Modern Optimization Techniques
 1. Theory

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science
University of Hildesheim, Germany

Syllabus

Mon. 28.10.	(0)	0. Overview
		1. Theory
Mon. 4.11.	(1)	1. Convex Sets and Functions
		2. Unconstrained Optimization
Mon. 11.11.	(2)	2.1 Gradient Descent
Mon. 18.11.	(3)	2.2 Stochastic Gradient Descent
Mon. 25.11.	(4)	2.3 Newton's Method
Mon. 2.12.	(5)	2.4 Quasi-Newton Methods
Mon. 19.12.	(6)	2.5 Subgradient Methods
Mon. 16.12.	(7)	2.6 Coordinate Descent - Christmas Break -
Mon. 6.1.	(8)	3. Equality Constrained Optimization 3.1 Duality
Mon. 13.1.	(9)	3.2 Methods
		4. Inequality Constrained Optimization
Mon. 20.1.	(10)	4.1 Primal Methods
Mon. 27.1.	(11)	4.2 Barrier and Penalty Methods
Mon. 3.2.	(12)	4.3 Cutting Plane Methods

Outline

1. Introduction
2. Convex Sets

3. Convex Functions

4. Recognizing Convex Functions

Outline

1. Introduction

2. Convex Sets

3. Convex Functions

4. Recognizing Convex Functions

A convex function

A non-convex function

$$
f(x)
$$

Convex Optimization Problem

An optimization problem

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & h_{q}(x) \leq 0, \quad q=1, \ldots, Q \\
& A x=b
\end{aligned}
$$

is said to be convex if $f, h_{1} \ldots h_{Q}$ are convex.

Note: The equality constraints also are convex, even linear.

Convex Optimization Problem

An optimization problem

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & h_{q}(x) \leq 0, \quad q=1, \ldots, Q \\
& A x=b
\end{aligned}
$$

is said to be convex if $f, h_{1} \ldots h_{Q}$ are convex. How do we know if a
function is convex or not?

Note: The equality constraints also are convex, even linear.

Outline

1. Introduction

2. Convex Sets

3. Convex Functions

4. Recognizing Convex Functions

Affine Sets

For any two points x_{1}, x_{2} we can define the line through them as:

Affine Sets

For any two points x_{1}, x_{2} we can define the line through them as:

$$
x=\theta x_{1}+(1-\theta) x_{2}, \quad \theta \in \mathbb{R}
$$

Affine Sets

For any two points x_{1}, x_{2} we can define the line through them as:

$$
x=\theta x_{1}+(1-\theta) x_{2}, \quad \theta \in \mathbb{R}
$$

Example:

Affine Sets

For any two points x_{1}, x_{2} we can define the line through them as:

$$
x=\theta x_{1}+(1-\theta) x_{2}, \quad \theta \in \mathbb{R}
$$

Example:

Affine Sets

For any two points x_{1}, x_{2} we can define the line through them as:

$$
x=\theta x_{1}+(1-\theta) x_{2}, \quad \theta \in \mathbb{R}
$$

Example:

Affine Sets

For any two points x_{1}, x_{2} we can define the line through them as:

$$
x=\theta x_{1}+(1-\theta) x_{2}, \quad \theta \in \mathbb{R}
$$

Example:

Affine Sets - Definition

An affine set is a set containing the line through any two distinct points in it.

Affine Sets - Definition

An affine set is a set containing the line through any two distinct points in it.

Examples:

- \mathbb{R}^{N} for $N \in \mathbb{N}^{+}$
- solution set of linear equations $X:=\left\{x \in \mathbb{R}^{N} \mid A x=b\right\}$

Convex Sets

The line segment between any two points x_{1}, x_{2} is the set of all points:

Convex Sets

The line segment between any two points x_{1}, x_{2} is the set of all points:

$$
x=\theta x_{1}+(1-\theta) x_{2}, \quad 0 \leq \theta \leq 1
$$

Convex Sets

The line segment between any two points x_{1}, x_{2} is the set of all points:

$$
x=\theta x_{1}+(1-\theta) x_{2}, \quad 0 \leq \theta \leq 1
$$

Example:

Convex Sets

The line segment between any two points x_{1}, x_{2} is the set of all points:

$$
x=\theta x_{1}+(1-\theta) x_{2}, \quad 0 \leq \theta \leq 1
$$

Example:

$$
\begin{gathered}
x_{1} \\
0
\end{gathered}
$$

Convex Sets

The line segment between any two points x_{1}, x_{2} is the set of all points:

$$
x=\theta x_{1}+(1-\theta) x_{2}, \quad 0 \leq \theta \leq 1
$$

Example:

Convex Sets

The line segment between any two points x_{1}, x_{2} is the set of all points:

$$
x=\theta x_{1}+(1-\theta) x_{2}, \quad 0 \leq \theta \leq 1
$$

Example:

Convex Sets

The line segment between any two points x_{1}, x_{2} is the set of all points:

$$
x=\theta x_{1}+(1-\theta) x_{2}, \quad 0 \leq \theta \leq 1
$$

Example:

A convex set contains the line segment between any two points in the set.

Convex Sets - Examples: Which ones are Convex?

Convex Sets - Examples

Convex Sets:

Non-convex Sets:

Convex Sets - Examples

All affine sets are also convex:

- \mathbb{R}^{N} for $N \in \mathbb{N}^{+}$
- solution set of linear equations $X:=\left\{x \in \mathbb{R}^{N} \mid A x=b\right\}$

Convex sets (but in general not affine sets):

- solution set of linear inequalities $X:=\left\{x \in \mathbb{R}^{N} \mid A x \leq b\right\}$
- half spaces, e.g. $X:=\left\{x \in \mathbb{R}^{N} \mid a^{T} x \leq b\right\}$

$$
\text { e.g., } X:=\left\{x \in \mathbb{R}^{N} \mid x_{1} \geq 0\right\}
$$

- convex polygons (2d) / polyhedrons (3d) / polytopes (nd)

Convex Combination and Convex Hull

 (standard) simplex:$$
\begin{aligned}
\Delta^{N} & :=\left\{\theta \in \mathbb{R}^{N} \mid \theta_{n} \geq 0, n=1, \ldots, N ; \sum_{n=1}^{N} \theta_{n}=1\right\} \\
& =\left\{\theta \in[0,1]^{N} \mid \mathbb{1}^{T} \theta=1\right\}
\end{aligned}
$$

convex combination of some points $x_{1}, \ldots x_{N} \in \mathbb{R}^{M}$: any point x with

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots+\theta_{N} x_{N}, \quad \theta \in \Delta^{N}
$$

convex hull of a set $X \subseteq \mathbb{R}^{M}$ of points:

$$
\operatorname{conv}(X):=\left\{\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots+\theta_{N} x_{N} \mid N \in \mathbb{N}, x_{1}, \ldots, x_{N} \in X, \theta \in \Delta^{N}\right\}
$$

i.e., the set of all convex combinations of points in X.

Note: $\mathbb{1}:=(1,1, \ldots, 1)^{T}$ vector of all ones.

Outline

1. Introduction

2. Convex Sets

3. Convex Functions

4. Recognizing Convex Functions

Convex Functions

A function $f: X \rightarrow \mathbb{R}, X \subseteq \mathbb{R}^{N}$ is convex iff:

Convex Functions

A function $f: X \rightarrow \mathbb{R}, X \subseteq \mathbb{R}^{N}$ is convex iff:

- $\operatorname{dom} f:=X$ is a convex set

Convex Functions

A function $f: X \rightarrow \mathbb{R}, X \subseteq \mathbb{R}^{N}$ is convex iff:

- $\operatorname{dom} f:=X$ is a convex set
- for all $x_{1}, x_{2} \in \operatorname{dom} f$ and $0 \leq \theta \leq 1$ it satistfies

$$
f\left(\theta x_{1}+(1-\theta) x_{2}\right) \leq \theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right)
$$

(the function is below of its secant segments/chords.)

Convex Functions

A function $f: X \rightarrow \mathbb{R}, X \subseteq \mathbb{R}^{N}$ is convex iff:

- $\operatorname{dom} f:=X$ is a convex set
- for all $x_{1}, x_{2} \in \operatorname{dom} f$ and $0 \leq \theta \leq 1$ it satistfies

$$
f\left(\theta x_{1}+(1-\theta) x_{2}\right) \leq \theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right)
$$

(the function is below of its secant segments/chords.)

Convex functions

Convex functions

$f(x)$

- $\theta x_{1}+(1-\theta) x_{2}$

Convex functions

- $\theta x_{1}+(1-\theta) x_{2}$
- $\left(\theta x_{1}+(1-\theta) x_{2}, f\left(\theta x_{1}+(1-\theta) x_{2}\right)\right)$

Convex functions

- $\theta x_{1}+(1-\theta) x_{2}$
- $\left(\theta x_{1}+(1-\theta) x_{2}, f\left(\theta x_{1}+(1-\theta) x_{2}\right)\right)$
- $\left(\theta x_{1}+(1-\theta) x_{2}, \theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right)\right)$

How are Convex Functions Related to Convex Sets?

epigraph of a function $f: X \rightarrow \mathbb{R}, X \subseteq \mathbb{R}^{N}$:

$$
\operatorname{epi}(f):=\{(x, y) \in X \times \mathbb{R} \mid y \geq f(x)\}
$$

How are Convex Functions Related to Convex Sets?

epigraph of a function $f: X \rightarrow \mathbb{R}, X \subseteq \mathbb{R}^{N}$:

$$
\operatorname{epi}(f):=\{(x, y) \in X \times \mathbb{R} \mid y \geq f(x)\}
$$

f is convex (as function) \Longleftrightarrow epi(f) is convex (as set).
proof is straight-forward (try it!)

Concave Functions

A function f is called concave if $-f$ is convex

Concave Functions

A function f is called concave if $-f$ is convex
A Concave Function
$f(x)$

Concave Functions

A function f is called concave if $-f$ is convex

A Concave Function $f(x)$

A Convex Function $f(x)$

Strictly Convex Functions

A function $f: X \rightarrow \mathbb{R}, X \subseteq \mathbb{R}^{N}$ is strictly convex if:

Strictly Convex Functions

A function $f: X \rightarrow \mathbb{R}, X \subseteq \mathbb{R}^{N}$ is strictly convex if:

- $\operatorname{dom} f$ is a convex set

Strictly Convex Functions

A function $f: X \rightarrow \mathbb{R}, X \subseteq \mathbb{R}^{N}$ is strictly convex if:

- $\operatorname{dom} f$ is a convex set
- for all $x_{1}, x_{2} \in \operatorname{dom} f, x_{1} \neq x_{2}$ and $0<\theta<1$ it satistfies

$$
f\left(\theta x_{1}+(1-\theta) x_{2}\right)<\theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right)
$$

Examples

Examples of Convex functions:

Examples

Examples of Convex functions:

- affine: $f(x)=a x+b$, with $\operatorname{dom} f=\mathbb{R}$ and $a, b \in \mathbb{R}$

Examples

Examples of Convex functions:

- affine: $f(x)=a x+b$, with $\operatorname{dom} f=\mathbb{R}$ and $a, b \in \mathbb{R}$
- exponential: $f(x)=e^{a x}$, with $a \in \mathbb{R}$

Examples

Examples of Convex functions:

- affine: $f(x)=a x+b$, with $\operatorname{dom} f=\mathbb{R}$ and $a, b \in \mathbb{R}$
- exponential: $f(x)=e^{a x}$, with $a \in \mathbb{R}$
- powers: $f(x)=x^{a}$, with $\operatorname{dom} f=\mathbb{R}_{0}^{+}$and $a \geq 1$ or $a \leq 0$

Examples

Examples of Convex functions:

- affine: $f(x)=a x+b$, with $\operatorname{dom} f=\mathbb{R}$ and $a, b \in \mathbb{R}$
- exponential: $f(x)=e^{a x}$, with $a \in \mathbb{R}$
- powers: $f(x)=x^{a}$, with $\operatorname{dom} f=\mathbb{R}_{0}^{+}$and $a \geq 1$ or $a \leq 0$
- powers of absolute value: $f(x)=|x|^{a}$, with $\operatorname{dom} f=\mathbb{R}$ and $a \geq 1$

Examples

Examples of Convex functions:

- affine: $f(x)=a x+b$, with $\operatorname{dom} f=\mathbb{R}$ and $a, b \in \mathbb{R}$
- exponential: $f(x)=e^{a x}$, with $a \in \mathbb{R}$
- powers: $f(x)=x^{a}$, with $\operatorname{dom} f=\mathbb{R}_{0}^{+}$and $a \geq 1$ or $a \leq 0$
- powers of absolute value: $f(x)=|x|^{a}$, with $\operatorname{dom} f=\mathbb{R}$ and $a \geq 1$
- negative entropy: $f(x)=x \log x$, with $\operatorname{dom} f=\mathbb{R}^{+}$

Examples

Examples of Convex functions:

- affine: $f(x)=a x+b$, with $\operatorname{dom} f=\mathbb{R}$ and $a, b \in \mathbb{R}$
- exponential: $f(x)=e^{a x}$, with $a \in \mathbb{R}$
- powers: $f(x)=x^{a}$, with $\operatorname{dom} f=\mathbb{R}_{0}^{+}$and $a \geq 1$ or $a \leq 0$
- powers of absolute value: $f(x)=|x|^{a}$, with $\operatorname{dom} f=\mathbb{R}$ and $a \geq 1$
- negative entropy: $f(x)=x \log x$, with $\operatorname{dom} f=\mathbb{R}^{+}$

Examples of Concave Functions:

Examples

Examples of Convex functions:

- affine: $f(x)=a x+b$, with $\operatorname{dom} f=\mathbb{R}$ and $a, b \in \mathbb{R}$
- exponential: $f(x)=e^{a x}$, with $a \in \mathbb{R}$
- powers: $f(x)=x^{a}$, with $\operatorname{dom} f=\mathbb{R}_{0}^{+}$and $a \geq 1$ or $a \leq 0$
- powers of absolute value: $f(x)=|x|^{a}$, with $\operatorname{dom} f=\mathbb{R}$ and $a \geq 1$
- negative entropy: $f(x)=x \log x$, with $\operatorname{dom} f=\mathbb{R}^{+}$

Examples of Concave Functions:

- affine: $f(x)=a x+b$, with $\operatorname{dom} f=\mathbb{R}$ and $a, b \in \mathbb{R}$

Examples

Examples of Convex functions:

- affine: $f(x)=a x+b$, with $\operatorname{dom} f=\mathbb{R}$ and $a, b \in \mathbb{R}$
- exponential: $f(x)=e^{a x}$, with $a \in \mathbb{R}$
- powers: $f(x)=x^{a}$, with $\operatorname{dom} f=\mathbb{R}_{0}^{+}$and $a \geq 1$ or $a \leq 0$
- powers of absolute value: $f(x)=|x|^{a}$, with $\operatorname{dom} f=\mathbb{R}$ and $a \geq 1$
- negative entropy: $f(x)=x \log x$, with $\operatorname{dom} f=\mathbb{R}^{+}$

Examples of Concave Functions:

- affine: $f(x)=a x+b$, with $\operatorname{dom} f=\mathbb{R}$ and $a, b \in \mathbb{R}$
- powers: $f(x)=x^{a}$, with $\operatorname{dom} f=\mathbb{R}_{0}^{+}$and $0 \leq a \leq 1$

Examples

Examples of Convex functions:

- affine: $f(x)=a x+b$, with $\operatorname{dom} f=\mathbb{R}$ and $a, b \in \mathbb{R}$
- exponential: $f(x)=e^{a x}$, with $a \in \mathbb{R}$
- powers: $f(x)=x^{a}$, with $\operatorname{dom} f=\mathbb{R}_{0}^{+}$and $a \geq 1$ or $a \leq 0$
- powers of absolute value: $f(x)=|x|^{a}$, with $\operatorname{dom} f=\mathbb{R}$ and $a \geq 1$
- negative entropy: $f(x)=x \log x$, with $\operatorname{dom} f=\mathbb{R}^{+}$

Examples of Concave Functions:

- affine: $f(x)=a x+b$, with $\operatorname{dom} f=\mathbb{R}$ and $a, b \in \mathbb{R}$
- powers: $f(x)=x^{a}$, with $\operatorname{dom} f=\mathbb{R}_{0}^{+}$and $0 \leq a \leq 1$
- logarithm: $f(x)=\log x$, with $\operatorname{dom} f=\mathbb{R}^{+}$

Examples

Examples of Convex functions:

All norms are convex!

- Immediate consequence of the triangle inequality and absolute homogeneity.

$$
\|\theta x+(1-\theta) y\| \leq\|\theta x\|+\|(1-\theta) y\|=\theta\|x\|+(1-\theta)\|y\|
$$

Examples

Examples of Convex functions:

All norms are convex!

- Immediate consequence of the triangle inequality and absolute homogeneity.

$$
\|\theta x+(1-\theta) y\| \leq\|\theta x\|+\|(1-\theta) y\|=\theta\|x\|+(1-\theta)\|y\|
$$

- For $\mathbf{x} \in \mathbb{R}^{N}, p \geq 1$:
$\mathbf{p - n o r m}:\|\mathbf{x}\|_{p}:=\left(\sum_{n=1}^{N}\left|x_{n}\right|^{p}\right)^{\frac{1}{p}}$,

Examples

Examples of Convex functions:

All norms are convex!

- Immediate consequence of the triangle inequality and absolute homogeneity.

$$
\|\theta x+(1-\theta) y\| \leq\|\theta x\|+\|(1-\theta) y\|=\theta\|x\|+(1-\theta)\|y\|
$$

- For $\mathbf{x} \in \mathbb{R}^{N}, p \geq 1$:
\mathbf{p}-norm: $\|\mathbf{x}\|_{p}:=\left(\sum_{n=1}^{N}\left|x_{n}\right|^{p}\right)^{\frac{1}{p}}$,
- $\|\mathbf{x}\|_{\infty}:=\max _{n=1: N}\left|x_{n}\right|$

Examples

Examples of Convex functions:

All norms are convex!

- Immediate consequence of the triangle inequality and absolute homogeneity.

$$
\|\theta x+(1-\theta) y\| \leq\|\theta x\|+\|(1-\theta) y\|=\theta\|x\|+(1-\theta)\|y\|
$$

- For $\mathbf{x} \in \mathbb{R}^{N}, p \geq 1$:

$$
\mathbf{p - n o r m}:\|\mathbf{x}\|_{p}:=\left(\sum_{n=1}^{N}\left|x_{n}\right|^{p}\right)^{\frac{1}{p}},
$$

- $\|\mathbf{x}\|_{\infty}:=\max _{n=1: N}\left|x_{n}\right|$

Affine functions on vectors are also convex: $f(\mathbf{x})=\mathbf{a}^{T} \mathbf{x}+b$

Outline

1. Introduction

2. Convex Sets

3. Convex Functions

4. Recognizing Convex Functions

1st-Order Condition

f is differentiable if $\operatorname{dom} f$ is open and the gradient

$$
\nabla f(\mathbf{x})=\left(\frac{\partial f(\mathbf{x})}{\partial x_{1}}, \frac{\partial f(\mathbf{x})}{\partial x_{2}}, \ldots, \frac{\partial f(\mathbf{x})}{\partial x_{n}}\right)^{T}
$$

exists everywhere.

1st-order condition: a differentiable function f is convex iff

1st-Order Condition

f is differentiable if $\operatorname{dom} f$ is open and the gradient

$$
\nabla f(\mathbf{x})=\left(\frac{\partial f(\mathbf{x})}{\partial x_{1}}, \frac{\partial f(\mathbf{x})}{\partial x_{2}}, \ldots, \frac{\partial f(\mathbf{x})}{\partial x_{n}}\right)^{T}
$$

exists everywhere.

1st-order condition: a differentiable function f is convex iff

- $\operatorname{dom} f$ is a convex set

1st-Order Condition

f is differentiable if $\operatorname{dom} f$ is open and the gradient

$$
\nabla f(\mathbf{x})=\left(\frac{\partial f(\mathbf{x})}{\partial x_{1}}, \frac{\partial f(\mathbf{x})}{\partial x_{2}}, \ldots, \frac{\partial f(\mathbf{x})}{\partial x_{n}}\right)^{T}
$$

exists everywhere.

1st-order condition: a differentiable function f is convex iff

- $\operatorname{dom} f$ is a convex set
- for all $\mathbf{x}, \mathbf{y} \in \operatorname{dom} f$

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})
$$

(the function is above any of its tangents.)

1st-Order Condition

1st-order condition: a differentiable function f is convex iff

- $\operatorname{dom} f$ is a convex set
- for all $\mathbf{x}, \mathbf{y} \in \operatorname{dom} f$

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})
$$

1st-Order Condition / Proof

Let $\operatorname{dom} f=X$ be convex.

$$
f: X \rightarrow \mathbb{R} \text { convex } \Leftrightarrow f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y}
$$

1st-Order Condition / Proof

Let $\operatorname{dom} f=X$ be convex.

$$
\begin{aligned}
& f: X \rightarrow \mathbb{R} \text { convex } \Leftrightarrow f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y} \\
& " \Rightarrow ": f(x+t(y-x)) \leq(1-t) f(x)+t f(y) \quad \mid: t
\end{aligned}
$$

1st-Order Condition / Proof

Let $\operatorname{dom} f=X$ be convex.

$$
\begin{aligned}
& f: X \rightarrow \mathbb{R} \text { convex } \Leftrightarrow f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y} \\
& " \Rightarrow ": f(x+t(y-x)) \leq(1-t) f(x)+t f(y) \quad \mid: t \\
& f(y) \geq \frac{f(x+t(y-x))-f(x)}{t}+f(x) \xrightarrow{t \rightarrow 0^{+}} \nabla f(x)^{T}(y-x)+f(x)
\end{aligned}
$$

1st-Order Condition / Proof

Let $\operatorname{dom} f=X$ be convex.

$$
\begin{aligned}
& f: X \rightarrow \mathbb{R} \text { convex } \Leftrightarrow f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y} \\
& " \Rightarrow ": f(x+t(y-x)) \leq(1-t) f(x)+t f(y) \quad \mid: t \\
& f(y) \geq \frac{f(x+t(y-x))-f(x)}{t}+f(x) \xrightarrow{t \rightarrow 0^{+}} \nabla f(x)^{T}(y-x)+f(x)
\end{aligned}
$$

$" \Leftarrow ":$ Apply twice to $z:=\theta x+(1-\theta) y$

$$
\begin{aligned}
& f(x) \geq f(z)+\nabla f(z)^{T}(x-z) \\
& f(y) \geq f(z)+\nabla f(z)^{T}(y-z)
\end{aligned}
$$

1st-Order Condition / Proof

Let $\operatorname{dom} f=X$ be convex.

$$
\begin{aligned}
& f: X \rightarrow \mathbb{R} \text { convex } \Leftrightarrow f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{\top}(\mathbf{y}-\mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y} \\
" \Rightarrow ": & f(x+t(y-x)) \leq(1-t) f(x)+t f(y) \quad \mid: t \\
& f(y) \geq \frac{f(x+t(y-x))-f(x)}{t}+f(x) \xrightarrow{t \rightarrow 0^{+}} \nabla f(x)^{T}(y-x)+f(x)
\end{aligned}
$$

$" \Leftarrow "$: Apply twice to $z:=\theta x+(1-\theta) y$

$$
\begin{aligned}
f(x) & \geq f(z)+\nabla f(z)^{T}(x-z) \\
f(y) & \geq f(z)+\nabla f(z)^{T}(y-z) \\
\rightsquigarrow \theta f(x)+(1-\theta) f(y) & \geq f(z)+\nabla f(z)^{T}(\theta x+(1-\theta) y)-\nabla f(z)^{T} z \\
& =f(z)+\nabla f(z)^{T} z-\nabla f(z)^{T} z \\
& =f(z)=f(\theta x+(1-\theta) y)
\end{aligned}
$$

1st-Order Condition / Strict Variant

strict 1st-order condition: a differentiable function f is strictly convex iff

- $\operatorname{dom} f$ is a convex set
- for all $\mathbf{x}, \mathbf{y} \in \operatorname{dom} f$

$$
f(\mathbf{y})>f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})
$$

Global Minima

Let $\operatorname{dom} f=X$ be convex.

$$
f: X \rightarrow \mathbb{R} \text { convex } \Leftrightarrow f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y}
$$

Consequence: Points x with $\nabla f(x)=0$ are (equivalent) global minima.

- minima form a convex set
- if f is strictly convex: there is exactly one global minimum x^{*}.

2nd-Order Condition

f is twice differentiable if dom f is open and the Hessian $\nabla^{2} f(x)$

$$
\nabla^{2} f(\mathbf{x})_{n, m}=\frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{m}}
$$

exists everywhere.
2nd-order condition: a twice differentiable function f is convex iff

2nd-Order Condition

f is twice differentiable if dom f is open and the Hessian $\nabla^{2} f(x)$

$$
\nabla^{2} f(\mathbf{x})_{n, m}=\frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{m}}
$$

exists everywhere.
2nd-order condition: a twice differentiable function f is convex iff

- $\operatorname{dom} f$ is a convex set

2nd-Order Condition

f is twice differentiable if $\operatorname{dom} f$ is open and the Hessian $\nabla^{2} f(x)$

$$
\nabla^{2} f(\mathbf{x})_{n, m}=\frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{m}}
$$

exists everywhere.
2nd-order condition: a twice differentiable function f is convex iff

- $\operatorname{dom} f$ is a convex set
- for all $\mathbf{x} \in \operatorname{dom} f$

$$
\nabla^{2} f(\mathbf{x}) \succeq 0 \quad \text { for all } \mathbf{x} \in \operatorname{dom} f
$$

2nd-Order Condition

f is twice differentiable if $\operatorname{dom} f$ is open and the Hessian $\nabla^{2} f(x)$

$$
\nabla^{2} f(\mathbf{x})_{n, m}=\frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{m}}
$$

exists everywhere.
2nd-order condition: a twice differentiable function f is convex iff

- $\operatorname{dom} f$ is a convex set
- for all $\mathbf{x} \in \operatorname{dom} f$

$$
\nabla^{2} f(\mathbf{x}) \succeq 0 \quad \text { for all } \mathbf{x} \in \operatorname{dom} f
$$

Furthermore:

- for functions f on dom $f \subseteq \mathbb{R}$ simply $f^{\prime \prime}(x) \geq 0$ for all $x \in \operatorname{dom} f$
- if $\nabla^{2} f(\mathbf{x}) \succ 0$ for all $\mathbf{x} \in \operatorname{dom} f$, then f is strictly convex
- the converse is not true,
e.g., $f(x)=x^{4}$ is strictly convex, but has 0 derivative at 0 .

Positive Semidefinite Matrices (Review)

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite $(A \succeq 0)$:

$$
x^{\top} A x \geq 0, \quad \forall x \in \mathbb{R}^{N}
$$

Equivalent:
(i) all eigenvalues of A are ≥ 0.
(ii) $A=B^{T} B$ for some matrix B

Positive Semidefinite Matrices (Review)

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite $(A \succeq 0)$:

$$
x^{T} A x \geq 0, \quad \forall x \in \mathbb{R}^{N}
$$

Equivalent:
(i) all eigenvalues of A are ≥ 0.
(ii) $A=B^{T} B$ for some matrix B

A symmetric matrix $A \in \mathbb{R}^{N \times N}$ is positive definite $(A \succ 0)$:

$$
x^{T} A x>0, \quad \forall x \in \mathbb{R}^{N} \backslash\{0\}
$$

Equivalent:
(i) all eigenvalues of A are >0.
(ii) $A=B^{T} B$ for some nonsingular matrix B

Recognizing Convex Functions

- There are a number of operations that preserve the convexity of a function.
- If f can be obtained by applying those operations to a convex function, f is also convex.

Recognizing Convex Functions

- There are a number of operations that preserve the convexity of a function.
- If f can be obtained by applying those operations to a convex function, f is also convex.

Nonnegative multiple:

- if f is convex and $a \geq 0$ then af is convex.
- Example: $5 x^{2}$ is convex since x^{2} is convex

Recognizing Convex Functions

- There are a number of operations that preserve the convexity of a function.
- If f can be obtained by applying those operations to a convex function, f is also convex.

Nonnegative multiple:

- if f is convex and $a \geq 0$ then $a f$ is convex.
- Example: $5 x^{2}$ is convex since x^{2} is convex

Sum:

- if f_{1} and f_{2} are convex functions then $f_{1}+f_{2}$ is convex.
- Example: $f(x)=e^{3 x}+x \log x$ with $\operatorname{dom} f=\mathbb{R}^{+}$is convex since $e^{3 x}$ and $x \log x$ are convex

Recognizing Convex Functions / Composition

Composition of two convex functions:

- let $g: \mathbb{R}^{N} \rightarrow \mathbb{R}, h: \mathbb{R} \rightarrow \mathbb{R}$ be both convex and

$$
f(x):=h(g(x))
$$

- in general f is not convex
- counter example $N=1, \quad g(x)=h(x)=e^{-x}$:

$$
\begin{aligned}
\left(e^{-e^{-x}}\right)^{\prime \prime} & =\left(e^{-e^{-x}}\left(-e^{-x}\right)(-1)\right)^{\prime} \\
& =\left(e^{-e^{-x}} e^{-x}\right)^{\prime} \\
& =e^{-e^{-x}} e^{-x} e^{-x}+e^{-e^{-x}} e^{-x}(-1) \\
& =e^{-e^{-x}} e^{-x}\left(e^{-x}-1\right)<0 \quad \text { for } x>0
\end{aligned}
$$

Recognizing Convex Functions / Composition

Composition with affine functions:

- if f is convex then $f(A \mathbf{x}+\mathbf{b})$ is convex.

Recognizing Convex Functions / Composition

Composition with affine functions:

- if f is convex then $f(A \mathbf{x}+\mathbf{b})$ is convex.
- Example: norm of an affine function $\|A \mathbf{x}+\mathbf{b}\|$

Recognizing Convex Functions / Composition

Composition with nondecreasing functions:

- if $g: \mathbb{R}^{N} \rightarrow \mathbb{R}, h: \mathbb{R} \rightarrow \mathbb{R}$ and

$$
f(\mathbf{x})=h(g(\mathbf{x}))
$$

Recognizing Convex Functions / Composition

 Composition with nondecreasing functions:- if $g: \mathbb{R}^{N} \rightarrow \mathbb{R}, h: \mathbb{R} \rightarrow \mathbb{R}$ and

$$
f(\mathbf{x})=h(g(\mathbf{x}))
$$

- f is convex if:
- g is convex, h is convex and nondecreasing or
- g is concave, h is convex and nonincreasing

Recognizing Convex Functions / Composition

 Composition with nondecreasing functions:- if $g: \mathbb{R}^{N} \rightarrow \mathbb{R}, h: \mathbb{R} \rightarrow \mathbb{R}$ and

$$
f(\mathbf{x})=h(g(\mathbf{x}))
$$

- f is convex if:
- g is convex, h is convex and nondecreasing or
- g is concave, h is convex and nonincreasing
- proof:

$$
\begin{aligned}
\nabla^{2} h(g(\mathbf{x})) & =\nabla\left(h^{\prime}(g(\mathbf{x})) \nabla g(\mathbf{x})\right) \\
& =h^{\prime \prime}(g(\mathbf{x})) \nabla g(\mathbf{x}) \nabla g(\mathbf{x})^{T}+h^{\prime}(g(\mathbf{x})) \nabla^{2} g(\mathbf{x})
\end{aligned}
$$

- Examples:
- $e^{g(x)}$ is convex if g is convex
- $\frac{1}{g(x)}$ is convex if g is concave and positive

Recognizing Convex Functions

Pointwise Maximum:

- if f_{1}, \ldots, f_{M} are convex functions then $f(\mathbf{x})=\max \left\{f_{1}(\mathbf{x}), \ldots, f_{M}(\mathbf{x})\right\}$ is convex.

Recognizing Convex Functions

Pointwise Maximum:

- if f_{1}, \ldots, f_{M} are convex functions then $f(\mathbf{x})=\max \left\{f_{1}(\mathbf{x}), \ldots, f_{M}(\mathbf{x})\right\}$ is convex.
- Example: $f(\mathbf{x})=\max _{m=1, \ldots, M}\left(a_{m}^{T} \mathbf{x}+b_{m}\right)$ is convex

Recognizing Convex Functions

There are many different ways to establish the convexity of a function:

- Apply the definition

Recognizing Convex Functions

There are many different ways to establish the convexity of a function:

- Apply the definition
- Show that $\nabla^{2} f(\mathbf{x}) \succeq 0$ for twice differentiable functions

Recognizing Convex Functions

There are many different ways to establish the convexity of a function:

- Apply the definition
- Show that $\nabla^{2} f(\mathbf{x}) \succeq 0$ for twice differentiable functions
- Show that f can be obtained from other convex functions by operations that preserve convexity

Summary

- Convex sets are closed under line segments (convex combinations).
- Convex functions are defined on a convex domain and
- are below any of their secant segments / chords (definition)
- are globally above their tangents (1st-order condition)
- have a positive semidefinite Hessian (2nd-order condition)
- For convex functions, points with vanishing gradients are (equivalent) global minima.
- Operations that preserve convexity:
- scaling with a nonnegative constant
- sums
- pointwise maximum
- composition with an affine function
- composition with a nondecreasing convex scalar function
- composition of a noninc. convex scalar function with a concave funct.
- esp. $-g$ for a concave g

Further Readings

- Convex sets:
- Boyd and Vandenberghe [2004], chapter 2, esp. 2.1
- see also ch. 2.2 and 2.3
- Convex functions:
- Boyd and Vandenberghe [2004], chapter 3, esp. 3.1.1-7, 3.2.1-5
- Convex optimization:
- Boyd and Vandenberghe [2004], chapter 4, esp. 4.1-3
- see also ch. 4.4

References

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

