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A convex function

x

f (x)
f (x) = x2
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A non-convex function

x

f (x)

f (x) = 0.1x2 + sin x
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Modern Optimization Techniques 1. Introduction

Convex Optimization Problem

An optimization problem

minimize f (x)

subject to hq(x) ≤ 0, q = 1, . . . ,Q

Ax = b

is said to be convex if f , h1 . . . hQ are convex.

How do we know if a

function is convex or not?
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Note: The equality constraints also are convex, even linear.
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Modern Optimization Techniques 2. Convex Sets

Affine Sets

For any two points x1, x2 we can define the line through them as:

x = θx1 + (1− θ)x2, θ ∈ R

Example:

x1

x2

θ = 1

θ = 0

θ = 0.4

θ = 1.3

θ = −0.5
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Modern Optimization Techniques 2. Convex Sets

Affine Sets - Definition

An affine set is a set containing the line through any two distinct points
in it.

Examples:

I RN for N ∈ N+

I solution set of linear equations X := {x ∈ RN | Ax = b}
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Convex Sets

The line segment between any two points x1, x2 is the set of all points:

x = θx1 + (1− θ)x2, 0 ≤ θ ≤ 1

Example:

x1

x2

θ = 1

θ = 0

A convex set contains the line segment between any two points in the
set.
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Convex Sets - Examples: Which ones are Convex?
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Convex Sets - Examples
Convex Sets:

Non-convex Sets:

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 31



Modern Optimization Techniques 2. Convex Sets

Convex Sets - Examples

All affine sets are also convex:

I RN for N ∈ N+

I solution set of linear equations X := {x ∈ RN | Ax = b}

Convex sets (but in general not affine sets):

I solution set of linear inequalities X := {x ∈ RN | Ax ≤ b}
I half spaces, e.g. X := {x ∈ RN | aT x ≤ b}

e.g., X := {x ∈ RN | x1 ≥ 0}
I convex polygons (2d) / polyhedrons (3d) / polytopes (nd)
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Modern Optimization Techniques 2. Convex Sets

Convex Combination and Convex Hull

(standard) simplex:

∆N :={θ ∈ RN | θn ≥ 0, n = 1, . . . ,N;
N∑

n=1

θn = 1}

={θ ∈ [0, 1]N | 1T θ = 1}

convex combination of some points x1, . . . xN ∈ RM : any point x with

x = θ1x1 + θ2x2 + . . .+ θNxN , θ ∈ ∆N

convex hull of a set X ⊆ RM of points:

conv(X ) := {θ1x1 + θ2x2 + . . .+ θNxN | N ∈ N, x1, . . . , xN ∈ X , θ ∈ ∆N}

i.e., the set of all convex combinations of points in X .

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 31

Note: 1 := (1, 1, . . . , 1)T vector of all ones.
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Convex Functions

A function f : X → R,X ⊆ RN is convex iff:

I dom f := X is a convex set

I for all x1, x2 ∈ dom f and 0 ≤ θ ≤ 1 it satistfies

f (θx1 + (1− θ)x2) ≤ θf (x1) + (1− θ)f (x2)

(the function is below of its secant segments/chords.)

(x1, f (x1))
(x2, f (x2))
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Convex functions

x

f (x)

I θx1 + (1− θ)x2

I (θx1 + (1− θ)x2, f (θx1 + (1− θ)x2))

I (θx1 + (1− θ)x2, θf (x1) + (1− θ)f (x2))
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Modern Optimization Techniques 3. Convex Functions

How are Convex Functions Related to Convex Sets?

epigraph of a function f : X → R,X ⊆ RN :

epi(f ) := {(x , y) ∈ X × R | y ≥ f (x)}

f is convex (as function) ⇐⇒ epi(f) is convex (as set).

proof is straight-forward (try it!)
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Concave Functions

A function f is called concave if −f is convex

A Concave Function

x

f (x)

f0(x) = −x2

A Convex Function

x

f (x)
f0(x) = x2
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Modern Optimization Techniques 3. Convex Functions

Strictly Convex Functions

A function f : X → R,X ⊆ RN is strictly convex if:

I dom f is a convex set

I for all x1, x2 ∈ dom f , x1 6= x2 and 0 < θ < 1 it satistfies

f (θx1 + (1− θ)x2) < θf (x1) + (1− θ)f (x2)
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Modern Optimization Techniques 3. Convex Functions

Examples
Examples of Convex functions:

I affine: f (x) = ax + b, with dom f = R and a, b ∈ R

I exponential: f (x) = eax , with a ∈ R

I powers: f (x) = xa, with dom f = R+
0 and a ≥ 1 or a ≤ 0

I powers of absolute value: f (x) = |x |a, with dom f = R and a ≥ 1

I negative entropy: f (x) = x log x , with dom f = R+

Examples of Concave Functions:

I affine: f (x) = ax + b, with dom f = R and a, b ∈ R

I powers: f (x) = xa, with dom f = R+
0 and 0 ≤ a ≤ 1

I logarithm: f (x) = log x , with dom f = R+
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Modern Optimization Techniques 3. Convex Functions

Examples

Examples of Convex functions:
All norms are convex!

I Immediate consequence of the triangle inequality and absolute
homogeneity.

||θx + (1− θ)y || ≤ ||θx ||+ ||(1− θ)y || = θ||x ||+ (1− θ)||y ||

I For x ∈ RN , p ≥ 1:

p-norm: ||x||p := (
∑N

n=1 |xn|p)
1
p ,

I ||x||∞ := maxn=1:N |xn|

Affine functions on vectors are also convex: f (x) = aTx + b
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Modern Optimization Techniques 4. Recognizing Convex Functions

1st-Order Condition

f is differentiable if dom f is open and the gradient

∇f (x) =

(
∂f (x)

∂x1
,
∂f (x)

∂x2
, . . . ,

∂f (x)

∂xn

)T

exists everywhere.

1st-order condition: a differentiable function f is convex iff

I dom f is a convex set

I for all x, y ∈ dom f

f (y) ≥ f (x) +∇f (x)T (y − x)

(the function is above any of its tangents.)
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Modern Optimization Techniques 4. Recognizing Convex Functions

1st-Order Condition
1st-order condition: a differentiable function f is convex iff

I dom f is a convex set

I for all x, y ∈ dom f

f (y) ≥ f (x) +∇f (x)T (y − x)

f (x)

x
x

(x, f (x))

h(y) = f (x) +∇f (x)T (y − x)
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Modern Optimization Techniques 4. Recognizing Convex Functions

1st-Order Condition / Proof
Let dom f = X be convex.

f : X → R convex⇔ f (y) ≥ f (x) +∇f (x)T (y − x) ∀x, y

“⇒ ” : f (x + t(y − x)) ≤ (1− t)f (x) + tf (y) | : t

f (y) ≥ f (x + t(y − x))− f (x)

t
+ f (x)

t→0+−→ ∇f (x)T (y − x) + f (x)

“⇐ ” : Apply twice to z := θx + (1− θ)y

f (x) ≥ f (z) +∇f (z)T (x − z)

f (y) ≥ f (z) +∇f (z)T (y − z)

 θf (x) + (1− θ)f (y) ≥f (z) +∇f (z)T (θx + (1− θ)y)−∇f (z)T z

=f (z) +∇f (z)T z −∇f (z)T z

=f (z) = f (θx + (1− θ)y)
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Modern Optimization Techniques 4. Recognizing Convex Functions

1st-Order Condition / Strict Variant

strict 1st-order condition: a differentiable function f is strictly convex iff

I dom f is a convex set

I for all x, y ∈ dom f

f (y) > f (x) +∇f (x)T (y − x)
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Modern Optimization Techniques 4. Recognizing Convex Functions

Global Minima

Let dom f = X be convex.

f : X → R convex⇔ f (y) ≥ f (x) +∇f (x)T (y − x) ∀x, y

Consequence: Points x with ∇f (x) = 0 are (equivalent) global minima.

I minima form a convex set

I if f is strictly convex: there is exactly one global minimum x∗.
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Modern Optimization Techniques 4. Recognizing Convex Functions

2nd-Order Condition
f is twice differentiable if dom f is open and the Hessian ∇2f (x)

∇2f (x)n,m =
∂2f (x)

∂xn∂xm

exists everywhere.

2nd-order condition: a twice differentiable function f is convex iff

I dom f is a convex set

I for all x ∈ dom f

∇2f (x) � 0 for all x ∈ dom f
Furthermore:
I for functions f on dom f ⊆ R simply f ′′(x) ≥ 0 for all x ∈ dom f

I if ∇2f (x) � 0 for all x ∈ dom f , then f is strictly convex
I the converse is not true,

e.g., f (x) = x4 is strictly convex, but has 0 derivative at 0.
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Modern Optimization Techniques 4. Recognizing Convex Functions

Positive Semidefinite Matrices (Review)
A symmetric matrix A ∈ Rn×n is positive semidefinite (A � 0):

xTAx ≥ 0, ∀x ∈ RN

Equivalent:

(i) all eigenvalues of A are ≥ 0.

(ii) A = BTB for some matrix B

A symmetric matrix A ∈ RN×N is positive definite (A � 0):

xTAx > 0, ∀x ∈ RN \ {0}

Equivalent:

(i) all eigenvalues of A are > 0.

(ii) A = BTB for some nonsingular matrix B
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Modern Optimization Techniques 4. Recognizing Convex Functions

Recognizing Convex Functions

I There are a number of operations that preserve the convexity of a
function.

I If f can be obtained by applying those operations to a convex
function, f is also convex.

Nonnegative multiple:

I if f is convex and a ≥ 0 then af is convex.

I Example: 5x2 is convex since x2 is convex

Sum:

I if f1 and f2 are convex functions then f1 + f2 is convex.

I Example: f (x) = e3x + x log x with dom f = R+ is convex since e3x

and x log x are convex
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Modern Optimization Techniques 4. Recognizing Convex Functions

Recognizing Convex Functions / Composition

Composition of two convex functions:

I let g : RN → R, h : R→ R be both convex and

f (x) := h(g(x))

I in general f is not convex

I counter example N = 1, g(x) = h(x) = e−x :(
e−e

−x
)′′

=
(
e−e

−x
(−e−x)(−1)

)′
=
(
e−e

−x
e−x

)′
= e−e

−x
e−xe−x + e−e

−x
e−x(−1)

= e−e
−x
e−x(e−x − 1) < 0 for x > 0
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Modern Optimization Techniques 4. Recognizing Convex Functions

Recognizing Convex Functions / Composition

Composition with affine functions:

I if f is convex then f (Ax + b) is convex.

I Example: norm of an affine function ||Ax + b||
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Modern Optimization Techniques 4. Recognizing Convex Functions

Recognizing Convex Functions / Composition
Composition with nondecreasing functions:
I if g : RN → R, h : R→ R and

f (x) = h(g(x))

I f is convex if:
I g is convex, h is convex and nondecreasing or

I g is concave, h is convex and nonincreasing

I proof:

∇2h(g(x)) = ∇
(
h′(g(x))∇g(x)

)
= h′′(g(x))∇g(x)∇g(x)T + h′(g(x))∇2g(x)

I Examples:
I eg(x) is convex if g is convex

I 1
g(x) is convex if g is concave and positive
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Modern Optimization Techniques 4. Recognizing Convex Functions

Recognizing Convex Functions

Pointwise Maximum:

I if f1, . . . , fM are convex functions then f (x) = max{f1(x), . . . , fM(x)}
is convex.

I Example: f (x) = maxm=1,...,M(aTmx + bm) is convex
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Modern Optimization Techniques 4. Recognizing Convex Functions

Recognizing Convex Functions

There are many different ways to establish the convexity of a function:

I Apply the definition

I Show that ∇2f (x) � 0 for twice differentiable functions

I Show that f can be obtained from other convex functions by
operations that preserve convexity
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Summary
I Convex sets are closed under line segments (convex combinations).

I Convex functions are defined on a convex domain and
I are below any of their secant segments / chords (definition)
I are globally above their tangents (1st-order condition)
I have a positive semidefinite Hessian (2nd-order condition)

I For convex functions, points with vanishing gradients are (equivalent)
global minima.

I Operations that preserve convexity:
I scaling with a nonnegative constant
I sums
I pointwise maximum
I composition with an affine function
I composition with a nondecreasing convex scalar function
I composition of a noninc. convex scalar function with a concave funct.

I esp. −g for a concave g
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Further Readings

I Convex sets:
I Boyd and Vandenberghe [2004], chapter 2, esp. 2.1

I see also ch. 2.2 and 2.3

I Convex functions:
I Boyd and Vandenberghe [2004], chapter 3, esp. 3.1.1–7, 3.2.1–5

I Convex optimization:
I Boyd and Vandenberghe [2004], chapter 4, esp. 4.1–3

I see also ch. 4.4
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