Modern Optimization Techniques

4. Inequality Constrained Optimization / 4.2. Barrier and Penalty Methods

Lars Schmidt-Thieme
Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science
University of Hildesheim, Germany

Syllabus

Mon. 30.10.	(0)	0. Overview
		1. Theory
Mon. 6.11.	(1)	1. Convex Sets and Functions
		2. Unconstrained Optimization
Mon. 13.11.	(2)	2.1 Gradient Descent
Mon. 20.11.	(3)	2.2 Stochastic Gradient Descent
Mon. 27.11.	(4)	2.3 Newton's Method
Mon. 4.12.	(5)	2.4 Quasi-Newton Methods
Mon. 11.12.	(6)	2.5 Subgradient Methods
Mon. 18.12.	(7)	2.6 Coordinate Descent - Christmas Break -
Mon. 8.1.	(8)	3. Equality Constrained Optimization 3.1 Duality
Mon. 15.1.	(9)	3.2 Methods
		4. Inequality Constrained Optimization
Mon. 22.1.	(10)	4.1 Primal Methods
Mon. 29.1.	(11)	4.2 Barrier and Penalty Methods
Mon. 5.2.	(12)	4.3 Cutting Plane Methods

Outline

1. Inequality Constrained Minimization Problems
2. Barrier Methods
3. Penalty Methods
4. Central Path
5. Convergence Analysis
6. Feasibility and Phase I Methods

Outline

1. Inequality Constrained Minimization Problems

2. Barrier Methods

3. Penalty Methods
4. Central Path
5. Convergence Analysis
6. Feasibility and Phase I Methods

Inequality Constrained Minimization (ICM) Problems

A problem of the form:

$$
\begin{aligned}
\underset{x \in \mathbb{R}^{N}}{\arg \min } f(\mathbf{x}) & \\
\text { subject to } & g_{p}(\mathbf{x})=0, \quad p=1, \ldots, P \\
& h_{q}(\mathbf{x}) \leq 0, \quad q=1, \ldots, Q
\end{aligned}
$$

where:

- $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ convex and twice differentiable
- $g_{1}, \ldots, g_{P}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ convex and twice differentiable
- $h_{1}, \ldots, h_{Q}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ convex and twice differentiable
- A feasible optimal \mathbf{x}^{*} exists, $p^{*}:=f\left(\mathbf{x}^{*}\right)$

Inequality Constrained Minimization (ICM) Problems / /inesh Affine Constraints

$$
\begin{aligned}
\underset{x \in \mathbb{R}^{N}}{\arg \min } & f(\mathbf{x}) \\
\text { subject to } & A \mathbf{x}-a=0 \\
& B \mathbf{x}-b \leq 0
\end{aligned}
$$

where:

- $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ convex and twice differentiable
- $A \in \mathbb{R}^{P \times N}, a \in \mathbb{R}^{P}: P$ affine equality constraints
- $B \in \mathbb{R}^{Q \times N}, b \in \mathbb{R}^{Q}: Q$ affine inequality constraints
- A feasible optimal \mathbf{x}^{*} exists, $p^{*}:=f\left(\mathbf{x}^{*}\right)$

Barrier and Penalty Methods

- Barrier and Penalty methods reduce the problem to a
- sequence of optimization problems
- with a more complex objective function,
- but with simpler constraints
- Applies a suitable optimization method to each of the problems
- often Newton

Advantages:

1. Does not suffer from combinatorical complexity for many constraints (as primal methods / active set methods do)
2. Generally applicable, as they do not rely on special problem structure.

Outline

1. Inequality Constrained Minimization Problems

2. Barrier Methods
3. Penalty Methods
4. Central Path
5. Convergence Analysis
6. Feasibility and Phase I Methods

Idea

- search only in the interior of the feasible area S
- ensure that an optimization algorithm stays within the interior by adding a barrier function B to the objective
- the barrier B grows unbounded when approaching the border of the feasible area.
- aka as interior point methods
- iteratively reduce the weight c of the barrier.
- iterates $x^{(k)}$ converge to the optimum x^{*}, possibly on the border of the feasible area.
- only applicable if the interior of the feasible area is not empty, esp. there are no equality constraints.

Idea

For $f: S \rightarrow \mathbb{R}$ and $S \subseteq \mathbb{R}^{N}$:

$$
\begin{aligned}
x=\underset{x \in S}{\arg \min } f(\mathbf{x}) \quad \Longleftrightarrow & =\underset{\lim x^{(k)}, \quad c^{(k)} \rightarrow 0}{x^{(k)}}:=\underset{x \in S^{\circ}}{\arg \min } \tilde{f}_{c^{(k)}}(\mathbf{x}) \\
\tilde{f}_{c}(x) & :=f(\mathbf{x})+c B(\mathbf{x})
\end{aligned}
$$

with a barrier function

$$
\begin{aligned}
& B: S^{\circ} \rightarrow \mathbb{R} \\
& \text { (i) } B \text { continuous } \\
& \text { (ii) } B(x) \geq 0 \\
& \text { (iii) } B(x) \rightarrow \infty \text { for } x \rightarrow \partial\left(S^{\circ}\right)
\end{aligned}
$$

Log Barrier Function

For an feasible area S defined by inequality constraints $h: \mathbb{R}^{N} \rightarrow \mathbb{R}^{Q}$:

$$
S:=\left\{x \in \mathbb{R}^{N} \mid h(x) \leq 0\right\}
$$

log barrier function:

$$
B(x):=-\sum_{q=1}^{Q} \log \left(-h_{q}(x)\right)
$$

convex and twice differentiable:

$$
\begin{aligned}
\nabla B(x) & =-\sum_{q=1}^{Q} \frac{1}{h_{q}(x)} \nabla h_{q}(x) \\
\nabla^{2} B(x) & =\sum_{q=1}^{Q} \frac{1}{\left(h_{q}(x)\right)^{2}} \nabla h_{q}(x)\left(\nabla h_{q}(x)\right)^{T}-\frac{1}{h_{q}(x)} \nabla^{2} h_{q}(x)
\end{aligned}
$$

Inverse Barrier Function

For an feasible area S defined by inequality constraints $h: \mathbb{R}^{N} \rightarrow \mathbb{R}^{Q}$:

$$
S:=\left\{x \in \mathbb{R}^{N} \mid h(x) \leq 0\right\}
$$

inverse barrier function:

$$
B(x):=-\sum_{q=1}^{Q} \frac{1}{h_{q}(x)}
$$

convex and twice differentiable:

$$
\begin{aligned}
\nabla B(x) & =\sum_{q=1}^{Q} \frac{1}{\left(h_{q}(x)\right)^{2}} \nabla h_{q}(x) \\
\nabla^{2} B(x) & =\sum_{q=1}^{Q} \frac{-2}{\left(h_{q}(x)\right)^{3}} \nabla h_{q}(x)\left(\nabla h_{q}(x)\right)^{T}+\frac{1}{\left(h_{q}(x)\right)^{2}} \nabla^{2} h_{q}(x)
\end{aligned}
$$

Barrier Methods / Generic Algorithm

```
1 min-barrier \(\left(f, B, x^{(0)}, c, \epsilon, K\right)\) :
2 for \(k:=1, \ldots, K\) :
\(3 \quad x^{(k)}:=\min \left(f+c^{(k)} B, x^{(k-1)}\right)\)
4 if \(\left\|x^{(k)}-x^{(k-1)}\right\|<\epsilon\) :
5 return \(x^{(k)}\)
6 return "not converged"
```

where

- $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ objective function
- $B: \mathbb{R}^{N} \rightarrow \mathbb{R}$ barrier function (encoding inequality constraints)
- $x^{(0)} \in \mathbb{R}^{N}$ strictly feasible starting point, i.e., $B\left(x^{(0)}\right)<\infty$
- $c \in\left(\mathbb{R}^{+}\right)^{*}$: barrier weights, $c^{(k)} \rightarrow 0$
- min: unconstrained minimization method

Barrier Methods / Log Barrier Algorithm

```
1 min-barrier- \(\log \left(f, h, x^{(0)}, c, \epsilon, K\right)\) :
2 for \(k:=1, \ldots, K\) :
\(3 \quad x^{(k)}:=\min \left(f-c^{(k)} \sum_{q=1}^{Q} \log \left(-h_{q}\right), x^{(k-1)}\right)\)
4 if \(\left\|x^{(k)}-x^{(k-1)}\right\|<\epsilon\) :
5 return \(x^{(k)}\)
6 return "not converged"
```

where
$-f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ objective function

- $h: \mathbb{R}^{N} \rightarrow \mathbb{R}^{Q}$ inequality constraints
- $x^{(0)} \in \mathbb{R}^{N}$ strictly feasible starting point, i.e., $h\left(x^{(0)}\right)<0$
- $c \in\left(\mathbb{R}^{+}\right)^{*}$: barrier weights, $c^{(k)} \rightarrow 0$
- min: unconstrained minimization method

Remarks

- The inner minimization step is called centering step.
- It is usually accomplished using Newton's method.
- See for a better stopping criterion in section 4.

Equality Constraints

- equality constraints can be passed through to the inner problem:

$$
\begin{aligned}
& x=\arg \min f(x) \\
& x \in \mathbb{R}^{N} \\
& x=\lim x^{(k)}, \quad c^{(k)} \rightarrow 0 \\
& \text { s.t. } g(x)=0 \\
& h(x) \leq 0 \\
& x^{(k)}:=\underset{x \in S^{\circ}}{\arg \min } \tilde{f}_{c^{(k)}}(x) \\
& \text { s.t. } g(x)=0 \\
& \tilde{f}_{c}(x):=f(x)+c B(x) \\
& S^{\circ}:=\left\{x \in \mathbb{R}^{N} \mid h(x)<0\right\}
\end{aligned}
$$

with B a barrier function for inequality constraints h.

- the inner minimization method then has to be able to cope with equality constraints.

Outline

1. Inequality Constrained Minimization Problems

2. Barrier Methods

3. Penalty Methods

4. Central Path

5. Convergence Analysis
6. Feasibility and Phase I Methods

Idea

- search unconstrained in all of \mathbb{R}^{N}.
- penalize infeasible points by adding a penalty function P to the objective
- the penalty P is zero for feasible points, non-zero for infeasible points.
- iteratively increase the weight c of the penalty.
- iterates $x^{(k)}$ converge to the optimum x^{*}, possibly on the border of the feasible area.
- applicable to both, equality and inequality constraints, but usually there are no inequality constraints.

Idea

For $f: S \rightarrow \mathbb{R}$ and $S \subseteq \mathbb{R}^{N}$:

$$
x=\arg \min f(x)
$$ $x \in S$

$$
x=\lim x^{(k)}, \quad c^{(k)} \rightarrow \infty
$$

$$
\begin{aligned}
x^{(k)} & :=\underset{x \in \mathbb{R}^{N}}{\arg \min } \tilde{f}_{c}(k) \\
\tilde{f}_{c}(x) & :=f(\mathbf{x})+c P(\mathbf{x})
\end{aligned}
$$

with a penalty function

$$
P: \mathbb{R}^{N} \rightarrow \mathbb{R}
$$

(i) P continuous
(ii) $P(x) \geq 0$
(iii) $P(x)=0 \Leftrightarrow x \in S$

Quadratic Penalty Function

For an feasible area S defined by equality constraints $g: \mathbb{R}^{N} \rightarrow \mathbb{R}^{P}$:

$$
S:=\left\{x \in \mathbb{R}^{N} \mid g(x)=0\right\}
$$

quadratic penalty function:

$$
P(x):=\sum_{p=1}^{P}\left(g_{p}(x)\right)^{2}
$$

convex and twice differentiable:

$$
\begin{aligned}
\nabla P(x) & =2 \sum_{p=1}^{P} g_{p}(x) \nabla g_{p}(x) \\
\nabla^{2} P(x) & =2 \sum_{p=1}^{P} \nabla g_{p}(x)\left(\nabla g_{p}(x)\right)^{T}+g_{p}(x) \nabla^{2} g_{p}(x)
\end{aligned}
$$

Penalty Methods / Generic Algorithm

```
1 min-penalty \(\left(f, P, x^{(0)}, c, \epsilon, K\right)\) :
2 for \(k:=1, \ldots, K\) :
\(3 \quad x^{(k)}:=\min \left(f+c^{(k)} P, x^{(k-1)}\right)\)
4 if \(\left\|x^{(k)}-x^{(k-1)}\right\|<\epsilon\) :
5 return \(x^{(k)}\)
6 return "not converged"
```

where

- $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ objective function
- $P: \mathbb{R}^{N} \rightarrow \mathbb{R}$ penalty function (encoding equality constraints)
- $x^{(0)} \in \mathbb{R}^{N}$ starting point (possibly infeasible)
- $c \in\left(\mathbb{R}^{+}\right)^{*}$: penalty weights, $c^{(k)} \rightarrow \infty$
- min: unconstrained minimization method

Penalty Methods / Quadratic Penalty Algorithm

```
1 min-penalty-quad \(\left(f, g, x^{(0)}, c, \epsilon, K\right)\) :
2 for \(k:=1, \ldots, K\) :
\(3 \quad x^{(k)}:=\min \left(f+c^{(k)} \sum_{p=1}^{P}\left(g_{p}(x)\right)^{2}, x^{(k-1)}\right)\)
4 if \(\left\|x^{(k)}-x^{(k-1)}\right\|<\epsilon\) :
5 return \(x^{(k)}\)
6 return "not converged"
```

where

- $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ objective function
- $g: \mathbb{R}^{N} \rightarrow \mathbb{R}^{P}$ equality constraints
- $x^{(0)} \in \mathbb{R}^{N}$ starting point (possibly infeasible)
- $c \in\left(\mathbb{R}^{+}\right)^{*}$: penalty weights, $c^{(k)} \rightarrow \infty$
- min: unconstrained minimization method

Inequality Constraints

- inequality constraints $h(x) \leq 0$ can be represented as (additional) equality constraints:

$$
h(x) \leq 0 \quad \Longleftrightarrow \quad h_{q}^{+}(x):=\max \left\{0, h_{q}(x)\right\}=0, \quad q=1, \ldots, Q
$$

- the quadratic barrier function for h^{+}is differentiable with a continuous gradient:

$$
\begin{aligned}
B(x) & :=\sum_{q=1}^{Q}\left(h_{q}^{+}(x)\right)^{2} \\
\nabla B(x) & =\sum_{q=1}^{Q} 2 h_{q}^{+}(x)\left\{\begin{array}{ll}
\nabla h_{q}(x), & \text { if } h_{q}(x) \geq 0 \\
0, & \text { else }
\end{array}=2 h_{q}^{+}(x) \nabla h_{q}(x)\right.
\end{aligned}
$$

- but the second derivative usually is not continuous on the border (where $h_{q}(x)=0$).

Outline

1. Inequality Constrained Minimization Problems

2. Barrier Methods

3. Penalty Methods

4. Central Path

5. Convergence Analysis
6. Feasibility and Phase I Methods

Sequential Subproblems

Analysis for

- general inequality constraints $h(\mathbf{x}) \leq 0$
- affine equality constraints $A \mathbf{x}-\mathbf{a}=0$
minimize $f(\mathbf{x})$

$$
\begin{align*}
& \text { s.t. } h_{q}(\mathbf{x}) \leq 0, \quad q=1, \ldots, Q \tag{v1}\\
& \quad A \mathbf{x}-\mathbf{a}=0
\end{align*}
$$

(v2)
minimize $f(\mathbf{x})+c B(\mathbf{x}), \quad c \rightarrow 0$

$$
\text { s.t. } A \mathbf{x}-\mathbf{a}=0
$$

(v3) minimize $t f(\mathbf{x})+B(\mathbf{x}), \quad t \rightarrow \infty$
s.t. $A \mathbf{x}-\mathbf{a}=0$

Central Path

Given our ICM problem

$$
\begin{aligned}
\operatorname{minimize} & t f(\mathbf{x})+B(\mathbf{x}) \\
\text { subject to } & A \mathbf{x}-\mathbf{a}=0
\end{aligned}
$$

let $\mathbf{x}^{*}(t)$ be its the solution for a given $t>0$

Definition
The Central Path associated with an ICM problem is the set of points $\mathbf{x}^{*}(t), t>0$, which are called central points

Central Path - Example

Central Path for a Linear Program

$$
\begin{array}{ll}
\operatorname{minimize} \times & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & \mathbf{a}_{i}^{T} \mathbf{x} \leq b_{i} \\
& i=1, \ldots, 6
\end{array}
$$

$\mathbf{c}^{T} \mathbf{x}=\mathbf{c}^{T} x^{*}(t)$ is tangent to the level curve of B through $\mathbf{x}^{*}(t)$

(From Stephen Boyd's Lecture Notes)

Central Path

Given our ICM problem

$$
\begin{array}{cl}
\operatorname{minimize} & t f(\mathbf{x})+B(\mathbf{x}) \\
\text { subject to } & A \mathbf{x}-\mathbf{a}=0
\end{array}
$$

A point $\mathbf{x}^{*}(t)$ on the central path is strictly feasible, i.e., satisfies

$$
A \mathbf{x}^{*}(t)=\mathbf{a}, \quad h_{q}\left(\mathbf{x}^{*}(t)\right)<0, \quad q=1, \ldots, Q
$$

and there exists a $\hat{\nu} \in \mathbb{R}^{P}$ such that the following holds:

$$
\begin{aligned}
0 & =t \nabla f\left(\mathbf{x}^{*}(t)\right)+\nabla B\left(\mathbf{x}^{*}(t)\right)+A^{T} \hat{\nu} \\
& =t \nabla f\left(\mathbf{x}^{*}(t)\right)+\sum_{q=1}^{Q} \frac{1}{-h_{q}\left(\mathbf{x}^{*}(t)\right)} \nabla h_{q}\left(\mathbf{x}^{*}(t)\right)+A^{T} \hat{\nu}
\end{aligned}
$$

Dual Points from Central Path

$$
\begin{aligned}
0 & =t \nabla f\left(\mathbf{x}^{*}(t)\right)+\sum_{q=1}^{Q} \frac{1}{-h_{q}\left(\mathbf{x}^{*}(t)\right)} \nabla h_{q}\left(\mathbf{x}^{*}(t)\right)+A^{T} \hat{\nu} \\
& =\nabla f\left(\mathbf{x}^{*}(t)\right)+\sum_{q=1}^{Q} \frac{1}{-t h_{q}\left(\mathbf{x}^{*}(t)\right)} \nabla h_{q}\left(\mathbf{x}^{*}(t)\right)+\frac{1}{t} A^{T} \hat{\nu}
\end{aligned}
$$

If we define:

$$
\lambda_{q}(t):=-\frac{1}{t h_{q}\left(\mathbf{x}^{*}(t)\right)}, q=1, \ldots, Q, \nu^{*}(t)=\frac{\hat{\nu}}{t}
$$

We can rewrite:

$$
\nabla f\left(\mathbf{x}^{*}(t)\right)+\sum_{q=1}^{Q} \lambda_{q}(t) \nabla h_{q}\left(\mathbf{x}^{*}(t)\right)+A^{T} \nu^{*}(t)=0
$$

Minimizing the Lagrangian

From the last slide:

$$
\nabla f\left(\mathbf{x}^{*}(t)\right)+\sum_{q=1}^{Q} \lambda_{q}(t) \nabla h_{q}\left(\mathbf{x}^{*}(t)\right)+A^{T} \nu^{*}(t)=0
$$

we can see that this is the first order condition for the lagrangian:

$$
L(\mathbf{x}, \lambda, \nu)=f(\mathbf{x})+\sum_{q=1}^{Q} \lambda_{q} h_{q}(\mathbf{x})+\nu^{T}(A \mathbf{x}-\mathbf{a})
$$

- $\mathbf{x}^{*}(t)$ minimizes the lagrangian for $\lambda=\lambda^{*}(t)$ and $\nu=\nu^{*}(t)$
- Thus $\lambda^{*}(t), \nu^{*}(t)$ is a dual feasible pair.

The dual function

The dual function $g\left(\lambda^{*}(t), \nu^{*}(t)\right)$ is finite and

$$
\begin{aligned}
& g\left(\lambda^{*}(t), \nu^{*}(t)\right)=f\left(\mathbf{x}^{*}(t)\right)+\sum_{q=1}^{Q} \lambda_{q}(t) h_{q}\left(\mathbf{x}^{*}(t)\right)+\nu^{*}(t)^{T}\left(A \mathbf{x}^{*}(t)-a\right) \\
& =f\left(\mathbf{x}^{*}(t)\right)+\sum_{q=1}^{Q} \overbrace{-\frac{1}{t h_{q}\left(\mathbf{x}^{*}(t)\right)}}^{\lambda_{q}(t)} h_{q}\left(\mathbf{x}^{*}(t)\right)+\nu^{*}(t)^{T} \overbrace{\left(A \mathbf{x}^{*}(t)-a\right)}^{A x^{*}(t)=a} \\
& =f\left(\mathbf{x}^{*}(t)\right)-\frac{Q}{t}
\end{aligned}
$$

As an important consequence of this we have that:

$$
f\left(\mathbf{x}^{*}(t)\right)-p^{*} \leq Q / t
$$

which confirms that $\mathbf{x}^{*}(t)$ converges to an optimal point as $t \rightarrow \infty$

Centrality Conditions and the KKT Conditions

In order for a point \mathbf{x} to be a central point, i.e. $\mathbf{x}=\mathbf{x}^{*}(t)$, there must exist λ, ν such that:

$$
\begin{aligned}
A \mathbf{x}=\mathbf{a}, \quad h_{q}(\mathbf{x}) & \leq 0, \quad q=1, \ldots, Q \\
\lambda & \geq 0 \\
\nabla f(\mathbf{x})+\sum_{q=1}^{Q} \lambda_{q} \nabla h_{q}(\mathbf{x})+A^{T} \nu & =0 \\
-\lambda_{q} h_{q}(\mathbf{x}) & =\frac{1}{t}, \quad q=1, \ldots, Q
\end{aligned}
$$

- Thus, $\mathbf{x}^{*}(t)$ almost fulfills the KKT conditions.
- complementary condition $-\lambda_{q} h_{q}(\mathbf{x})=0$ only holds approximately $(=1 / t)$

Stopping Criterion

- as stopping criterion, simply
or equivalently

$$
\frac{Q}{t} \leq \epsilon, \quad t \rightarrow \infty
$$

can be used.

$$
Q c \leq \epsilon, \quad c \rightarrow 0
$$

- Why solving sequential problems? Why not just solve a single problem with a sufficiently small c? E.g.,

$$
c:=\frac{\epsilon}{Q}
$$

- It does not work well for large scale problems.
- It does not work well for small accuracy ϵ.
- It needs a "good" starting point.
- Trade-off about the schedule of c :
- the smaller c, the fewer centering steps, but the more Newton steps / centering step
- can be adaptively controlled.

Outline

1. Inequality Constrained Minimization Problems

2. Barrier Methods

3. Penalty Methods

4. Central Path

5. Convergence Analysis

6. Feasibility and Phase I Methods

Convergence Analysis

Assume that $t f+B$ can be minimized by Newton's method for $t=t^{(0)}, \mu t^{(0)}, \mu^{2} t^{(0)}, \ldots$, the t in the k-th outer step is

$$
t^{(k)}=\mu^{k} t^{(0)}
$$

From this, it follows that, in the k-th outer step, the duality gap is

$$
\frac{Q}{\mu^{k} t^{(0)}}
$$

Convergence Analysis

Then the number of outer iterations k^{*} needed to achieve accuracy ϵ is

$$
\begin{aligned}
\epsilon & =\frac{Q}{\mu^{k^{*}} t^{(0)}} \\
\mu^{k^{*}} & =\frac{Q}{\epsilon t^{(0)}} \\
\log \left(\mu^{k^{*}}\right) & =\log \left(\frac{Q}{\epsilon t^{(0)}}\right) \\
k^{*} \log (\mu) & =\log \left(\frac{Q}{\epsilon t^{(0)}}\right) \\
k^{*} & =\frac{\log \left(\frac{Q}{\epsilon t^{(0)}}\right)}{\log (\mu)}
\end{aligned}
$$

Convergence Analysis

The number of outer iterations is exactly:

$$
\left\lceil\frac{\log \left(\frac{Q}{\epsilon t^{(0)}}\right)}{\log \mu}\right\rceil
$$

plus the initial step to compute $\mathbf{x}^{*}\left(t^{(0)}\right)$

The inner problem

$$
\operatorname{minimize} \quad t f(\mathbf{x})+B(\mathbf{x})
$$

is solved by Newton's method (see convergence analysis for it)

Examples

Inequality form Linear Program ($m=100$ inequalities, $n=50$ variables)

(From Stephen Boyd's Lecture Notes)

- starts with \mathbf{x} on central path $\left(t^{(0)}=1\right.$, duality gap 100$)$
- terminates when $t=10^{8}$ (gap 10^{-6})
- centering uses Newton's method with backtracking
- total number of Newton iterations not very sensitive for $\mu \geq 10$

Examples

Family of Linear Programs $\left(A \in \mathbb{R}^{m \times 2 m}\right)$

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A^{T} x \leq b, \quad x \succeq 0
\end{aligned}
$$

$m=10, \ldots, 1000 ;$ for each m solve 100 randomly generated instances

Outline

1. Inequality Constrained Minimization Problems

2. Barrier Methods
3. Penalty Methods
4. Central Path
5. Convergence Analysis
6. Feasibility and Phase I Methods

Feasibility and Phase I Method

- The barrier method requires a strictly feasible starting point $\mathbf{x}^{(0)}$.
- Phase I denotes the computation of such a point (or the constraints are found to be infeasible).
- The barrier method algorithm then starts from $\mathbf{x}^{(0)}$ (called phase II stage).

Basic Phase I Method

Find strictly feasible \mathbf{x} for constraints

$$
\begin{equation*}
h_{q}(\mathbf{x}) \leq 0, \quad q=1, \ldots, Q, \quad A \mathbf{x}-\mathbf{a}=0 \tag{1}
\end{equation*}
$$

Phase I method for target variables $\mathrm{x} \in \mathbb{R}^{N}$ and $s \in \mathbb{R}$:

$$
\begin{align*}
\operatorname{minimize} & s \tag{2}\\
\text { subject to } & h_{q}(\mathbf{x}) \leq s, \quad q=1, \ldots, Q \\
& A \mathbf{x}-\mathbf{a}=0
\end{align*}
$$

- for (2), a strictly feasible starting point is easy to compute:
- compute $x^{(0)}$ with $A x^{(0)}-a=0$
- $s^{(0)}:=\max _{q=1, \ldots, Q} h_{q}\left(x^{(0)}\right)+\epsilon, \quad \epsilon>0$
- if \mathbf{x}, s is feasible, with $s<0$, then \mathbf{x} is strictly feasible for (1)
- if the optimal value s^{*} of (2) is positive, then problem (1) is infeasible
- if $s^{*}=0$ and attained, then problem (1) is feasible (but not strictly)
- if $s^{*}=0$ and not attained, then problem (1) is infeasible

Sum of Infeasibilities Phase I Method

For target variables $\mathbf{x} \in \mathbb{R}^{N}$ and $\mathbf{s} \in \mathbb{R}^{Q}$:

$$
\begin{aligned}
\operatorname{minimize} & \mathbf{1}^{T} \mathbf{s} \\
\text { subject to } & \mathbf{s} \geq 0 \\
& h_{q}(\mathbf{x}) \leq s_{q}, \quad q=1, \ldots, Q \\
& A \mathbf{x}-\mathbf{a}=0
\end{aligned}
$$

Further Readings

- Barrier methods:
- [Boyd and Vandenberghe, 2004, ch. 11]
- [Griva et al., 2009, ch. 16]
- [Luenberger and Ye, 2008, ch. 13]
- [Nocedal and Wright, 2006, ch. 19.6]
- Penalty methods:
- [Griva et al., 2009, ch. 16]
- [Luenberger and Ye, 2008, ch. 13]
- [Nocedal and Wright, 2006, ch. 17.1-2]

References I

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univ Press, 2004.
Igor Griva, Stephen G. Nash, and Ariela Sofer. Linear and nonlinear optimization. Society for Industrial and Applied Mathematics, 2009.

David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming. Springer, 2008. Fourth edition 2015.
Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2006.

