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Equality Constrained Optimization Problems

A constrained optimization problem has the form:

minimize f (x)

subject to gp(x) = 0, p = 1, . . . ,P

Where:

I f : RN → R objective function

I g1, . . . , gp : RN → R equality constraints

I a feasible, optimal x∗ exists
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Convex Equality Constrained Optimization Problems

An equality constrained optimization problem:

minimize f (x)

subject to gp(x) = 0, p = 1, . . . ,P

is convex iff:

I f is convex

I h1, . . . , hP are affine

minimize f (x)

subject to Ax = a, A ∈ RP×N , a ∈ RP
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Optimality criterion

Given a convex equality constrained optimization problem

minimize f (x)

subject to Ax = a, A ∈ RP×N , a ∈ RP

Its Lagrangian is given by:

L(x, ν) = f (x) + νT (Ax− a)

with derivative:

∇xL(x, ν) = ∇xf (x) + ATν
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Optimality criterion

Given a convex equality constrained optimization problem

minimize f (x)

subject to Ax = a, A ∈ RP×N , a ∈ RP

The optimal solution x∗ must fulfill the KKT conditions:

I Since there are no inequality constraints,
stroke-through conditions are irrelevant.
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Optimality criterion
Given a convex equality constrained optimization problem

minimize f (x)

subject to Ax = a, A ∈ RP×N , a ∈ RP

The optimal solution x∗ must fulfill the KKT conditions:

1. primal feasibility: gp(x) = 0 and hq(x) ≤ 0, ∀p, q
2. dual feasibility: λ ≥ 0

3. complementary slackness: λq hq(x) = 0, ∀q

4. stationarity: ∇f (x) +

p∑
p=1

νp∇gp(x) +
Q∑

q=1

λq∇hq(x) = 0

I Since there are no inequality constraints,
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Optimality criterion

Given a convex equality constrained optimization problem

minimize f (x)

subject to Ax = a, A ∈ RP×N , a ∈ RP

The optimal solution x∗ must fulfill the KKT conditions:

1. primal feasibility: Ax = a

2. stationarity: ∇f (x) + ATν∗ = 0

I i.e., a feasible x∗ is optimal,
if there exists a ν∗ with ∇f (x∗) + ATν∗ = 0
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Example
Given the following problem:

minimize (x1 − 2)2 + 2(x2 − 1)2 − 5

subject to x1 + 4x2 = 3

optimality condition:

1. primal feasibility: Ax = a

2. stationarity: ∇f (x) + ATν∗ = 0

instantiated for the example problem:

1. primal feasibility: x1 + 4x2 = 3

2. stationarity:

(
2x1 − 4
4x2 − 4

)
+

(
1
4

)T

v = 0
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minimize (x1 − 2)2 + 2(x2 − 1)2 − 5

subject to x1 + 4x2 = 3

instantiated for the example problem:

1. primal feasibility: x1 + 4x2 = 3

2. stationarity:

(
2x1 − 4
4x2 − 4

)
+

(
1
4

)T

v = 0

can be simplified to: 2 0 1
0 4 4
1 4 0

x1

x2

ν

 =

4
4
3



with solution x1 =
5

3
, x2 =

1

3
, ν =

2

3
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Generic Handling of Equality Constraints

Two generic ways to handle equality constraints:

1. Eliminate affine equality constraints
I and then use any unconstrained optimization method.
I limited to affine equality constraints

2. Represent equality constraints as inequality constraints
I and then use any optimization method for inequality constraints.
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1. Eliminating Affine Equality Constraints

Reparametrize feasible values:

{x | Ax = a} = x0 + {x | Ax = 0} = x0 + {Fz | z ∈ RN−P}

with

I x0 ∈ RN : any feasible value: Ax0 = a

I F ∈ RN×(N−P) composed of N − P basis vectors of the nullspace of
A.

I AF = 0

equality constrained problem:

min
x

f (x)

subject to Ax = a

⇐⇒
x∗=x0+Fz∗

reduced unconstrained problem:

min
z

f̃ (z) := f (x0 + Fz)
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1. Eliminating Affine Eq. Constr. / KKT Conditions

x∗ := x0 + Fz∗ fulfills the KKT conditions with

ν∗ := −(AAT )−1A∇f (x∗)

Proof:
i. primal feasibility: Ax∗ = Ax0 + AFz∗ = a + 0 = a

ii. stationarity: ∇f (x∗) + ATν∗
?
= 0(

FT

A

)
(∇f (x∗) + ATν∗) =

(
FT∇f (x∗)− FTAT (AAT )−1A∇f (x∗)
A∇f (x∗)− AAT (AAT )−1A∇f (x∗)

)
=

(
∇f̃ (z∗)− (AF )T (. . .)
A∇f (x∗)− A∇f (x∗)

)
=

(
0
0

)
and as

(
FT

A

)
has full rank / is invertible

∇f (x∗) + ATν∗ = 0
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2. Reducing to Inequality Constraints

I P equality constraints obviously can be represented as
2P inequality constraints:

gp(x) = 0, p = 1, . . . ,P ⇐⇒ −gp(x) ≤ 0, p = 1, . . . ,P

gp(x) ≤ 0, p = 1, . . . ,P

I Then any method for inequality constraints can be used
(see next chapter).
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Quadratic Programming

minimize
1

2
xTPx + qTx + r

subject to Ax = a

with given P ∈ RN×N pos. semidef., q ∈ RN , r ∈ R.

Optimality Condition: (
P AT

A 0

)(
x∗

ν∗

)
=

(
−q

a

)
I KKT Matrix

I Solution is the inverse of the KKT matrix times the right hand side of
the system
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Quadratic Programming / Nonsingularity of KKT Matrix
The KKT matrix (

P AT

A 0

)
is nonsingular iff P is pos.def. on the nullspace of A:

Ax = 0, x 6= 0 ⇒ xTPx > 0

Proof:(
P AT

A 0

)(
x
ν

)
= 0  (i) Px + ATν = 0, (ii) Ax = 0

 
(i)

0 = xT (Px + ATν) = xTPx + (Ax)Tν =
(ii)

xTPx  
ass.

x = 0

 
(i)

ATν = 0  ν = 0 as A has full rank
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Example

minimize (x1 − 2)2 + 2(x2 − 1)2 − 5

subject to x1 + 4x2 = 3

is an example for a quadratic programming problem:

f (x) = (x1 − 2)2 + 2(x2 − 1)2 − 5

= x2
1 − 4x1 + 4 + 2x2

2 − 2x2 + 1− 5

= x2
1 + 2x2

2 − 4x1 − 2x2

P :=

(
2 0
0 4

)
, q :=

(
−4
−2

)
, r := 0

A :=
(
1 4

)
, a :=

(
3
)
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Descent step for equality constrained problems

Given the following problem:

minimize f (x)

subject to Ax = a

we want to start with a feasible solution x and
compute a step ∆x such that

I f decreases: f (x +∆x) ≤ f (x)

I yields feasible point: A(x +∆x) = a

which means solving the following problem for ∆x:

minimize f (x +∆x)

subject to A(x +∆x) = a
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Newton Step

The Newton Step is the solution for the minimization of the second order
approximation of f :

minimize f̂ (x +∆x) := f (x) +∇f (x)T∆x +
1

2
∆xT∇2f (x)∆x

subject to A(x +∆x) = a

which can be simplified to

A∆x = 0

if the last iterate is feasible already

Ax = a
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Newton Step
The Newton Step is the solution for the minimization of the second order
approximation of f :

minimize f̂ (x +∆x) := f (x) +∇f (x)T∆x +
1

2
∆xT∇2f (x)∆x

subject to A∆x = 0

This is a quadratic programming problem with:

I P := ∇2f (x)

I q := ∇f (x)

I r := f (x)

and thus optimality conditions:

I A∆x = 0

I ∇∆xf̂ (x +∆x) + ATν = ∇f (x) +∇2f (x)∆x + ATν = 0
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Newton Step

The Newton Step is the solution for the minimization of the second order
approximation of f :

minimize f̂ (x +∆x) := f (x) +∇f (x)T∆x +
1

2
∆xT∇2f (x)∆x

subject to A∆x = 0

Is computed by solving the following system:(
∇2f (x) AT

A 0

)(
∆x
ν

)
=

(
−∇f (x)

0

)
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Newton’s Method for Unconstrained Problems (Review)

1 min−newton(f ,∇f ,∇2f , x (0), µ, ε,K ):
2 for k := 1, . . . ,K :

3 ∆x (k−1) := −∇2f (x (k−1))−1∇f (x (k−1))

4 if −∇f (x (k−1))T∆x (k−1) < ε:

5 return x (k−1)

6 µ(k−1) := µ(f , x (k−1),∆x (k−1))

7 x (k) := x (k−1) + µ(k−1)∆x (k−1)

8 return ”not converged”

where
I f objective function
I ∇f , ∇2f gradient and Hessian of objective function f
I x(0) starting value
I µ step length controller
I ε convergence threshold for Newton’s decrement
I K maximal number of iterations
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Newton’s Method for Affine Equality Constraints

1 min−newton−eq(f ,∇f ,∇2f ,A, x (0), µ, ε,K ):
2 for k := 1, . . . ,K :

3

(
∆x (k−1)

ν(k−1)

)
:= −

(
∇2f (x (k−1)) AT

A 0

)−1(∇f (x (k−1))
0

)
4 if −∇f (x (k−1))T∆x (k−1) < ε:

5 return x (k−1)

6 µ(k−1) := µ(f , x (k−1),∆x (k−1))

7 x (k) := x (k−1) + µ(k−1)∆x (k−1)

8 return ”not converged”

where

I A affine equality constraints

I x(0) feasible starting value (i.e., Ax(0) = b)
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Convergence

I The iterates x (k) are the same as those of the Newton algorithm for
the eliminated unconstrained problem

f̃ (z) := f (x0 + Fz), x (k) = x0 + Fz(k)

I as the Newton steps ∆x = F∆z coincide
as they fulfil the KKT conditions of the quadratic approximation

I Thus convergence is the same as in the unconstrained case.
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Newton Step at Infeasible Points
If x is infeasible, i.e. Ax 6= a, we have the following problem:

minimize f̂ (x +∆x) = f (x) +∇f (x)T∆x +
1

2
∆xT∇2f (x)∆x

subject to A∆x = a− Ax

which can be solved for ∆x by solving the following system of equations:(
∇2f (x) AT

A 0

)(
∆x
ν

)
= −

(
∇f (x)
Ax− a

)

I An undamped iteration of this algorithm yields a feasible point.

I With step length control: points will stay infeasible in general.
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Step Length Control

I ∆x is not necessarily a descent direction for f

I but (∆x ν) is a descent direction for the norm of the
primal-dual residuum:

r(x , ν) := ||
(
∇f (x) + ATν

Ax − b

)
||

I The Infeasible Start Newton algorithm requires a proper convergence
analysis (see [Boyd and Vandenberghe, 2004, ch. 10.3.3])

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 26



Modern Optimization Techniques

Newton’s Method for Lin. Eq. Cstr. / Infeasible Start
1 min−newton−eq−inf(f ,∇f ,∇2f ,A, b, x (0), µ, ε,K ):

2 ν(0) := solve(ATν = −∇2f (x (0))−∇f (x (0)))
3 for k := 1, . . . ,K :

4 if r(x (k−1), ν(k−1)) < ε:

5 return x (k−1)

6

(
∆x (k−1)

∆ν(k−1)

)
:= −

(
∇2f (x (k−1)) AT

A 0

)−1(∇f (x (k−1))
Ax (k−1) − b

)
7 µ(k−1) := µ(r ,

(
x (k−1)

nu(k−1)

)
,

(
∆x (k−1)

∆ν(k−1)

)
)

8 x (k) := x (k−1) + µ(k−1)∆x (k−1)

9 ν(k) := ν(k−1) + µ(k−1)∆ν(k−1)

10 return ”not converged”

where
I A, b affine equality constraints
I x(0) possibly infeasible starting value (i.e., Ax(0) 6= b)
I r is the norm of the primal-dual residuum (see previous slide)
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Solving KKT systems of equations

The KKT systems are systems of equations that look like this:(
H AT

A 0

)(
v
w

)
= −

(
g
h

)
Standard methods for solving it:

I LDLT factorization

I Elimination (might require inverting H)
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Summary
I Optimal solutions for equality constrained optimization problems

I have to fulfill KKT conditions:

1. primal feasibility: gp(x) = 0, p = 1, . . . ,P

2. stationarity: ∇f (x) +
P∑

p=1

νp∇gp(x) = 0

I for convex equality contrained problems,

1. primal feasibility: Ax = a

2. stationarity: ∇f (x) + ATν = 0

I Equality problems can be handled two ways:
1. if they are affine, eliminate them.

I reparametrize feasible values

{x | Ax = a} = x0 + {x | Ax = 0} = x0 + {Fz | z ∈ RN−P}
I then solve reduced unconstrained problem in z

2. represent them as two inequality constraints each.
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Summary (2/2)
I quadratic programming: affine constrained quadratic objectives can

be optimized by solving a linear system of equations.(
P AT

A 0

)(
x∗

ν∗

)
=

(
−q

a

)
I Equality constraints can be integrated into Newton’s method by

extending the linear system for the descent direction:(
∇2f (x) AT

A 0

)(
∆x
ν

)
=

(
−∇f (x)

0

)
I if the last iterate was already feasible

I Alternatively, for infeasible starting points,(
∇2f (x) AT

A 0

)(
∆x
ν

)
= −

(
∇f (x)
Ax− a

)
I either an undamped step to become feasible or
I damped steps to reduce the primal-dual residuum
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Further Readings

I equality constrained problems, quadratic programming, Newton’s
method for equality constrained problems:

I [Boyd and Vandenberghe, 2004, ch. 10]
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