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Syllabus
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2. Unconstrained Optimization
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Mon. 11.12. (6) 2.5 Subgradient Methods
Mon. 18.12. (7) 2.6 Coordinate Descent
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Mon. 8.1. (8) 3.1 Duality
Mon. 15.1. (9) 3.2 Methods
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Mon. 22.1. (10) 4.1 Primal Methods
Mon. 29.1. (11) 4.2 Barrier and Penalty Methods
Mon. 5.2. (12) 4.3 Cutting Plane Methods
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Modern Optimization Techniques

Constrained Optimization Problems

A constrained optimization problem has the form:

minimize f (x)

subject to gp(x) = 0, p = 1, . . . ,P

hq(x) ≤ 0, q = 1, . . . ,Q

where:

I f : RN → R is called the objective or cost function,

I g1, . . . , hP : RN → R are called equality constraints,

I h1, . . . , hQ : RN → R are called inequality constraints,

I a feasible, optimal x∗ exists
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Constrained Optimization Problems
A convex constrained optimization problem:

minimize f (x)

subject to gp(x) = 0, p = 1, . . . ,P

hq(x) ≤ 0, q = 1, . . . ,Q

is convex iff:
I f , the objective function is convex,
I g1, . . . , gP the equality constraint functions are affine:

gp(x) = aT
p x− bp, and

I h1, . . . , hQ the inequality constraint functions are convex.

minimize f (x)

subject to aT
p x− bp = 0, p = 1, . . . ,P

hq(x) ≤ 0, q = 1, . . . ,Q
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Modern Optimization Techniques

Linear Programming
A convex problem with an
I affine objective and
I affine constraint functions

is called Linear Program (LP).

Standard form LP:

minimize cTx

subject to aT
p x = bp, p = 1, . . . ,P

x ≥ 0

Inequality form LP:

minimize cTx

subject to aT
q x ≤ bq, q = 1, . . . ,Q

I No analytical solution
I There are specialized algorithms available

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 18



Modern Optimization Techniques

Quadratic Programming

A convex problem with

I a quadratic objective and

I affine constraint functions

is called Quadratic Program (QP).

Inequality form LP:

minimize
1

2
xTCx + cTx

subject to aT
q x ≤ bq, q = 1, . . . ,Q

where:

I C � 0 pos.def.,

I C = 0, a special case: linear programs.
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Example: Maximum Margin Separating Hyperplanes
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Modern Optimization Techniques

Example: Support Vector Machines

If the instances are not completely separable,
we can allow some of them to be on the wrong side of the decision
boundary.

The closer the “wrong” points are to the boundary,
the better (modeled by slack variables ξi ).

minimize
1

2
||x||2 + γ

I∑
i=1

ξi

subject to yi (a0 + xTai) ≥ 1− ξi i = 1, . . . , I

ξi ≥ 0 i = 1, . . . , I
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Modern Optimization Techniques

Lagrangian

Given a constrained optimization problem in the standard form:

minimize f (x)

subject to gp(x) = 0, p = 1, . . . ,P

hq(x) ≤ 0, q = 1, . . . ,Q

We can put the objective function and the constraints in a joint function
called primal Lagrangian:

f (x) +
P∑

p=1

νp gp(x) +
Q∑

q=1

λq hq(x)
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Modern Optimization Techniques

Primal Lagrangian

The primal Lagrangian of a constrained optimization problem is a
function L : RN × RP × RQ → R:

L(x, ν, λ) := f (x) +
P∑

p=1

νp gp(x) +
Q∑

q=1

λq hq(x)

where:
I νp and λq are called Lagrange multipliers.

I νp is the Lagrange multiplier associated with the constraint gp(x) = 0
I λq is the Lagrange multiplier associated with the constraint hq(x) ≤ 0.
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Modern Optimization Techniques

Dual Lagrangian
Be D the domain of the problem, the dual Lagrangian of a constrained
optimization problem is a function g : RP × RQ → R:

g(ν, λ) := inf
x∈D

L(x, ν, λ)

= inf
x∈D

f (x) +
P∑

p=1

νp gp(x) +
Q∑

q=1

λq hq(x)


I g is concave.

I as infimum over concave (affine) functions

I for non-negative λq, g is a lower bound on f (x∗):

g(ν, λ) ≤ f (x∗) for λ ≥ 0
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Modern Optimization Techniques

Dual Lagrangian / Proof
Proof of the lower bound property of:

g(ν, λ) := inf
x∈D

L(x, ν, λ)

= inf
x∈D

f (x) +
P∑

p=1

νp gp(x) +
Q∑

q=1

λq hq(x)


for any feasible x we have:

I gp(x) = 0

I hq(x) ≤ 0

thus, with λ ≥ 0:

f (x) ≥ L(x, ν, λ) ≥ inf
x′∈D

L(x′, ν, λ) = g(ν, λ)

minimizing over all feasible x, we have f (x∗) ≥ g(ν, λ)
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Modern Optimization Techniques

Least-norm solution of linear equations

minimize xTx

subject to Ax = b

I Lagrangian: L(x, ν) = xTx + νT (Ax− b)
I Dual Lagrangian:

I minimize L over x:

∇xL(x, ν) = 2x + ATν = 0

x = −1

2
ATν

I Substituting x in L we get g :

g(ν) = −1

4
νTAATν − bTν
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Modern Optimization Techniques

The dual problem

Once we know how to compute the dual, we are interested in computing
the best lower bound on f (x∗):

maximize g(ν, λ)

subject to λ ≥ 0

where:

I this is a convex optimization problem (g is concave)

I d∗ is the optimal value of g
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Modern Optimization Techniques

Weak and Strong Duality

Say p∗ is the optimal value of f
and d∗ is the optimal value of g

Weak duality: d∗ ≤ p∗

I always holds

I can be useful to find informative lower bounds for difficult problems

Strong duality: d∗ = p∗

I does not always hold

I but holds for a range of convex problems

I properties that guarantee strong duality are called
constraint qualifications
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Modern Optimization Techniques

Slater’s Condition

If the following primal problem

minimize f (x)

subject to Ax = b

hq(x) ≤ 0, q = 1, . . . ,Q

is:

I convex and

I strictly feasible, i.e.

∃x : Ax = b and hq(x)< 0, q = 1, . . . ,Q

then strong duality holds for this problem.
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Modern Optimization Techniques

Duality Gap

How close is the value of the dual lagrangian to the primal objective?

Given a primal feasible x and a dual feasible ν, λ,
the duality gap is given by:

f (x)− g(ν, λ)

Since g(ν, λ) is a lower bound on f :

f (x)− f (x∗) ≤ f (x)− g(ν, λ)

If the duality gap is zero, then x is primal optimal.

I This is a useful stopping criterion:
if f (x)− g(ν, λ) ≤ ε, then we are sure that f (x)− f (x∗) ≤ ε
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Complementary Slackness
Assume strong duality:

I x∗ is primal optimal and
I (ν∗, λ∗) is dual optimal.

f (x∗) = g(ν∗, λ∗) = inf
x∈D

f (x) +
P∑

p=1

ν∗p gp(x) +
Q∑

q=1

λ∗q hq(x)


≤f (x∗) +

P∑
p=1

ν∗p gp(x∗) +
Q∑

q=1

λ∗q hq(x∗)

≤f (x∗)

hence

f (x∗) +
P∑

p=1

ν∗p gp(x∗) +
Q∑

q=1

λ∗q hq(x∗) = f (x∗)

and x∗ minimizes L(x, λ∗, ν∗)
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Complementary Slackness
Assume strong duality:

I x∗ is primal optimal and

I (ν∗, λ∗) is dual optimal.

f (x∗) +
P∑

p=1

ν∗p gp(x∗) +
Q∑

q=1

λ∗q hq(x∗) = f (x∗)

 complementary slackness:

λ∗q hq(x∗) = 0, q = 1, . . . ,Q

which means that

I If λ∗q > 0, then hq(x∗) = 0

I If hq(x∗) < 0, then λq = 0
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Karush-Kuhn-Tucker (KKT) Conditions
The following conditions on x, ν, λ are called the KKT conditions:

1. primal feasibility: gp(x) = 0 and hq(x) ≤ 0, ∀p, q
2. dual feasibility: λ ≥ 0

3. complementary slackness: λq hq(x) = 0, ∀q

4. stationarity: ∇f (x) +

p∑
p=1

νp∇gp(x) +
Q∑

q=1

λq∇hq(x) = 0

If strong duality holds and x, λ, ν are optimal,
then they must satisfy the KKT conditions.

If x, λ, ν satisfy the KKT conditions,
then x is the primal solution and (λ, ν) is the dual solution
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