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Modern Optimization Techniques

Inequality Constrained Minimization (ICM) Problems

A problem of the form:

arg min
x∈RN

f (x)

subject to gp(x) = 0, p = 1, . . . ,P

hq(x) ≤ 0, q = 1, . . . ,Q

where:

I f : RN → R convex and twice differentiable

I g1, . . . , gP : RN → R convex and twice differentiable

I h1, . . . , hQ : RN → R convex and twice differentiable

I A feasible optimal x∗ exists, p∗ := f (x∗)
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Inequality Constrained Minimization (ICM) Problems /
Affine

arg min
x∈RN

f (x)

subject to Ax− a = 0

Bx− b ≤ 0

where:

I f : RN → R convex and twice differentiable

I A ∈ RP×N , a ∈ RP : P affine equality constraints

I B ∈ RQ×N , b ∈ RQ : Q affine inequality constraints

I A feasible optimal x∗ exists, p∗ := f (x∗)
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Cutting Plane Methods

I We have seen how to solve inequality constrained problems using
interior point methods

I Interior point methods assume h to be
I convex and
I twice differentiable

I What to do if h is nondifferentiable?

I Cutting plane methods:

I Are able to handle nondifferentiable convex problems

I Can also be applied to unconstrained minimization problems

I Require the computation of a subgradient per step

I Can be much faster than subgradient methods
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Cutting Plane Methods - Basic Idea

I Let us denote by B ⊆ RN the set of all solutions x∗ to our problem:

B := {x∗ | f (x∗) = p∗, Ax∗ − a = 0, h(x∗) ≤ 0}

I Assume we have an oracle who can “answer” x
?
∈ B

I The oracle returns a plane that separates x from B

I A cutting plane method starts with an initial solution x(k) and then:

1. Query the oracle x(k)
?
∈ B

2. If x(k) ∈ B then stop and return x(k)

3. Generate a new point x(k+1) on the other side of the plane returned by
the oracle

4. Go back to step 1
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Cutting Plane Methods - Basic Idea
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Modern Optimization Techniques

Cutting Plane Oracle
Goal: Determine if x

?
∈ B

I two possible outcomes of a query to the oracle:

I a positive answer, if x ∈ B
I a separating hyperplane (u, v) between x and B, if x /∈ B:

uTx ≤ v , for x ∈ B
uTx > v , for some x /∈ B

with u ∈ RN and v ∈ R.

I Thus we can eliminate (cut) all points in the halfspace

{x | uTx > v}

from our search.
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Neutral cuts

If query point x(k) is on the boundary of the halfspace
the cut is called neutral:

uTx(k) = v

B

x(0)
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Modern Optimization Techniques

Deep cuts

If query point x(k) is in the interior of the halfspace
the cut is called deep:

uTx(k) > v

B

x(0)
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Oracle for an Unconstrained Minimization Problem

I Let f : RN → R be convex,
x the current query point.

I The oracle can be implemented by the subdifferential ∂f (x):
I For g ∈ ∂f (x), by definition of subgradients:

f (y) ≥ f (x) + gT (y − x), ∀y ∈ dom f

I x ∈ B ⇐⇒ 0 ∈ ∂f (x)
I if 0 /∈ ∂f (x), for g 6= 0 and any y with gT (y − x) ≥ 0:

gT (y − x) ≥ 0

f (y) ≥ f (x) > f (x∗) esp. y /∈ B
gTy ≥ gTx

I thus (g, gTx) is a neutral cut that cuts

{y | f (y) ≥ f (x)} ⊇ {y | gTy ≥ gTx}
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Subgradient as a cut criterion

x∗

x

g
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Deep cut for Unconstrained Minimization
I To get a deep cut we need to know an upper bound f̄ of the minimal

value such that
f (x) > f̄ ≥ f ∗

I subgradient definition:

f (y) ≥ f (x) + gT (y − x), ∀y ∈ dom f

I Thus

gT (y − x) > f̄ − f (x)  f (y) > f̄ ≥ f (x∗), esp.y /∈ B
gTy > gTx + f̄ − f (x)

I Which gives the deep cut (g, gTx + f̄ − f (x)) that cuts

{y | f (y) > f̄ } ⊇ {y | gTy ≥ gTx + f̄ − f (x)}
I To get f̄ , maintain the lowest value for f found so far:

f̄ (k) := min
k ′=1,...,k−1

f (x (k ′))
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Feasibility problem

Find a feasible x ∈ RN

find x

subject to h(x) ≤ 0

i.e., x ∈ B := {x ∈ RN | h(x) ≤ 0}.

For a given infeasible x:

I get a subgradient gq ∈ ∂hq(x) for a violated constraint q: hq(x) > 0

I Since hq(y) ≥ hq(x) + gT
q (y − x)

hq(x) + gT
q (y − x) > 0 =⇒ hq(y) > 0 =⇒ y /∈ B

I Thus every feasible y ∈ B must satisfy: hq(x) + gT
q (y − x) ≤ 0

I Deep cut!
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Inequality constrained Problem

I Now assume a general inequality constrained problem:

minimize f (x)

subject to h(x) ≤ 0

I Start with a point x:
I If x is not feasible, i.e. hq(x) > 0:

I Perform a feasibility cut (for gq ∈ ∂hq(x)):

hq(x) + gT
q (y − x) ≤ 0

I If x is feasible:
I Perform a (neutral) objective cut (for g ∈ ∂f (x)):

gT (y − x) ≤ 0

I or if we know f̄ : f (x∗) ≤ f̄ < f (x), a deep objective cut:

gT (y − x) + f (x)− f̄ ≤ 0
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General Cutting Plane Method

I We start with a polyhedron P(0) known to contain B:

P(0) = {x | C (0)x ≤ d(0)}

I We only query the oracle at points inside P0

I For each query point we get a cutting plane (u, v)

I We get a new polyhedron by inserting the new cutting plane:

P(k+1) := P(k) ∩ {x | uTx ≤ v} = {x | C (k+1)x ≤ d(k+1)}

with C (k+1) :=

[
C (k)

uT

]
, d(k+1) :=

[
d (k)

v

]
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General Cutting Plane Method

1 min-cuttingplane(f , ∂f , h, ∂h,C (0), d (0), x (0), ε,K ):
2 for k := 1, . . . ,K :

3 x (k) := compute-next-query(C (k), d (k))

4 if ||x (k) − x (k−1)|| < ε:

5 return x (k)

6 if h(x (k)) > 0:

7 choose q with hq(x (k)) > 0

8 choose g ∈ ∂hq(x (k))

9 u := g , v := gT x (k) − hq(x (k))
10 else :

11 choose g ∈ ∂f (x (k))

12 u := g , v := gT x (k)

13 C (k) :=

[
C (k)

uT

]
, d (k) :=

[
d (k−1)

v

]
14 return ”not converged”
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General Cutting Plane Method / Arguments

where

I f : RN → R, ∂f objective function and its subgradient

I h : RN → RQ , ∂h inequality constraints, h(x) ≤ 0, and its subgradient

I C (0) ∈ RN×R , d (0) ∈ RR starting polyhedron (containing the solution x∗)
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How to choose the next point

(From Stephen Boyd’s Lecture Notes)
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How to choose the next point

How do we choose the next x(k+1)?

I The size of P(k+1) is a measure of our uncertainty

I We want to choose a x(k+1) so that P(k+1) is small as possible no
matter the cut

I Strategy: choose x(k+1) close to the center of P(k+1)

P(k)

x(k+1)

P(k)

x(k+1)
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Specific Cutting Plane Methods

Specific cutting plane methods differ in the choice of the
next query point x(k):

I center of gravity (CG) of P(k).

I center of the maximum volume ellipsoid (MVE) contained in P(k).

I center of the maximum volume sphere contained in P(k)

(Chebyshev center).

I analytic center of the inequalites defining P(k).

Methods differ in

I guarantees they provide for the decrease in volume of P(k+1).

I how difficult they are to compute.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 25



Modern Optimization Techniques

Center of Gravity Method

x(k+1) is the center of gravity of P(k): CG (P(k))

CG (P(k)) =

∫
P(k) x dx∫
P(k) 1 dx

Theorem: be P ⊂ RN , xcg = CG (P), g 6= 0:

vol
(
P ∩ {x | gT (x− xcg ) ≤ 0}

)
≤ (1− 1

e
) vol(P) ≈ 0.63 vol(P)

thus at step k :

vol(P(k)) ≤ 0.63k vol(P(0))
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Maximum Volume Ellipsoid (MVE) vs.
Maximum Volume Sphere (Chebyshev Center)

P

xMVE

P

xCheb
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Maximum Volume Ellipsoid (MVE) Method

x(k+1) is the center of the maximum volume ellipsoid E contained in P(k).
Such an ellipsoid can be parametrized by

I a positive definite matrix E ∈ RN×N
++ and

I a vector h ∈ RN :

E(E ,h) := {Eα + h | α ∈ RN , ||α||2 ≤ 1}

The Maximum Volume Ellipsoid in a polyhedron

P(k) = {x | cTr x ≤ dr , r = 1, . . . ,R}

can be found by solving:

maximize log det E

subject to ||Ecr ||2 + cTr h ≤ dr , r = 1, . . . ,R
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Maximum Volume Ellipsoid (MVE) Method

I Computing the MVE is done by solving a convex optimization problem

I It is affine invariant

I One can show that:

vol(P(k+1)) ≤ (1− 1

N
) vol(P(k))
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Chebyshev Center

I x(k+1) the center of the largest Euclidean ball

S(ρ, xcenter) := {xcenter + x | ||x||2 ≤ ρ}
contained in

P(k) = {x | cTr x ≤ dr , r = 1, . . . ,R}

I Can be computed by linear programming:

maximize ρ

subject to cTr x + ρ||cr ||2 ≤ dr , r = 1, . . . ,R
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Analytic Center

I x(k+1) is the analytic center of the inequalites defining P(k):

P(k) = {x | cTr x ≤ dr , r = 1, . . . ,R}

x(k+1) = arg min
x
−

R∑
r=1

log(dr − crx)

I can be solved using any unconstrained method.
I e.g., Newton’s method
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Further Readings

I Cutting plane methods are not covered by Boyd and Vandenberghe
[2004].

I Cutting plane methods:
I [Luenberger and Ye, 2008, ch. 14.8]

I Cutting plane methods are not covered by Griva et al. [2009] and
Nocedal and Wright [2006] either.
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