
Modern Optimization Techniques

Modern Optimization Techniques
3. Equality Constrained Optimization / 3.2. Methods

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute of Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 26



Modern Optimization Techniques

Syllabus

Mon. 30.10. (0) 0. Overview

1. Theory
Mon. 6.11. (1) 1. Convex Sets and Functions

2. Unconstrained Optimization
Mon. 13.11. (2) 2.1 Gradient Descent
Mon. 20.11. (3) 2.2 Stochastic Gradient Descent
Mon. 27.11. (4) 2.3 Newton’s Method
Mon. 4.12. (5) 2.4 Quasi-Newton Methods
Mon. 11.12. (6) 2.5 Subgradient Methods
Mon. 18.12. (7) 2.6 Coordinate Descent

— — Christmas Break —

3. Equality Constrained Optimization
Mon. 8.1. (8) 3.1 Duality
Mon. 15.1. (9) 3.2 Methods

4. Inequality Constrained Optimization
Mon. 22.1. (10) 4.1 Primal Methods
Mon. 29.1. (11) 4.2 Barrier and Penalty Methods
Mon. 5.2. (12) 4.3 Cutting Plane Methods

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 26



Modern Optimization Techniques

Outline

1. Equality Constrained Optimization

2. Quadratic Programming

3. Newton’s Method for Equality Constrained Problems

4. Infeasible Start Newton Method

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 26



Modern Optimization Techniques

Outline

1. Equality Constrained Optimization

2. Quadratic Programming

3. Newton’s Method for Equality Constrained Problems

4. Infeasible Start Newton Method

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 26



Modern Optimization Techniques

Equality Constrained Optimization Problems

A constrained optimization problem has the form:

minimize f (x)

subject to gp(x) = 0, p = 1, . . . ,P

Where:

I f : RN → R objective function

I g1, . . . , gp : RN → R equality constraints

I a feasible, optimal x∗ exists
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Convex Equality Constrained Optimization Problems

An equality constrained optimization problem:

minimize f (x)

subject to gp(x) = 0, p = 1, . . . ,P

is convex iff:

I f is convex

I h1, . . . , hP are affine

minimize f (x)

subject to Ax = a, A ∈ RP×N , a ∈ RP
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Optimality criterion

Given a convex equality constrained optimization problem

minimize f (x)

subject to Ax = a, A ∈ RP×N , a ∈ RP

Its Lagrangian is given by:

L(x, ν) = f (x) + νT (Ax− a)

with derivative:

∇xL(x, ν) = ∇xf (x) + ATν
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Optimality criterion

Given a convex equality constrained optimization problem

minimize f (x)

subject to Ax = a, A ∈ RP×N , a ∈ RP

The optimal solution x∗ must fulfill the KKT conditions:

I Since there are no inequality constraints,
stroke-through conditions are irrelevant.
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Given a convex equality constrained optimization problem

minimize f (x)

subject to Ax = a, A ∈ RP×N , a ∈ RP

The optimal solution x∗ must fulfill the KKT conditions:

1. primal feasibility: gp(x) = 0 and hq(x) ≤ 0, ∀p, q
2. dual feasibility: λ ≥ 0

3. complementary slackness: λq hq(x) = 0, ∀q

4. stationarity: ∇f (x) +

p∑
p=1

νp∇gp(x) +
Q∑

q=1
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Optimality criterion

Given a convex equality constrained optimization problem

minimize f (x)

subject to Ax = a, A ∈ RP×N , a ∈ RP

The optimal solution x∗ must fulfill the KKT conditions:

1. primal feasibility: Ax = a

2. stationarity: ∇f (x) + ATν∗ = 0

I i.e., a feasible x∗ is optimal,
if there exists a ν∗ with ∇f (x∗) + ATν∗ = 0
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Example
Given the following problem:

minimize (x1 − 2)2 + 2(x2 − 1)2 − 5

subject to x1 + 4x2 = 3

optimality condition:

1. primal feasibility: Ax = a

2. stationarity: ∇f (x) + ATν∗ = 0

instantiated for the example problem:

1. primal feasibility: x1 + 4x2 = 3

2. stationarity:

(
2x1 − 4
4x2 − 4

)
+

(
1
4

)T

v = 0
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Generic Handling of Equality Constraints

Two generic ways to handle equality constraints:

1. Eliminate affine equality constraints
I and then use any unconstrained optimization method.
I limited to affine equality constraints

2. Represent equality constraints as inequality constraints
I and then use any optimization method for inequality constraints.
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1. Eliminating Affine Equality Constraints

Reparametrize feasible values:

{x | Ax = a} = x0 + {x | Ax = 0} = x0 + {Fz | z ∈ RN−P}

with

I x0 ∈ RN : any feasible value: Ax0 = a

I F ∈ RN×(N−P) composed of N − P basis vectors of the nullspace of
A.

I AF = 0

equality constrained problem:

min
x

f (x)

subject to Ax = a

⇐⇒
x∗=x0+Fz∗

reduced unconstrained problem:

min
z

f̃ (z) := f (x0 + Fz)
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1. Eliminating Affine Eq. Constr. / KKT Conditions

x∗ := x0 + Fz∗ fulfills the KKT conditions with

ν∗ := −(AAT )−1A∇f (x∗)

Proof:
i. primal feasibility: Ax∗ = Ax0 + AFz∗ = a + 0 = a

ii. stationarity: ∇f (x∗) + ATν∗
?
= 0(

FT

A

)
(∇f (x∗) + ATν∗) =

(
FT∇f (x∗)− FTAT (AAT )−1A∇f (x∗)
A∇f (x∗)− AAT (AAT )−1A∇f (x∗)

)
=

(
∇f̃ (z∗)− (AF )T (. . .)
A∇f (x∗)− A∇f (x∗)

)
=

(
0
0

)
and as

(
FT

A

)
has full rank / is invertible

∇f (x∗) + ATν∗ = 0
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2. Reducing to Inequality Constraints

I P equality constraints obviously can be represented as
2P inequality constraints:

gp(x) = 0, p = 1, . . . ,P ⇐⇒ −gp(x) ≤ 0, p = 1, . . . ,P

gp(x) ≤ 0, p = 1, . . . ,P

I Then any method for inequality constraints can be used
(see next chapter).
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Quadratic Programming

minimize
1

2
xTPx + qTx + r

subject to Ax = a

with given P ∈ RN×N pos. semidef., q ∈ RN , r ∈ R.

Optimality Condition: (
P AT

A 0

)(
x∗

ν∗

)
=

(
−q

a

)
I KKT Matrix

I Solution is the inverse of the KKT matrix times the right hand side of
the system
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Quadratic Programming / Nonsingularity of KKT Matrix
The KKT matrix (

P AT

A 0

)
is nonsingular iff P is pos.def. on the nullspace of A:

Ax = 0, x 6= 0 ⇒ xTPx > 0

Proof:(
P AT

A 0

)(
x
ν

)
= 0  (i) Px + ATν = 0, (ii) Ax = 0

 
(i)

0 = xT (Px + ATν) = xTPx + (Ax)Tν =
(ii)

xTPx  
ass.

x = 0

 
(i)

ATν = 0  ν = 0 as A has full rank
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Example

minimize (x1 − 2)2 + 2(x2 − 1)2 − 5

subject to x1 + 4x2 = 3

is an example for a quadratic programming problem:

f (x) = (x1 − 2)2 + 2(x2 − 1)2 − 5

= x2
1 − 4x1 + 4 + 2x2

2 − 2x2 + 1− 5

= x2
1 + 2x2

2 − 4x1 − 2x2

P :=

(
2 0
0 4

)
, q :=

(
−4
−2

)
, r := 0

A :=
(
1 4

)
, a :=

(
3
)
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Descent step for equality constrained problems

Given the following problem:

minimize f (x)

subject to Ax = a

we want to start with a feasible solution x and
compute a step ∆x such that

I f decreases: f (x +∆x) ≤ f (x)

I yields feasible point: A(x +∆x) = a

which means solving the following problem for ∆x:

minimize f (x +∆x)

subject to A(x +∆x) = a
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Newton Step

The Newton Step is the solution for the minimization of the second order
approximation of f :

minimize f̂ (x +∆x) := f (x) +∇f (x)T∆x +
1

2
∆xT∇2f (x)∆x

subject to A(x +∆x) = a

which can be simplified to

A∆x = 0

if the last iterate is feasible already

Ax = a
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Newton Step
The Newton Step is the solution for the minimization of the second order
approximation of f :

minimize f̂ (x +∆x) := f (x) +∇f (x)T∆x +
1

2
∆xT∇2f (x)∆x

subject to A∆x = 0

This is a quadratic programming problem with:

I P := ∇2f (x)

I q := ∇f (x)

I r := f (x)

and thus optimality conditions:

I A∆x = 0

I ∇∆xf̂ (x +∆x) + ATν = ∇f (x) +∇2f (x)∆x + ATν = 0
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Newton Step

The Newton Step is the solution for the minimization of the second order
approximation of f :

minimize f̂ (x +∆x) := f (x) +∇f (x)T∆x +
1

2
∆xT∇2f (x)∆x

subject to A∆x = 0

Is computed by solving the following system:(
∇2f (x) AT

A 0

)(
∆x
ν

)
=

(
−∇f (x)

0

)
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Newton’s Method for Unconstrained Problems (Review)

1 min−newton(f ,∇f ,∇2f , x (0), µ, ε,K ):
2 for k := 1, . . . ,K :

3 ∆x (k−1) := −∇2f (x (k−1))−1∇f (x (k−1))

4 if −∇f (x (k−1))T∆x (k−1) < ε:

5 return x (k−1)

6 µ(k−1) := µ(f , x (k−1),∆x (k−1))

7 x (k) := x (k−1) + µ(k−1)∆x (k−1)

8 return ”not converged”

where
I f objective function
I ∇f , ∇2f gradient and Hessian of objective function f
I x(0) starting value
I µ step length controller
I ε convergence threshold for Newton’s decrement
I K maximal number of iterations
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Newton’s Method for Affine Equality Constraints

1 min−newton−eq(f ,∇f ,∇2f ,A, x (0), µ, ε,K ):
2 for k := 1, . . . ,K :

3

(
∆x (k−1)

ν(k−1)

)
:= −

(
∇2f (x (k−1)) AT

A 0

)−1(∇f (x (k−1))
0

)
4 if −∇f (x (k−1))T∆x (k−1) < ε:

5 return x (k−1)

6 µ(k−1) := µ(f , x (k−1),∆x (k−1))

7 x (k) := x (k−1) + µ(k−1)∆x (k−1)

8 return ”not converged”

where

I A affine equality constraints

I x(0) feasible starting value (i.e., Ax(0) = b)
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Convergence

I The iterates x (k) are the same as those of the Newton algorithm for
the eliminated unconstrained problem

f̃ (z) := f (x0 + Fz), x (k) = x0 + Fz(k)

I as the Newton steps ∆x = F∆z coincide
as they fulfil the KKT conditions of the quadratic approximation

I Thus convergence is the same as in the unconstrained case.
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Newton Step at Infeasible Points
If x is infeasible, i.e. Ax 6= a, we have the following problem:

minimize f̂ (x +∆x) = f (x) +∇f (x)T∆x +
1

2
∆xT∇2f (x)∆x

subject to A∆x = a− Ax

which can be solved for ∆x by solving the following system of equations:(
∇2f (x) AT

A 0

)(
∆x
ν

)
= −

(
∇f (x)
Ax− a

)

I An undamped iteration of this algorithm yields a feasible point.

I With step length control: points will stay infeasible in general.
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Step Length Control

I ∆x is not necessarily a descent direction for f

I but (∆x ν) is a descent direction for the norm of the
primal-dual residuum:

r(x , ν) := ||
(
∇f (x) + ATν

Ax − b

)
||

I The Infeasible Start Newton algorithm requires a proper convergence
analysis (see [Boyd and Vandenberghe, 2004, ch. 10.3.3])
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Newton’s Method for Lin. Eq. Cstr. / Infeasible Start
1 min−newton−eq−inf(f ,∇f ,∇2f ,A, b, x (0), µ, ε,K ):

2 ν(0) := solve(ATν = −∇2f (x (0))−∇f (x (0)))
3 for k := 1, . . . ,K :

4 if r(x (k−1), ν(k−1)) < ε:

5 return x (k−1)

6

(
∆x (k−1)

∆ν(k−1)

)
:= −

(
∇2f (x (k−1)) AT

A 0

)−1(∇f (x (k−1))
Ax (k−1) − b

)
7 µ(k−1) := µ(r ,

(
x (k−1)

nu(k−1)

)
,

(
∆x (k−1)

∆ν(k−1)

)
)

8 x (k) := x (k−1) + µ(k−1)∆x (k−1)

9 ν(k) := ν(k−1) + µ(k−1)∆ν(k−1)

10 return ”not converged”

where
I A, b affine equality constraints
I x(0) possibly infeasible starting value (i.e., Ax(0) 6= b)
I r is the norm of the primal-dual residuum (see previous slide)
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Solving KKT systems of equations

The KKT systems are systems of equations that look like this:(
H AT

A 0

)(
v
w

)
= −

(
g
h

)
Standard methods for solving it:

I LDLT factorization

I Elimination (might require inverting H)
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Summary
I Optimal solutions for equality constrained optimization problems

I have to fulfill KKT conditions:

1. primal feasibility: gp(x) = 0, p = 1, . . . ,P

2. stationarity: ∇f (x) +
P∑

p=1

νp∇gp(x) = 0

I for convex equality contrained problems,

1. primal feasibility: Ax = a

2. stationarity: ∇f (x) + ATν = 0

I Equality problems can be handled two ways:
1. if they are affine, eliminate them.

I reparametrize feasible values

{x | Ax = a} = x0 + {x | Ax = 0} = x0 + {Fz | z ∈ RN−P}
I then solve reduced unconstrained problem in z

2. represent them as two inequality constraints each.
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Summary (2/2)
I quadratic programming: affine constrained quadratic objectives can

be optimized by solving a linear system of equations.(
P AT

A 0

)(
x∗

ν∗

)
=

(
−q

a

)
I Equality constraints can be integrated into Newton’s method by

extending the linear system for the descent direction:(
∇2f (x) AT

A 0

)(
∆x
ν

)
=

(
−∇f (x)

0

)
I if the last iterate was already feasible

I Alternatively, for infeasible starting points,(
∇2f (x) AT

A 0

)(
∆x
ν

)
= −

(
∇f (x)
Ax− a

)
I either an undamped step to become feasible or
I damped steps to reduce the primal-dual residuum
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Further Readings

I equality constrained problems, quadratic programming, Newton’s
method for equality constrained problems:

I [Boyd and Vandenberghe, 2004, ch. 10]
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