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Modern Optimization Techniques

Inequality Constrained Minimization (ICM) Problems

A problem of the form:

arg min
x∈RN

f (x)

subject to gp(x) = 0, p = 1, . . . ,P

hq(x) ≤ 0, q = 1, . . . ,Q

where:

I f : RN → R convex and twice differentiable

I g1, . . . , gP : RN → R convex and twice differentiable

I h1, . . . , hQ : RN → R convex and twice differentiable

I A feasible optimal x∗ exists, p∗ := f (x∗)
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Inequality Constrained Minimization (ICM) Problems /
Affine

arg min
x∈RN

f (x)

subject to Ax− a = 0

Bx− b ≤ 0

where:

I f : RN → R convex and twice differentiable

I A ∈ RP×N , a ∈ RP : P affine equality constraints

I B ∈ RQ×N , b ∈ RQ : Q affine inequality constraints

I A feasible optimal x∗ exists, p∗ := f (x∗)
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Primal Methods

I Primal methods tackle the problem directly,
I starting from a feasible point x (0)

I staying all time within the feasible area
I i.e., all x (k) are feasible

Advantages:

1. If stopped early,
yields a feasible point with often already small objective value.

2. If converged,
also for non-convex objectives yields at least a local optimum.

3. Generally applicable, as they do not rely on special problem structure.
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General Idea

I split inequality constraints into
I active constraints: hq(x) = 0
I inactive constraints: hq(x) < 0

I enhance methods for equality constraints to
I retain strict inequality constraints hq(x) < 0

I by taking small steps

I to stop, once they hit an inequality constraint hq(x) = 0

Further procedure:

1. enhance backtracking to respect strict inequality constraints

2. enhance gradient projection to respect strict inequality constraints
I gradient descent with affine equality constraints

3. sketch the general strategy of active set methods
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Backtracking Line Search (Review)

1 linesearch-bt(f ,∇f , x ,∆x ;α, β):
2 µ := 1

3 ∆f := α∇f (x)T∆x
4 while f (x + µ∆x) > f (x) + µ∆f :
5 µ := βµ
6 return µ

where

I f : RN → R,∇f : RN → R: objective function and its gradient

I x ∈ RN : current point

I ∆x ∈ RN : update/search direction

I α ∈ (0, 0.5): minimum descent steepness

I β ∈ (0, 1): stepsize shrinkage factor
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Backtracking Line Search / Inequality Constraints

1 linesearch-bt-ineq(f ,∇f , h, x ,∆x ;α, β):
2 µ := 1

3 ∆f := α∇f (x)T∆x
4 while f (x + µ∆x) > f (x) + µ∆f or not h(x + µ∆x) ≤ 0:
5 µ := βµ
6 return µ

where

I f : RN → R,∇f : RN → R: objective function and its gradient

I x ∈ RN : current point, feasible: h(x) ≤ 0

I ∆x ∈ RN : update/search direction

I α ∈ (0, 0.5): minimum descent steepness

I β ∈ (0, 1): stepsize shrinkage factor

I h : RN → RQ : Q inequality constraints: h(x) ≤ 0
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Backtracking Line Search / Affine Inequality Constraints
For affine inequality constraints

h(x) = Bx − b ≤ 0

feasibility of an update can be guaranteed by a maximal stepsize:

h(x + µ∆x) =

B(x + µ∆x)− b ≤ 0

µB∆x ≤ −(Bx − b)

µ(B∆x)q ≤ −(Bx − b)q ∀q ∈ {1, . . . ,Q}

µ ≤ −(Bx − b)q
(B∆x)q

∀q ∈ {1, . . . ,Q} : (B∆x)q > 0

µ ≤ min{−(Bx − b)q
(B∆x)q

| q ∈ {1, . . . ,Q} : (B∆x)q > 0}

=: µmax
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Backtracking Line Search / Affine Inequality Constraints

1 linesearch-bt-affineq(f ,∇f ,B, b, x ,∆x ;α, β):

2 µ := min{−(Bx−b)q
(B∆x)q

| q ∈ {1, . . . ,Q} : (B∆x)q > 0}
3 ∆f := α∇f (x)T∆x
4 while f (x + µ∆x) > f (x) + µ∆f :
5 µ := βµ
6 return µ

where

I f : RN → R,∇f : RN → R: objective function and its gradient

I x ∈ RN : current point, feasible: Bx − b ≤ 0

I ∆x ∈ RN : update/search direction

I α ∈ (0, 0.5): minimum descent steepness

I β ∈ (0, 1): stepsize shrinkage factor

I B ∈ RQ×N , b ∈ RQ : Q affine inequality constraints: Bx − b ≤ 0
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Right Inverse Matrix

For A ∈ RN×M (N ≤ M) with full rank,
the right inverse of A is

A−1
right = AT (AAT )−1

Proof:

AA−1
right = AAT (AAT )−1 = I
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Nullspace Projection

For A ∈ RN×M (N ≤ M) with full rank, the matrix

F := I − A−1
rightA = I − AT (AAT )−1A

is a projection onto the nullspace of A:

{x ∈ RM | Ax = 0} = {Fx ′ | x ′ ∈ RM}

Proof:

“ ⊇ ” : AFx ′ = A(I − A−1
rightA)x ′ = (A− A)x ′ = 0

“ ⊆ ” : show: for any x with Ax = 0, there exists x ′ : x = Fx ′

x ′ := x : Fx ′ = Fx = (I − AT (AAT )−1A)x = x − AT (AAT )−1Ax
= x − 0 = x

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 24



Modern Optimization Techniques

Gradient Projection Method / Affine Equality Constraints

1 min-gp-affeq(f ,∇f ,A, a, x (0), µ, ε,K ):

2 F := I − AT (AAT )−1A
3 for k := 1, . . . ,K :

4 ∆x (k−1) := −FT∇f (x (k−1))

5 if ||∆x (k−1)|| < ε:

6 return x (k−1)

7 µ(k−1) := µ(f , x (k−1),∆x (k−1))

8 x (k) := x (k−1) + µ(k−1)∆x (k−1)

9 return ”not converged”

where

I A ∈ RP×N , a ∈ RP : P affine equality constraints

I x(0) feasible starting point, i.e., Ax(0) − a = 0
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Grad. Proj. Meth. / Aff. Eq. Cstr. + strict In.eq. Constr

1 min-gp-affeq-strictineq(f ,∇f ,A, a, h, x (0), µ, ε,K ):

2 F := I − AT (AAT )−1A
3 for k := 1, . . . ,K :

4 ∆x (k−1) := −FT∇f (x (k−1))

5 if ||∆x (k−1)|| < ε:

6 return x (k−1)

7 µ(k−1) := µ(f , h, x (k−1),∆x (k−1))

8 x (k) := x (k−1) + µ(k−1)∆x (k−1)

9 if ∃q ∈ {1, . . . ,Q} : hq(x (k)) = 0 :

10 return x (k)

11 return ”not converged”

where

I A ∈ RP×N , a ∈ RP : P affine equality constraints

I x(0) strictly feasible starting point, i.e., h(x(0))<0

I µ(. . . , h, . . .) stepsize controller that retains inequality constraints h

I h : RN → RQ : Q inequality constraints: h(x) ≤ 0
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Active Set Method / Idea

I split inequality constraints into
I active constraints: hq(x) = 0
I inactive constraints: hq(x) < 0

I minimize on the feasible subspace retaining the active constraints
I add active inequality constraints (temporarily) to the equality

constraints: g̃
I make small steps µ s.t. inactive constraints remain inactive

I stop if a step hits one of the inactive constraints, activating them.

I once the minimum on the subspace of the current active constraints
is found,

I if we had to stop because of hitting an active constraint:
I add one of the hit constraints to the active constraints

I otherwise:
I inactivate one of the active constraints

one on whos interior side the objective is decreasing (λq < 0)
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Active Set Methods / General Strategy
1 min-activeset(f , g, h, x(0),K ,min-eq):

2 Q := {q ∈ {1, . . . ,Q} | hq(x(0)) = 0}

3 g̃ :=

(
g
hQ

)
, h̃ := h{1,...,Q}\Q

4 for k := 1, . . . ,K :

5 x(k) := min-eq(f , g̃, h̃, x(k−1))
6 if ∃q ∈ {1, . . . ,Q} \ Q : hq(x) = 0:
7 Q := Q ∪ {q} for an arbitrary q ∈ {1, . . . ,Q} \ Q with hq(x) = 0

8 g̃ :=

(
g
hQ

)
, h̃ := h{1,...,Q}\Q

9 else :
10 if |Q| = 0:

11 return x(k)

12 compute Lagrange multipliers λq for hq , q ∈ Q
13 if λ ≥ 0:

14 return x(k)

15 Q := Q \ {q} for an arbitrary q ∈ Q with λq < 0

16 g̃ :=

(
g
hQ

)
, h̃ := h{1,...,Q}\Q

17 return ”not converged”

where
I g : RN → RP : P equality constraints: g(x) = 0
I h : RN → RQ : Q inequality constraints: h(x) ≤ 0
I x(0) feasible starting point, i.e., g(x) = 0, h(x) ≤ 0
I min-eq: solver for equality constraints and strict inequality constraints, e.g.,

min-gp-affeq-strictineq,
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Active Set Method / Remarks

I The active set method can be accelerated by solving the equality
constrained problem only approximately: ε

I but for the risk of zigzagging
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Figure 15.3. Zigzagging.

implementation, however. The reason is that as the solution to a problem becomes less
accurate, the computed Lagrange multipliers also become less accurate. These inaccuracies
can affect the sign of a computed Lagrange multiplier. Consequently, a constraint may
erroneously be deleted from the working set, thereby wiping out any potential savings.

Another possible danger is zigzagging. This phenomenon can occur if the iterates cy-
cle repeatedly between two working sets. This situation is depicted in Figure 15.3. Zigzag-
ging cannot occur if the equality-constrained problems are solved sufficiently accurately
before constraints are dropped from the working set.

To conclude, we indicate how the active-set method can be adapted to solve a problem
of the form

minimize f (x)

subject to A1x ≥ b1

A2x = b2

containing a mix of equality and inequality constraints. In this case, the equality constraints
are kept permanently in the working set W since they must be kept satisfied at every iteration.
The Lagrange multipliers for equality constraints can be positive or negative, and so do not
play a role in the optimality test. The equality constraints also do not play a role in the
selection of the maximum allowable step length ᾱ. These are the only changes that need be
made to the active-set method.

15.4.1 Linear Programming

The simplex method for linear programming is a special case of an active-set method.16

Suppose that we were trying to solve a linear program with n variables and m linearly
independent equality constraints:

minimize f (x) = cTx

subject to Ax = b

x ≥ 0.

16This section uses the notation of Chapters 4 and 5.

[Griva et al., 2009, p.570]
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Convergence
Theorem (Active Set Theorem)
If for every subset Q of inequality constraints the problem

arg min
x∈RN

f (x)

subject to Ax − a = 0

BQx − bQ = 0

BQ̄x − bQ̄ < 0, Q̄ := {1, . . . ,Q} \ Q

is well-defined with a unique nondegenerate solution (i.e.,λq 6= 0 ∀q ∈ Q), then
the active set method converges to the solution of the inequality constrained
problem.

Proof:

I After the minimum over the subspace defined by an active set has been found,

I the function value further decreases when removing a constraint.

I Thus the algorithm cannot possibly return to the same active set.

I As there are only finite many possible active sets, it eventually will terminate.
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Gradient Projection / Idea

I Gradient Projection:
I use the active set strategy for Gradient Descent

(to solve the equality constrained subproblems)

I putting everything together
I esp. for affine constraints
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Gradient Projection / Idea
I split inequality constraints into

I active constraints: (Bx − b)q = 0
I inactive constraints: (Bx − b)q < 0

I find an update direction ∆x that retains this state of the inequality
constraints

I add active inequality constraints (temporarily) to the equality
constraints: Ã, ã

I make small steps µ s.t. inactive constraints remain inactive:

(B(x + µ∆x)− b)q ≤ 0 µ ≤ −(Bx − b)q
(B∆x)q

, for (B∆x)q > 0

I x + µ∆x may hit one of the inactive constraints, activating them.

I once the minimum on the subspace of the current active constraints
is found,

I inactivate one of the active constraints
I one on whos interior side the objective is decreasing (λq < 0)
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Gradient Projection / Affine Constraints

1 min-gp-aff(f , A, a, B, b, x(0), µ, ε,K):

2 Q := {q ∈ {1, . . . ,Q} | (Bx(0) − b)q = 0}

3 Ã :=

(
A

BQ

)
, ã :=

(
a

bQ

)
, P̃ := P + |Q|

4 F̃ := I − ÃT (ÃÃT )−1Ã
5 for k := 1, . . . ,K :

6 ∆x(k−1) := −F̃T∇f (x(k−1))

7 if ||∆x(k−1)|| ≤ ε:

8 if |Q| = 0: return x(k−1)

9 λ̃ := solve(Ãλ̃ = ∇f (x(k−1)))

10 if λ̃
P+1:P̃

≥ 0: return x(k−1)

11 Q := Q \ {q} for an arbitrary q ∈ Q with λq := λ̃P+index(q,Q) < 0

12 recompute Ã, ã, P̃, F̃ ,∆x(k−1) (= lines 3,4,6)

13 µ
(k−1)
max := min{−(Bx(k−1)−b)q

(B∆x(k−1))q
| q ∈ {1, . . . ,Q} \ Q, (B∆x(k−1))q > 0}

14 µ(k−1) := µ(f , x(k−1),∆x(k−1), µ
(k−1)
max )

15 x(k) := x(k−1) + µ(k−1)∆x(k−1)

16 if µ(k−1) = µ
(k−1)
max :

17 Q := Q ∪ {q} for an arbitrary q ∈ {1, . . . ,Q} \ Q with
−(Bx(k−1)−b)q

(B∆x(k−1))q
= µ

(k−1)
max

18 recompute Ã, ã, P̃, F̃ (= lines 3−4)
19 return ”not converged”
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Gradient Projection / Affine Constraints (ctd.)

where

I A ∈ RP×N , a ∈ RP : P affine equality constraints

I B ∈ RQ×N , b ∈ RQ : Q affine inequality constraints

I x(0) feasible starting point

I µ(. . . , µmax) step length controller, yielding steplength ≤ µmax

I index(q,Q) := i for q = qi and Q = (q1, q2, . . . , qQ̃)
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Remarks

I The projection matrix F does not have to be computed from scratch,
every time the active constraint set changes, but can be efficiently
updated.
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Convergence / Rate of Convergence

I For the gradient projection method, a rate of convergence can be
established.

I But the proof is somewhat involved
(see [Luenberger and Ye, 2008, ch. 12.5]).
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Summary

I Primal methods optimize
I in the original variables,
I staying always within the feasible area.

I Backtracking line search can be modified to retain strict inequality
constraints.

I for affine inequality constraints: guaranteed by a maximum stepsize.

I The gradient projection method for affine equality constraints is a
modified gradient descent.

I simply project gradients to the nullspace of the affine constraints.
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Summary (2/2)

I Active set methods
I partition the inequality constraints into active and inactive ones

I an inequality constraint hq is active iff hq(x) = 0.

I add active inequality constraints temporarily to the equality constraints
I and solve this problem using an optimization method for equality

constraints.
I break away from a random active inequality constraint into whos

interior of the feasible area the objective decreases.

I The gradient projection method (for affine equality and inequality
constraints) is an active set method that uses the gradient projection
method for equality constraints to solve the equality constrained
subproblems.
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Further Readings

I Primal methods for constrained optimization are not covered by Boyd
and Vandenberghe [2004].

I Primal methods often also are called feasible point methods.
I Active set methods:

I general idea: [Luenberger and Ye, 2008, ch. 12.3]
I Gradient projection method: [Luenberger and Ye, 2008, ch. 12.4+5],

[Griva et al., 2009, ch. 15.4]
I Reduced gradient method: [Luenberger and Ye, 2008, ch. 12.6+7],

[Griva et al., 2009, ch. 15.6]

I Further primal methods not covered here:
I Frank-Wolfe algorithm / conditional gradient method: [Luenberger and

Ye, 2008, ch. 12.1]
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