s}$$

where $\mathbf{s} \in \partial ||\mathbf{x}||_1$, i.e.:

- $s_k = \operatorname{sign}(\mathbf{x}_k)$ if $\mathbf{x}_k \neq 0$
- ► $s_k \in [-1, 1]$ if $\mathbf{x}_k = 0$

Example - The algorithm

For $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{y} \in \mathbb{R}^m$ and $\mathbf{A} \in \mathbb{R}^{m \times n}$ we have the following the problem

$$\begin{aligned} & \text{minimize} & & & -\sum_{i=1}^m y_i \log \sigma(\mathbf{x}^T \mathbf{a_i}) + (1-y_i) \log(1-\sigma(\mathbf{x}^T \mathbf{a_i})) + \lambda \sum_{k=1}^n |x_k| \end{aligned}$$

- 1. Start with an initial solution $\mathbf{x}^{(0)}$
- 2. $t \leftarrow 0$
- 3. $f_{\text{hest}} \leftarrow f(\mathbf{x}^{(0)})$

where $\mathbf{s} \in \partial ||\mathbf{x}||_1$, i.e.:

4. Repeat until convergence

- $ightharpoonup s_k = \operatorname{sign}(\mathbf{x}_k) \text{ if } \mathbf{x}_k \neq 0$
- 4.1 $\mathbf{x}^{(k+1)} \leftarrow \mathbf{x}^{(k)} \mu^{(k)} (-\mathbf{A}^T (\mathbf{y} \hat{\mathbf{y}}) + \lambda \mathbf{s})$ $\mathbf{s}_k \in [-1, 1]$ if $\mathbf{x}_k = 0$

- $4.2 \ t \leftarrow t + 1$
- 4.3 $f_{\text{best}} \leftarrow \min(f(\mathbf{x}^{(k)}), f_{\text{best}})$
- 5. Return f_{hest}