

4. Inequality Constrained Optimization / 4.3. Cutting Plane Methods

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany

Syllabus

Mon.	30.10.	(0)	0. Overview
Mon.	6.11.	(1)	 Theory Convex Sets and Functions
Mon. Mon. Mon. Mon.	13.11. 20.11. 27.11. 4.12. 11.12. 18.12.	(2) (3) (4) (5) (6) (7)	 2. Unconstrained Optimization 2.1 Gradient Descent 2.2 Stochastic Gradient Descent 2.3 Newton's Method 2.4 Quasi-Newton Methods 2.5 Subgradient Methods 2.6 Coordinate Descent Christmas Break —
Mon. Mon.	8.1. 15.1.	(8) (9)	 Equality Constrained Optimization Duality Methods
Mon. Mon. Mon.	22.1. 29.1. 5.2.	(10) (11) (12)	4. Inequality Constrained Optimization4.1 Primal Methods4.2 Barrier and Penalty Methods4.3 Cutting Plane Methods

- 1. Inequality Constrained Minimization Problems
- 2. Cutting Plane Methods: Basic Idea
- 3. The Oracle
- 4. The General Cutting Plane Method
- 5. How to choose next query point

Outline

1. Inequality Constrained Minimization Problems

- 2. Cutting Plane Methods: Basic Idea
- 3. The Oracle
- 4. The General Cutting Plane Method
- 5. How to choose next query point

Inequality Constrained Minimization (ICM) Problems

A problem of the form:

where:

- $f : \mathbb{R}^N \to \mathbb{R}$ convex and twice differentiable
- ▶ $g_1, \ldots, g_P : \mathbb{R}^N \to \mathbb{R}$ convex and twice differentiable
- ► $h_1, \ldots, h_Q : \mathbb{R}^N \to \mathbb{R}$ convex and twice differentiable
- A feasible optimal \mathbf{x}^* exists, $p^* := f(\mathbf{x}^*)$

Inequality Constrained Minimization (ICM) Problems / Affine

arg min
$$f(\mathbf{x})$$

subject to $A\mathbf{x} - a = 0$
 $B\mathbf{x} - b \le 0$

where:

- $f : \mathbb{R}^N \to \mathbb{R}$ convex and twice differentiable
- $A \in \mathbb{R}^{P \times N}, a \in \mathbb{R}^{P}$: *P* affine equality constraints
- ▶ $B \in \mathbb{R}^{Q \times N}, b \in \mathbb{R}^{Q}$: *Q* affine inequality constraints
- A feasible optimal \mathbf{x}^* exists, $p^* := f(\mathbf{x}^*)$

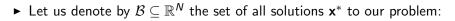
Outline

1. Inequality Constrained Minimization Problems

- 3. The Oracle
- 4. The General Cutting Plane Method
- 5. How to choose next query point

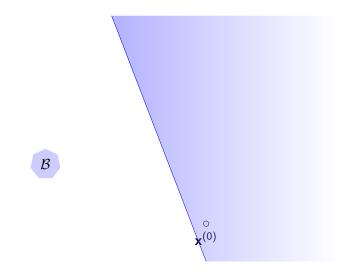
Cutting Plane Methods

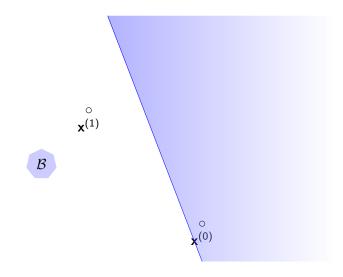
- We have seen how to solve inequality constrained problems using interior point methods
- ► Interior point methods assume *h* to be
 - convex and
 - twice differentiable
- ▶ What to do if *h* is nondifferentiable?
- Cutting plane methods:
 - ► Are able to handle nondifferentiable convex problems
 - ► Can also be applied to unconstrained minimization problems
 - ► Require the computation of a subgradient per step
 - ► Can be much faster than subgradient methods

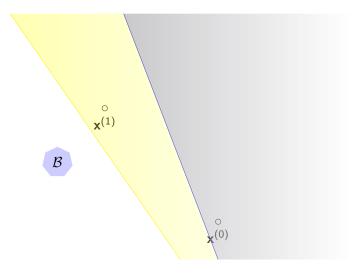


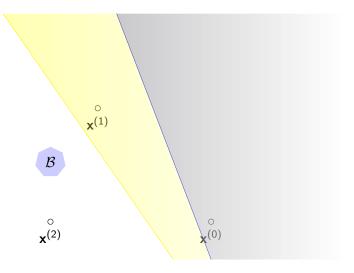
$$\mathcal{B} := \{ \mathbf{x}^* \mid f(\mathbf{x}^*) = p^*, \ A\mathbf{x}^* - \mathbf{a} = 0, \ h(\mathbf{x}^*) \le 0 \}$$

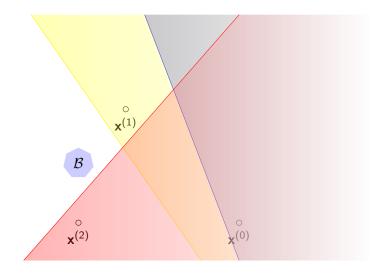
- ► Assume we have an **oracle** who can "answer" $\mathbf{x} \in \mathcal{B}$
- \blacktriangleright The oracle returns a plane that separates x from ${\cal B}$
- A cutting plane method starts with an initial solution $\mathbf{x}^{(k)}$ and then:
 - 1. Query the oracle $\mathbf{x}^{(k)} \stackrel{?}{\in} \mathcal{B}$
 - 2. If $\mathbf{x}^{(k)} \in \mathcal{B}$ then stop and return $\mathbf{x}^{(k)}$
 - 3. Generate a new point $\mathbf{x}^{(k+1)}$ on the other side of the plane returned by the oracle
 - 4. Go back to step 1

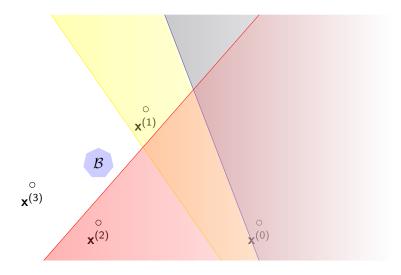




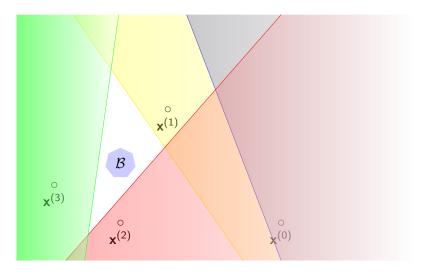








Cutting Plane Methods - Basic Idea



Outline

- 1. Inequality Constrained Minimization Problems
- 2. Cutting Plane Methods: Basic Idea
- 3. The Oracle
- 4. The General Cutting Plane Method
- 5. How to choose next query point

Cutting Plane Oracle Goal: Determine if $\mathbf{x} \stackrel{?}{\in} \mathcal{B}$

- ► two possible outcomes of a query to the oracle:
 - \blacktriangleright a positive answer, if $\textbf{x} \in \mathcal{B}$
 - ► a separating hyperplane (\mathbf{u}, v) between \mathbf{x} and \mathcal{B} , if $\mathbf{x} \notin \mathcal{B}$:

$$\mathbf{u}^T \mathbf{x} \le \mathbf{v}, \quad \text{for } \mathbf{x} \in \mathcal{B}$$

 $\mathbf{u}^T \mathbf{x} > \mathbf{v}, \quad \text{for some } \mathbf{x} \notin \mathcal{B}$

with $\mathbf{u} \in \mathbb{R}^N$ and $v \in \mathbb{R}$.

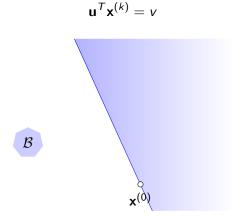
► Thus we can eliminate (cut) all points in the halfspace

$$\{\mathbf{x} \mid \mathbf{u}^T \mathbf{x} > \mathbf{v}\}\$$

from our search.

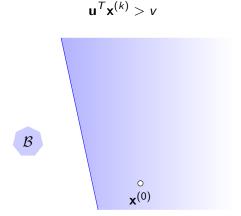
Neutral cuts

If query point $\mathbf{x}^{(\mathbf{k})}$ is on the boundary of the halfspace the cut is called **neutral**:



Deep cuts

If query point $\mathbf{x}^{(k)}$ is in the interior of the halfspace the cut is called **deep**:



Oracle for an Unconstrained Minimization Problem

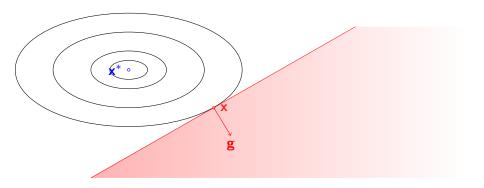
- Let f : ℝ^N → ℝ be convex,
 x the current query point.
- The oracle can be implemented by the subdifferential $\partial f(\mathbf{x})$:
 - For $\mathbf{g} \in \partial f(\mathbf{x})$, by definition of subgradients:

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \mathbf{g}^{T}(\mathbf{y} - \mathbf{x}), \quad \forall \mathbf{y} \in \operatorname{dom} f$$

• thus $(\mathbf{g}, \mathbf{g}^T \mathbf{x})$ is a neutral cut that cuts

$$\{\mathbf{y} \mid f(\mathbf{y}) \geq f(\mathbf{x})\} \supseteq \{\mathbf{y} \mid \mathbf{g}^{\mathsf{T}}\mathbf{y} \geq \mathbf{g}^{\mathsf{T}}\mathbf{x}\}$$

Subgradient as a cut criterion



Outline

- 1. Inequality Constrained Minimization Problems
- 2. Cutting Plane Methods: Basic Idea
- 3. The Oracle

4. The General Cutting Plane Method

5. How to choose next query point

Deep cut for Unconstrained Minimization

► To get a deep cut we need to know an upper bound f
 of the minimal value such that

$$f(\mathbf{x}) > ar{f} \geq f^*$$

subgradient definition:

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \mathbf{g}^{T}(\mathbf{y} - \mathbf{x}), \quad \forall \mathbf{y} \in \operatorname{dom} f$$

Thus

$$\begin{split} \mathbf{g}^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) &> \overline{f} - f(\mathbf{x}) \quad \rightsquigarrow \quad f(\mathbf{y}) > \overline{f} \ge f(\mathbf{x}^*), \quad \text{esp.} \mathbf{y} \notin \mathcal{B} \\ \mathbf{g}^{\mathsf{T}} \mathbf{y} &> \mathbf{g}^{\mathsf{T}} \mathbf{x} + \overline{f} - f(\mathbf{x}) \end{split}$$

- ▶ Which gives the deep cut $(\mathbf{g}, \mathbf{g}^T \mathbf{x} + \overline{f} f(\mathbf{x}))$ that cuts $\{\mathbf{y} \mid f(\mathbf{y}) > \overline{f}\} \supseteq \{\mathbf{y} \mid \mathbf{g}^T \mathbf{y} \ge \mathbf{g}^T \mathbf{x} + \overline{f} - f(\mathbf{x})\}$
- To get \overline{f} , maintain the lowest value for f found so far:

$$\overline{f}^{(k)} := \min_{k'=1,\dots,k-1} f(x^{(k')})$$

Universiter Hildeshein

Feasibility problem Find a feasible $\mathbf{x} \in \mathbb{R}^N$

> find \mathbf{x} subject to $h(\mathbf{x}) \leq 0$

i.e., $\mathbf{x} \in \mathcal{B} := {\mathbf{x} \in \mathbb{R}^N \mid h(\mathbf{x}) \le 0}.$

For a given infeasible x:

- ▶ get a subgradient $\mathbf{g}_q \in \partial h_q(\mathbf{x})$ for a violated constraint q: $h_q(\mathbf{x}) > 0$
- Since $h_q(\mathbf{y}) \geq h_q(\mathbf{x}) + \mathbf{g}_q^T(\mathbf{y} \mathbf{x})$

$$h_q(\mathbf{x}) + \mathbf{g}_q^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) > 0 \Longrightarrow h_q(\mathbf{y}) > 0 \Longrightarrow \mathbf{y} \notin \mathcal{B}$$

- ▶ Thus every feasible $\mathbf{y} \in \mathcal{B}$ must satisfy: $h_q(\mathbf{x}) + \mathbf{g}_q^T(\mathbf{y} \mathbf{x}) \leq 0$
- Deep cut!

Inequality constrained Problem

► Now assume a general inequality constrained problem:

minimize $f(\mathbf{x})$ subject to $h(\mathbf{x}) \leq 0$

- ► Start with a point **x**:
 - If x is not feasible, i.e. $h_q(\mathbf{x}) > 0$:
 - Perform a feasibility cut (for $\mathbf{g}_q \in \partial h_q(\mathbf{x})$):

$$h_q(\mathbf{x}) + \mathbf{g}_q^T(\mathbf{y} - \mathbf{x}) \leq 0$$

- If x is feasible:
 - Perform a (neutral) objective cut (for $\mathbf{g} \in \partial f(\mathbf{x})$):

$$\mathbf{g}^{T}(\mathbf{y} - \mathbf{x}) \leq 0$$

▶ or if we know $\overline{f} : f(\mathbf{x}^*) \leq \overline{f} < f(\mathbf{x})$, a deep objective cut:

$$\mathbf{g}^{\mathsf{T}}(\mathbf{y}-\mathbf{x})+f(\mathbf{x})-ar{f}\leq 0$$

General Cutting Plane Method

• We start with a polyhedron $\mathcal{P}^{(0)}$ known to contain \mathcal{B} :

$$\mathcal{P}^{(0)} = \{ \mathbf{x} \mid C^{(0)}\mathbf{x} \leq \mathbf{d}^{(0)} \}$$

- \blacktriangleright We only query the oracle at points inside \mathcal{P}_0
- For each query point we get a cutting plane (\mathbf{u}, v)
- ► We get a new polyhedron by inserting the new cutting plane:

$$\mathcal{P}^{(k+1)} := \mathcal{P}^{(k)} \cap \{ \mathbf{x} \mid \mathbf{u}^T \mathbf{x} \le v \} = \{ \mathbf{x} \mid C^{(k+1)} \mathbf{x} \le \mathbf{d}^{(k+1)} \}$$

with $C^{(k+1)} := \begin{bmatrix} C^{(k)} \\ u^T \end{bmatrix}, \quad \mathbf{d}^{(k+1)} := \begin{bmatrix} d^{(k)} \\ v \end{bmatrix}$

General Cutting Plane Method

1 min-cuttingplane $(f, \partial f, h, \partial h, C^{(0)}, d^{(0)}, x^{(0)}, \epsilon, K)$: for k := 1, ..., K: 2 $x^{(k)} := \text{compute-next-query}(C^{(k)}, d^{(k)})$ 3 if $||x^{(k)} - x^{(k-1)}|| < \epsilon$: 4 return $x^{(k)}$ 5 6 if $h(x^{(k)}) > 0$: 7 choose q with $h_q(x^{(k)}) > 0$ choose $g \in \partial h_q(x^{(k)})$ 8 $u := g, \quad v := g^T x^{(k)} - h_q(x^{(k)})$ 9 10 else : choose $g \in \partial f(x^{(k)})$ 11 $u := g, \quad v := g^T x^{(k)}$ 12 $C^{(k)} := \begin{bmatrix} C^{(k)} \\ u^T \end{bmatrix}, \quad d^{(k)} := \begin{bmatrix} d^{(k-1)} \\ v \end{bmatrix}$ 13 return "not converged" 14

General Cutting Plane Method / Arguments

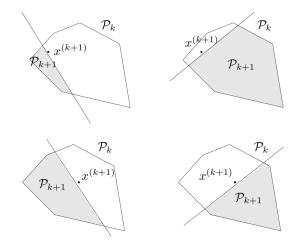
where

- ▶ $f : \mathbb{R}^N \to \mathbb{R}, \partial f$ objective function and its subgradient
- ▶ $h : \mathbb{R}^N \to \mathbb{R}^Q, \partial h$ inequality constraints, $h(x) \leq 0$, and its subgradient
- $C^{(0)} \in \mathbb{R}^{N \times R}, d^{(0)} \in \mathbb{R}^{R}$ starting polyhedron (containing the solution x^{*})

Outline

- 1. Inequality Constrained Minimization Problems
- 2. Cutting Plane Methods: Basic Idea
- 3. The Oracle
- 4. The General Cutting Plane Method
- 5. How to choose next query point

How to choose the next point



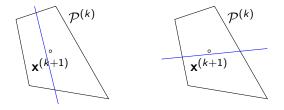
(From Stephen Boyd's Lecture Notes)

Juniversiter Hildesheim

How to choose the next point

How do we choose the next $\mathbf{x}^{(k+1)}$?

- The size of $\mathcal{P}^{(k+1)}$ is a measure of our uncertainty
- ► We want to choose a x^(k+1) so that P^(k+1) is small as possible no matter the cut
- ► Strategy: choose $\mathbf{x}^{(k+1)}$ close to the center of $\mathcal{P}^{(k+1)}$



Specific Cutting Plane Methods

Specific cutting plane methods differ in the choice of the next query point $\mathbf{x}^{(k)}$:

- center of gravity (CG) of $\mathcal{P}^{(k)}$.
- center of the maximum volume ellipsoid (MVE) contained in $\mathcal{P}^{(k)}$.
- ► center of the maximum volume sphere contained in P^(k) (Chebyshev center).
- analytic center of the inequalites defining $\mathcal{P}^{(k)}$.

Methods differ in

- guarantees they provide for the decrease in volume of $\mathcal{P}^{(k+1)}$.
- ► how difficult they are to compute.

Center of Gravity Method

 $\mathbf{x}^{(k+1)}$ is the center of gravity of $\mathcal{P}^{(k)}$: $CG(\mathcal{P}^{(k)})$

$$CG(\mathcal{P}^{(k)}) = rac{\int_{\mathcal{P}^{(k)}} \mathbf{x} \, d\mathbf{x}}{\int_{\mathcal{P}^{(k)}} 1 \, d\mathbf{x}}$$

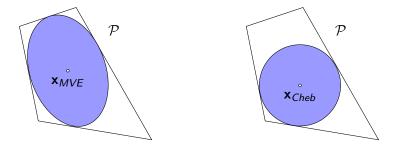
Theorem: be $\mathcal{P} \subset \mathbb{R}^N$, $\mathbf{x}_{cg} = CG(\mathcal{P})$, $\mathbf{g} \neq 0$:

$$\operatorname{vol}\left(\mathcal{P} \cap \{\mathbf{x} \mid \mathbf{g}^{T}(\mathbf{x} - \mathbf{x}_{cg}) \leq 0\}\right) \leq (1 - \frac{1}{e})\operatorname{vol}(\mathcal{P}) \approx 0.63\operatorname{vol}(\mathcal{P})$$

thus at step k:

$$\operatorname{vol}(\mathcal{P}^{(k)}) \leq 0.63^k \operatorname{vol}(\mathcal{P}^{(0)})$$

Maximum Volume Ellipsoid (MVE) vs. Maximum Volume Sphere (Chebyshev Center)



Maximum Volume Ellipsoid (MVE) Method

 $\mathbf{x}^{(k+1)}$ is the center of the maximum volume ellipsoid \mathcal{E} contained in $\mathcal{P}^{(k)}$. Such an ellipsoid can be parametrized by

- ▶ a positive definite matrix $E \in \mathbb{R}_{++}^{N \times N}$ and
- a vector $\mathbf{h} \in \mathbb{R}^N$:

$$\mathcal{E}(E,\mathbf{h}) := \{ E\alpha + \mathbf{h} \mid \alpha \in \mathbb{R}^N, ||\alpha||_2 \le 1 \}$$

The Maximum Volume Ellipsoid in a polyhedron

$$\mathcal{P}^{(k)} = \{\mathbf{x} \mid \mathbf{c}_r^T \mathbf{x} \leq d_r, r = 1, \dots, R\}$$

can be found by solving:

maximize log det
$$E$$

subject to $||E\mathbf{c}_r||_2 + \mathbf{c}_r^T \mathbf{h} \le d_r, \quad r = 1, \dots, R$

Maximum Volume Ellipsoid (MVE) Method

► Computing the MVE is done by solving a convex optimization problem

It is affine invariant

• One can show that:

$$\mathsf{vol}(\mathcal{P}^{(k+1)}) \leq (1 - rac{1}{N}) \, \mathsf{vol}(\mathcal{P}^{(k)})$$

Chebyshev Center

• $\mathbf{x}^{(k+1)}$ the center of the largest Euclidean ball

$$\mathcal{S}(\rho, \mathbf{x}_{center}) := \{\mathbf{x}_{center} + \mathbf{x} \mid ||\mathbf{x}||_2 \le \rho\}$$

contained in

$$\mathcal{P}^{(k)} = \{ \mathbf{x} \mid \mathbf{c}_r^T \mathbf{x} \leq d_r, r = 1, \dots, R \}$$

• Can be computed by linear programming:

maximize
$$ho$$

subject to $\mathbf{c}_r^T \mathbf{x} +
ho ||\mathbf{c}_r||_2 \leq d_r, \quad r=1,\ldots,R$

• $\mathbf{x}^{(k+1)}$ is the analytic center of the inequalites defining $\mathcal{P}^{(k)}$:

$$\mathcal{P}^{(k)} = \{ \mathbf{x} \mid \mathbf{c}_r^T \mathbf{x} \le d_r, r = 1, \dots, R \}$$
$$\mathbf{x}^{(k+1)} = \arg\min_{\mathbf{x}} - \sum_{r=1}^R \log(d_r - \mathbf{c}_r \mathbf{x})$$

- ► can be solved using any unconstrained method.
 - ► e.g., Newton's method

Further Readings

- Cutting plane methods are not covered by Boyd and Vandenberghe [2004].
- Cutting plane methods:
 - ▶ [Luenberger and Ye, 2008, ch. 14.8]
- Cutting plane methods are not covered by Griva et al. [2009] and Nocedal and Wright [2006] either.

References I

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univ Press, 2004.

- Igor Griva, Stephen G. Nash, and Ariela Sofer. *Linear and nonlinear optimization*. Society for Industrial and Applied Mathematics, 2009.
- David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming. Springer, 2008. Fourth edition 2015.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2006.