

Modern Optimization Techniques

2. Unconstrained Optimization / 2.3. Newton's Method

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

Syllabus

Mon. 28.10.	(0)	0. Overview
Mon. 4.11.	(1)	 Theory Convex Sets and Functions
Mon. 11.11. Mon. 18.11. Mon. 25.11. Mon. 2.12. Mon. 19.12. Mon. 16.12.	(2) (3) (4) (5) (6) (7)	2. Unconstrained Optimization 2.1 Gradient Descent 2.2 Stochastic Gradient Descent 2.3 Newton's Method 2.4 Quasi-Newton Methods 2.5 Subgradient Methods 2.6 Coordinate Descent — Christmas Break —
Mon. 6.1. Mon. 13.1. Mon. 20.1.	(8) (9)	 3. Equality Constrained Optimization 3.1 Duality 3.2 Methods 4. Inequality Constrained Optimization 4.1 Primal Methods
Mon. 27.1. Mon. 3.2.	(11) (12)	4.2 Barrier and Penalty Methods 4.3 Cutting Plane Methods

Jainersita.

Outline

1. Newton's Method

2. Convergence

3. Example: Logistic Regression

Outline

1. Newton's Method

2. Convergence

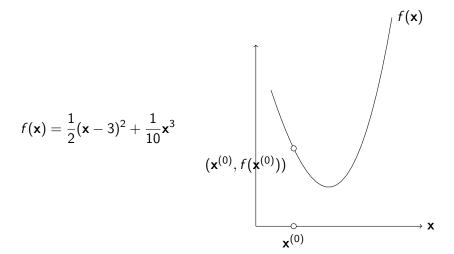
3. Example: Logistic Regression

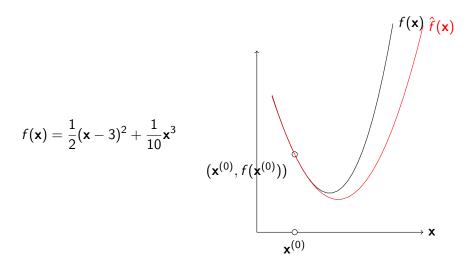
Be $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ open and f convex:

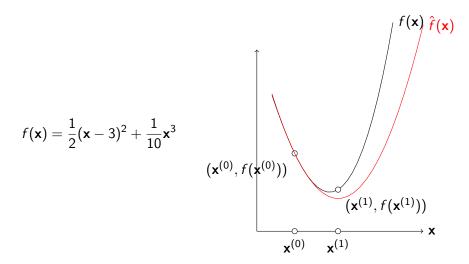
$$\underset{x \in X}{\operatorname{arg \, min}} \quad f(\mathbf{x})$$

- ▶ Let $\mathbf{x}^{(k)}$ the last iterate
- ▶ Compute a quadratic approximation \hat{f} of f around $\mathbf{x}^{(k)}$
- Find the minimum of the quadratic approximation \hat{f} and take it as next iterate:

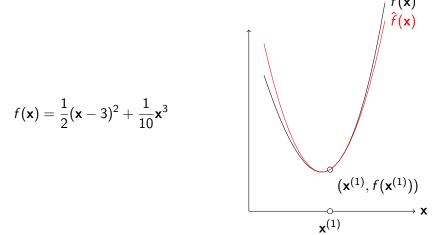
$$\mathbf{x}^{(k+1)} := \operatorname*{arg\,min} \hat{f}(\mathbf{x})$$







Jainers it



Taylor Approximation

Be $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ an infinitely differentiable function, $\mathbf{a} \in X$ any point.

f can be represented by its **Taylor expansion**:

$$f(\mathbf{x}) = \sum_{k=0}^{\infty} \frac{\nabla^k f(\mathbf{a})}{k!} (\mathbf{x} - \mathbf{a})^k$$

= $f(\mathbf{a}) + \frac{\nabla f(\mathbf{a})}{1!} (\mathbf{x} - \mathbf{a}) + \frac{\nabla^2 f(\mathbf{a})}{2!} (\mathbf{x} - \mathbf{a})^2 + \frac{\nabla^3 f(\mathbf{a})}{3!} (\mathbf{x} - \mathbf{a})^3 + \cdots$

For x close enough to a and K large enough, f can be approximated by its **truncated Taylor expansion**:

$$f(\mathbf{x}) \approx \sum_{k=0}^{K} \frac{\nabla^k f(\mathbf{a})}{k!} (\mathbf{x} - \mathbf{a})^k$$

Note: For N > 1, $\nabla^k f(x)$ is a tensor of order k and $\nabla^k f(x)(x-a)^k$ a tensor product.

Second Order Approximation

Let us take the second order approximation of a twice differentiable function $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^N$ at a point \mathbf{x} :

$$\hat{f}(\mathbf{y}) := f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{1}{2} (\mathbf{y} - \mathbf{x})^T \nabla^2 f(\mathbf{x}) (\mathbf{y} - \mathbf{x})$$

We want to find the point $x^{\text{next}} := \arg \min_{y} \hat{f}(y)$:

$$\nabla_{\mathbf{y}} \hat{f}(\mathbf{y}) = \nabla f(\mathbf{x}) + \nabla^2 f(\mathbf{x}) (\mathbf{y} - \mathbf{x}) \stackrel{!}{=} 0$$

$$\rightsquigarrow \quad \mathbf{y} = \mathbf{x} - \nabla^2 f(\mathbf{x})^{-1} \nabla f(\mathbf{x})$$

Jaivers/to

Newton's Step

- ► Newton's method is a descent method
- ▶ It uses the descent direction

$$\Delta \mathbf{x} := -\nabla^2 f(\mathbf{x})^{-1} \nabla f(\mathbf{x})$$

called **Newton step**.

- ► the negative gradient
- twisted by the local curvature (Hessian)
- ► Newton's step is affine invariant, while the gradient step is not.

Newton's Step / Proof

(i) Show that the Gradient step is not affine invariant. for g(y) := f(Ay) with a pos.def. matrix A

$$\nabla_y g(y) = A^T \nabla_x f(Ay) \stackrel{?}{=} A^{-1} \nabla_x f(x), \text{ for } x := Ay$$

No, as in general $A^T \neq A^{-1}$.

(ii) Show that Newton's step is affine invariant.

$$\nabla_{y}^{2}g(y) = A^{T}\nabla_{x}^{2}f(Ay)A$$

$$\Delta y = (\nabla_{y}^{2}g(y))^{-1}\nabla_{y}g(y)$$

$$= A^{-1}\nabla_{x}^{2}f(Ay)^{-1}(A^{T})^{-1}A^{T}\nabla_{x}f(Ay)$$

$$= A^{-1}\nabla_{x}^{2}f(Ay)^{-1}\nabla_{x}f(Ay)$$

$$= A^{-1}\nabla_{x}^{2}f(x)^{-1}\nabla_{x}f(x), \text{ for } x := Ay$$

Newton's Stepsize

- ► For quadratic objective functions *f*:
 - ► Newton's method will find the optimum in a single step
 - ▶ with stepsize 1

(pure Newton)

- ► For general objective functions:
 - a possibly smaller stepsize has to be used (damped Newton)
 - ▶ any stepsize controller is applicable

Newton Decrement

$$\lambda(x) := (\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x))^{\frac{1}{2}}$$

is called **newton decrement**.

Basic properties:

(i)

$$\lambda(x) = (\Delta x^T \nabla^2 f(x) \Delta x)^{\frac{1}{2}}$$

(ii)

$$\lambda(x)^2 = -\nabla f(x)^T \Delta x$$

(iii)

$$f(x) - \inf_{y} \hat{f}(y) = f(x) - \hat{f}(x + \Delta x) = \frac{1}{2}\lambda(x)^{2}$$

(iv) The Newton decrement is affine invariant.

Scivers/Falls

Newton Decrement / Proofs

i), (ii) insert the definition of $\Delta x = - \nabla^2 f(x)^{-1} \nabla f(x)$

ıd (iii)

$$f(x) - \hat{f}(x + \Delta x) = f(x) - f(x) \underbrace{-\nabla f(x)^{T} \Delta x}_{\stackrel{ii}{=} \lambda(x)^{2}} - \frac{1}{2} \underbrace{\Delta x^{T} \nabla^{2} f(x) \Delta x}_{\stackrel{i}{=} \lambda(x)^{2}}$$

 $\operatorname{ad}(\operatorname{iv})$ for g(y) := f(Ay) with a pos.def. matrix A

$$\nabla_{y}g(y) = A^{T}\nabla_{x}f(Ay), \quad \nabla_{y}^{2}g(y) = A^{T}\nabla_{x}^{2}f(Ay)A$$

$$\lambda_{g}(y) = \nabla_{x}f(Ay)^{T}AA^{-1}\nabla_{x}^{2}f(Ay)^{-1}(A^{T})^{-1}A^{T}\nabla_{x}f(Ay)^{T}$$

$$= \nabla_{x}f(Ay)^{T}\nabla_{x}^{2}f(Ay)^{-1}\nabla_{x}f(Ay)^{T}$$

$$= \lambda_{f}(x) \text{ at } x := Ay$$

Newton's Method

```
 \begin{array}{ll} \mathbf{min\text{-}newton}(f,\nabla f,\nabla^2 f,x^{(0)},\mu,\epsilon,K): \\ \mathbf{2} & \text{for } k:=1,\ldots,K: \\ \mathbf{3} & \Delta x^{(k-1)}:=-\nabla^2 f(x^{(k-1)})^{-1}\nabla f(x^{(k-1)}) \\ \mathbf{4} & \text{if } -\nabla f(x^{(k-1)})^T\Delta x^{(k-1)}<\epsilon: \\ \mathbf{5} & \text{return } x^{(k-1)} \\ \mathbf{6} & \mu^{(k-1)}:=\mu(f,x^{(k-1)},\Delta x^{(k-1)}) \\ \mathbf{7} & x^{(k)}:=x^{(k-1)}+\mu^{(k-1)}\Delta x^{(k-1)} \\ \mathbf{8} & \text{return "not converged"} \end{array}
```

where

- f objective function
- $ightharpoonup \nabla f$, $\nabla^2 f$ gradient and Hessian of objective function f
- ► x⁽⁰⁾ starting value
- \blacktriangleright μ step length controller
- ightharpoonup ϵ convergence threshold for Newton's decrement
- K maximal number of iterations

Jriversit

Considerations

- Works extremely well for a lot of problems
- ► requires *f* to be twice differentiable
- Computing, storing and inverting the Hessian limits scalability for high dimensional problems
 - ▶ as the Hessian has N^2 elements.

Shivers/total

Newton's method - Example

For $\mathbf{x} \in \mathbb{R}$

$$\min_{\mathbf{x}} \quad (2\mathbf{x} - 4)^4$$

Algorithm:

- ► $\nabla f(\mathbf{x}) = 8 (2\mathbf{x} 4)^3$
- ► $\nabla^2 f(\mathbf{x}) = 48 (2\mathbf{x} 4)^2$
- ► Step:

$$\Delta \mathbf{x} = -\nabla^2 f(\mathbf{x})^{-1} \nabla f(\mathbf{x})$$
$$= -\frac{1}{6} (2\mathbf{x} - 4) = -\frac{1}{3} x + \frac{2}{3}$$

▶ Update:

$$x^{(k+1)} = x^{(k)} + \mu^{(k)} \Delta x^{(k)}, \quad \text{using } \mu^{(k)} := 1$$

= $x^{(k)} - \frac{1}{2} x^{(k)} + \frac{2}{2} = \frac{2}{2} (x^{(k)} + 1)$

Newton's method - Example

$$x^{(0)} := 10$$

$$x^{(1)} = \frac{2}{3}(10.0 + 1) = 7.33333$$

$$x^{(2)} = \frac{2}{3}(7.33333 + 1) = 5.55556$$

$$x^{(3)} = \frac{2}{3}(5.55556 + 1) = 4.37037$$

$$x^{(4)} = \frac{2}{3}(4.37037 + 1) = 3.58025$$

$$x^{(5)} = \frac{2}{3}(3.58025 + 1) = 3.0535$$

$$x^{(6)} = \frac{2}{3}(3.0535 + 1) = 2.70233$$

$$x^{(7)} = \frac{2}{3}(2.70233 + 1) = 2.46822$$

$$x^{(8)} = \frac{2}{3}(2.46822 + 1) = 2.31215$$

1 Nowton's Mothos

2. Convergence

3. Example: Logistic Regression

Newton Decrement / Strongly Convex Functions

If f is strongly convex $(\nabla^2 f(x) \succeq mI, m \in \mathbb{R}^+)$, then (i)

$$m||\Delta x||_2^2 \le \lambda(x)^2 \le M||\Delta x||_2^2$$

(ii)

$$\frac{1}{M}||\nabla f(x)||_{2}^{2} \le \lambda(x)^{2} \le \frac{1}{m}||\nabla f(x)||_{2}^{2}$$

where $\nabla^2 f(x) \leq MI, M \in \mathbb{R}^+$.

Newton Decrement / Strongly Convex Functions / Proofs

ad (i)

$$\lambda(x)^{2} = \Delta x^{T} \nabla^{2} f(x) \Delta x \ge m ||\Delta x||_{2}^{2}$$
$$\lambda(x)^{2} = \Delta x^{T} \nabla^{2} f(x) \Delta x \le M ||\Delta x||_{2}^{2}$$

ad (ii) The inverse of $abla^2 f(x)$ has inverse eigenvalues, thus

$$\nabla^2 f(x)^{-1} \le \frac{1}{m}I$$
$$\nabla^2 f(x)^{-1} \ge \frac{1}{M}I$$

Then proceed as (i).

Still de and it

Convergence / Assumptions

Until the end of this section, assume

- I. f is strongly convex (m, M),
- II. $\nabla^2 f(x)$ is Lipschitz-continuous: $||\nabla^2 f(y) \nabla^2 f(x)||_2 \le L||y x||_2, \quad L \in \mathbb{R}^+$ and
- III. backtracking steplength control is used $(\alpha \leq \frac{1}{2}, \beta)$

Convergence / Damped Phase

Theorem (Convergence of Newton's Algorithm / Damped Phase) Far away from the optimum,

- (i) backtracking may select stepsizes t < 1 (be damped) and
- (ii) f is reduced by at least a constant each step.

for
$$||\nabla f(x)||_2 \ge \eta$$
: $f(x^{next}) - f(x) \le -\gamma$
with $\gamma := \alpha \beta \frac{m}{M^2} \eta^2$

Convergence / Damped Phase / Proof

$$f(x + t\Delta x) \underset{\text{s.c. ii}}{\leq} f(x) + t\nabla f(x)^{T} \Delta x + \frac{M}{2} ||\Delta x||_{2}^{2} t^{2}$$

$$\underset{\text{dec. ii}}{\leq} f(x) - t\lambda(x)^{2} + \frac{M}{2m} t^{2} \lambda(x)^{2}$$

$$(1)$$

 $\hat{t} := m/M$ satisfies exit condition of backtracking:

$$f(x + \hat{t}\Delta x) \leq f(x) - \frac{m}{M}\lambda(x)^{2} + \frac{m}{2M}\lambda(x)^{2}$$

$$= f(x) - \frac{m}{2M}\lambda(x)^{2}$$

$$\leq f(x) - \alpha \hat{t}\lambda(x)^{2}$$

$$\leq \alpha \leq \frac{1}{2}$$

and thus stepsize

$$t \geq \beta \frac{m}{M}$$

(2)

Still deshill

Convergence / Damped Phase / Proof (2/2)

$$f(x^{\text{next}}) - f(x) \le -\alpha t \lambda(x)^{2}$$

$$\le -\alpha \beta \frac{m}{M} \lambda(x)^{2}$$

$$\le -\alpha \beta \frac{m}{M^{2}} ||\nabla f(x)||_{2}^{2}$$

$$\le -\alpha \beta \frac{m}{M^{2}} ||\nabla f(x)||_{2}^{2}$$

$$\le -\alpha \beta \frac{m}{M^{2}} \eta^{2} = -\gamma$$

Convergence / Pure Phase

Theorem (Convergence of Newton's Algorithm / Pure Phase) Close to the optimum,

- (i) backtracking always selects stepsize t=1 and
- (ii) $\nabla f(x)$ is shrunken quadratically.

for
$$||\nabla f(x)||_2 < \eta : ||\nabla f(x^{next})||_2 \le \frac{L}{2m^2} (||\nabla f(x)||_2)^2$$

with $\eta \le 3(1 - 2\alpha) \frac{m^2}{L}$

(iii) it stays close to the optimum.

$$\begin{split} \textit{for } ||\nabla f(x)||_2 < \eta: \ ||\nabla f(x^\textit{next})||_2 < \eta \end{split}$$

$$\textit{with } \eta:=\min\{1,3(1-2\alpha)\}\frac{m^2}{I}$$

Stivers/tale

Convergence / Pure Phase / Proof (1/6)

(i) show backtracking accepts stepsize t=1, if $\eta \leq 3(1-2\alpha) \frac{m^2}{L}$

$$||\nabla^{2} f(x+t\Delta) - \nabla^{2} f(x)||_{2} \leq tL||\Delta x||_{2}$$

$$\Rightarrow |\Delta x^{T} (\nabla^{2} f(x+t\Delta x) - \nabla^{2} f(x))\Delta x|$$

$$\leq ||\nabla^{2} f(x+t\Delta x) - \nabla^{2} f(x)||_{2} ||\Delta x||_{2}^{2}$$

$$= tL||\Delta x||_{2}^{3}$$
(1)

Convergence / Pure Phase / Proof (2/6)

Compute a lower bound for

$$\begin{split} \tilde{f}(t) := & f(x + t\Delta x) \\ \tilde{f}'(t) = & \Delta x^T \nabla f(x + t\Delta x) \\ \tilde{f}''(t) = & \Delta x^T \nabla^2 f(x + t\Delta x) \Delta x \\ |\tilde{f}''(t) - \tilde{f}''(0)| & \leq tL ||\Delta x||_2^3 \\ \tilde{f}''(t) \leq \tilde{f}''(0) + tL ||\Delta x||_2^3 \\ & \leq \sup_{\text{dec i, dec s.c. i}} \lambda(x)^2 + t \frac{L}{m_2^3} \lambda(x)^3 \\ \tilde{f}'(t) & \leq \tilde{f}'(0) + t\lambda(x)^2 + t^2 \frac{L}{2m_2^3} \lambda(x)^3 \\ & \leq -\lambda(x)^2 + t\lambda(x)^2 + t^2 \frac{L}{2m_2^3} \lambda(x)^3 \end{split}$$

Shiversites,

Convergence / Pure Phase / Proof (3/6)

$$\tilde{f}'(t) \leq -\lambda(x)^{2} + t\lambda(x)^{2} + t^{2} \frac{L}{2m^{\frac{3}{2}}} \lambda(x)^{3} \qquad |\int_{0}^{1} (\ldots) dt
\tilde{f}(t) \leq \tilde{f}(0) - t\lambda(x)^{2} + \frac{1}{2} t^{2} \lambda(x)^{2} + t^{3} \frac{L}{6m^{\frac{3}{2}}} \lambda(x)^{3} \qquad |t = 1
f(x + \Delta x) = \tilde{f}(1) \leq \tilde{f}(0) - \lambda(x)^{2} + \frac{1}{2} \lambda(x)^{2} + \frac{L}{6m^{\frac{3}{2}}} \lambda(x)^{3}
= f(x) - \lambda(x)^{2} (\frac{1}{2} - \frac{L}{6m^{\frac{3}{2}}} \lambda(x))$$
(2)

Convergence / Pure Phase / Proof (4/6)

$$\lambda(x) \underset{\text{dec s.c. ii}}{\leq} \frac{1}{m^{\frac{1}{2}}} ||\nabla f(x)||_{2}$$

$$< \frac{1}{\|\nabla f(x)\|_{2} < \eta} \frac{1}{m^{\frac{1}{2}}} \eta = \frac{1}{m^{\frac{1}{2}}} 3(1 - 2\alpha) \frac{m^{2}}{L} = 3(1 - 2\alpha) \frac{m^{\frac{3}{2}}}{L}$$

$$f(x + \Delta x) \leq f(x) - \lambda(x)^{2} (\frac{1}{2} - \frac{L}{6m^{\frac{3}{2}}} \lambda(x))$$

$$\leq f(x) - \lambda(x)^{2} (\frac{1}{2} - \frac{L}{6m^{\frac{3}{2}}} 3(1 - 2\alpha) \frac{m^{\frac{3}{2}}}{L})$$

$$= f(x) - \alpha \lambda(x)^{2}$$

and thus stepsize t = 1 fulfils the exit condition.

Jaivers/to

Convergence / Pure Phase / Proof (5/6)

(ii) show decrease in $\nabla f(x^{\text{next}})$:

$$\begin{split} ||\nabla f(x^{\text{next}})||_2 &= ||\nabla f(x + \Delta x)||_2 \\ &= \sup_{\det \Delta x} ||\nabla f(x + \Delta x) - \nabla f(x) - \nabla^2 f(x) \Delta x||_2 \\ &= ||\int_0^1 (\nabla^2 f(x + t\Delta x) - \nabla^2 f(x)) \Delta x \ dt||_2 \\ &\leq \int_0^1 ||(\nabla^2 f(x + t\Delta x) - \nabla^2 f(x))||_2 dt \ ||\Delta x||_2 \\ &\leq \int_0^1 Lt||\Delta x||_2 dt||\Delta x||_2 = \frac{1}{2}L||\Delta x||_2^2 \\ &= \sup_{\det \Delta x} \frac{1}{2}L||\nabla^2 f(x)^{-1} \nabla f(x)||_2^2 \\ &\leq \sup_{\det S.c. \ |||} \frac{L}{2m^2}||\nabla f(x)||_2^2 \end{split}$$

where (*)
$$\nabla f(x + \Delta x) = \nabla^2 f(x) \Delta x + \int_0^1 \nabla^2 f(x + t \Delta x) \Delta x \ dt$$

Convergence / Pure Phase / Proof (6/6)

(iii) show that Newton stays close to the optimum:

$$||\nabla f(x^{\text{next}})||_2 \le \frac{L}{2m^2} ||\nabla f(x)||_2^2 \le \frac{L}{2m^2} \eta^2 \le \frac{1}{2} \eta < \eta$$

Shivers/top

Convergence

Theorem (Convergence of Newton's Algorithm)

lf

- (i) f is strongly convex (m, M),
- (ii) $\nabla^2 f(x)$ is Lipschitz-continuous: $||\nabla^2 f(y) \nabla^2 f(x)||_2 \le L||y x||_2$, $L \in \mathbb{R}^+$ and
- (iii) backtracking steplength control is used $(\alpha \leq \frac{1}{2}, \beta)$ then

$$f(x^{(k)}) - p^* \le \frac{2m^3}{L^2} \left(\frac{1}{2}\right)^{2^{k-l+1}}, \quad k \ge l$$

$$I:=\lceil\frac{f(x^{(0)})-p^*}{\gamma}\rceil,\quad \gamma:=\alpha\beta\frac{m}{M^2}\eta^2,\quad \eta:=\min\{1,3(1-2\alpha)\}\frac{m^2}{L}$$

(quadratic convergence)

Stivers/rej

Convergence / Proof

▶ If initially we are far away from the minimum, latest after *l* steps we must be close (damped phase ii) and then

$$\frac{L}{2m^2}||\nabla f(x^{(I)})||_2 \le \frac{L}{2m^2}\eta \le \frac{L}{2m^2}\frac{m^2}{L} \le \frac{1}{2}$$
 (1)

▶ In the pure phase k > l we have (pure phase ii)

$$\frac{L}{2m^{2}}||\nabla f(x^{(k)})||_{2} \leq \left(\frac{L}{2m^{2}}||\nabla f(x^{(k-1)})||_{2}\right)^{2} \leq \left(\frac{L}{2m^{2}}||\nabla f(x^{(l)})||_{2}\right)^{2^{k-l}} \\
\leq \left(\frac{1}{2}\right)^{2^{k-l}} \quad \rightsquigarrow \quad ||\nabla f(x^{(k)})||_{2} \leq \frac{2m^{2}}{L}\left(\frac{1}{2}\right)^{2^{k-l}} \tag{2}$$

$$f(x^{(k)}) - p^* \underset{\text{s.c. i}}{\leq} \frac{1}{2m} ||\nabla f(x^{(k)})||_2^2 \leq \frac{1}{2m} \left(\frac{2m^2}{L} (\frac{1}{2})^{2^{k-l}}\right)^2$$
$$= \frac{2m^3}{L^2} (\frac{1}{2})^{2^{k-l+1}}$$

Outline

2. Convergence

3. Example: Logistic Regression

Practical Example: Household Location

Suppose we have the following data about different households:

- ▶ Number of workers in the household (a_1)
- ▶ Household composition (a_2)
- ▶ Weekly household spending (a₃)
- ▶ Gross normal weekly household income (a_4)
- ▶ **Region** (y): North y = 1 or south y = 0

We want to creat a model of the location of the household

Practical Example: Household Spending

If we have data about m households, we can represent it as:

$$A_{m,n} = \begin{pmatrix} 1 & a_{1,2} & \dots & a_{1,n} \\ 1 & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & a_{m,2} & \dots & a_{m,n} \end{pmatrix} \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

We can model the household location is a linear combination of the household features with parameters \mathbf{x} :

$$\hat{y}_i = \sigma(\mathbf{x}^T \mathbf{a_i}) = \sigma(\mathbf{x}_0 \mathbf{1} + \mathbf{x}_1 \mathbf{a}_{i,1} + \mathbf{x}_2 \mathbf{a}_{i,2} + \mathbf{x}_3 \mathbf{a}_{i,3} + \mathbf{x}_4 \mathbf{a}_{i,4})$$

where:
$$\sigma(x) = \frac{1}{1+e^{-x}}$$

Example II - Logistic Regression

The logistic regression learning problem is

minimize
$$\sum_{i=1}^{m} y_i \log \sigma(\mathbf{x}^T \mathbf{a_i}) + (1 - y_i) \log(1 - \sigma(\mathbf{x}^T \mathbf{a_i}))$$

$$A_{m,n} = \begin{pmatrix} 1 & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ 1 & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{m,1} & a_{m,2} & a_{m,3} & a_{m,4} \end{pmatrix} \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

minimize
$$\sum_{i=1}^{m} y_i \log \sigma(\mathbf{x}^T \mathbf{a_i}) + (1 - y_i) \log(1 - \sigma(\mathbf{x}^T \mathbf{a_i}))$$

$$\frac{\partial f}{\partial \mathbf{x}_k} = \sum_{i=1}^m y_i \frac{1}{\sigma(\mathbf{x}^T \mathbf{a_i})} \sigma(\mathbf{x}^T \mathbf{a_i}) \left(1 - \sigma(\mathbf{x}^T \mathbf{a_i}) \right) a_{ik}$$

minimize
$$\sum_{i=1}^{m} y_i \log \sigma(\mathbf{x}^T \mathbf{a_i}) + (1 - y_i) \log(1 - \sigma(\mathbf{x}^T \mathbf{a_i}))$$

$$\frac{\partial f}{\partial \mathbf{x}_k} = \sum_{i=1}^m y_i \frac{1}{\sigma(\mathbf{x}^T \mathbf{a_i})} \sigma(\mathbf{x}^T \mathbf{a_i}) \left(1 - \sigma(\mathbf{x}^T \mathbf{a_i}) \right) a_{ik}$$

$$\begin{aligned} & \text{minimize} & & \sum_{i=1}^{m} y_{i} \log \sigma(\mathbf{x}^{T} \mathbf{a_{i}}) + (1 - y_{i}) \log (1 - \sigma(\mathbf{x}^{T} \mathbf{a_{i}})) \\ & & \frac{\partial f}{\partial \mathbf{x}_{k}} = \sum_{i=1}^{m} y_{i} \frac{1}{\sigma(\mathbf{x}^{T} \mathbf{a_{i}})} \sigma(\mathbf{x}^{T} \mathbf{a_{i}}) \left(1 - \sigma(\mathbf{x}^{T} \mathbf{a_{i}})\right) a_{ik} \\ & & - (1 - y_{i}) \frac{1}{1 - \sigma(\mathbf{x}^{T} \mathbf{a_{i}})} \sigma(\mathbf{x}^{T} \mathbf{a_{i}}) \left(1 - \sigma(\mathbf{x}^{T} \mathbf{a_{i}})\right) a_{ik} \end{aligned}$$

minimize
$$\sum_{i=1}^{m} y_{i} \log \sigma(\mathbf{x}^{T} \mathbf{a_{i}}) + (1 - y_{i}) \log(1 - \sigma(\mathbf{x}^{T} \mathbf{a_{i}}))$$

$$\frac{\partial f}{\partial \mathbf{x}_{k}} = \sum_{i=1}^{m} y_{i} \frac{1}{\sigma(\mathbf{x}^{T} \mathbf{a_{i}})} \sigma(\mathbf{x}^{T} \mathbf{a_{i}}) \left(1 - \sigma(\mathbf{x}^{T} \mathbf{a_{i}})\right) a_{ik}$$

$$-(1 - y_{i}) \frac{1}{1 - \sigma(\mathbf{x}^{T} \mathbf{a_{i}})} \sigma(\mathbf{x}^{T} \mathbf{a_{i}}) \left(1 - \sigma(\mathbf{x}^{T} \mathbf{a_{i}})\right) a_{ik}$$

$$= \sum_{i=1}^{m} y_{i} a_{ik} \left(1 - \sigma(\mathbf{x}^{T} \mathbf{a_{i}})\right) - (1 - y_{i}) a_{ik} \sigma(\mathbf{x}^{T} \mathbf{a_{i}})$$

minimize
$$\sum_{i=1}^{m} y_{i} \log \sigma(\mathbf{x}^{T} \mathbf{a_{i}}) + (1 - y_{i}) \log(1 - \sigma(\mathbf{x}^{T} \mathbf{a_{i}}))$$

$$\frac{\partial f}{\partial \mathbf{x}_{k}} = \sum_{i=1}^{m} y_{i} \frac{1}{\sigma(\mathbf{x}^{T} \mathbf{a_{i}})} \sigma(\mathbf{x}^{T} \mathbf{a_{i}}) \left(1 - \sigma(\mathbf{x}^{T} \mathbf{a_{i}})\right) a_{ik}$$

$$-(1 - y_{i}) \frac{1}{1 - \sigma(\mathbf{x}^{T} \mathbf{a_{i}})} \sigma(\mathbf{x}^{T} \mathbf{a_{i}}) \left(1 - \sigma(\mathbf{x}^{T} \mathbf{a_{i}})\right) a_{ik}$$

$$= \sum_{i=1}^{m} y_{i} a_{ik} \left(1 - \sigma(\mathbf{x}^{T} \mathbf{a_{i}})\right) - (1 - y_{i}) a_{ik} \sigma(\mathbf{x}^{T} \mathbf{a_{i}})$$

$$= \sum_{i=1}^{m} a_{ik} \left(y_{i} - \sigma(\mathbf{x}^{T} \mathbf{a_{i}})\right)$$

Scivers/Lan.

Logistic Regression

$$\frac{\partial f}{\partial \mathbf{x}_k} = \sum_{i=1}^m a_{ik} \left(y_i - \sigma(\mathbf{x}^T \mathbf{a_i}) \right)$$

Now we need to compute the Hessian matrix:

$$\frac{\partial^{2} f}{\partial \mathbf{x}_{k} \partial \mathbf{x}_{j}} = \sum_{i=1}^{m} -a_{ik} \sigma(\mathbf{x}^{T} \mathbf{a}_{i}) \left(1 - \sigma(\mathbf{x}^{T} \mathbf{a}_{i})\right) a_{ij}$$
$$= \sum_{i=1}^{m} a_{ik} a_{ij} \sigma(\mathbf{x}^{T} \mathbf{a}_{i}) \left(\sigma(\mathbf{x}^{T} \mathbf{a}_{i}) - 1\right)$$

The Hessian H is an $n \times n$ matrix such that:

$$H_{k,j} = \sum_{i=1}^{m} a_{ik} a_{ij} \sigma(\mathbf{x}^T \mathbf{a_i}) \left(\sigma(\mathbf{x}^T \mathbf{a_i}) - 1 \right)$$

Shiversite.

Logistic Regression

So we have our gradient $\nabla f \in \mathbb{R}^n$ such that

$$\nabla_{\mathbf{x}_k} f = \sum_{i=1}^m a_{ik} \left(y_i - \sigma(\mathbf{x}^T \mathbf{a_i}) \right)$$

And the Hessian $H \in \mathbb{R}^{n \times n}$:

$$H_{k,j} = \sum_{i=1}^{m} a_{ik} a_{ij} \sigma(\mathbf{x}^{T} \mathbf{a_i}) \left(\sigma(\mathbf{x}^{T} \mathbf{a_i}) - 1 \right)$$

the newton update rule is:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \mu H^{-1} \nabla f$$

Newton's Method for Logistic Regression - Considerations

The newton update rule is:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \mu H^{-1} \nabla f$$

Biggest problem:

How to efficiently compute H^{-1} for:

$$H_{k,j} = \sum_{i=1}^{m} a_{ik} a_{ij} \sigma(\mathbf{x}^{T} \mathbf{a_i}) \left(\sigma(\mathbf{x}^{T} \mathbf{a_i}) - 1 \right)$$

Considerations:

► H is symmetric: $H_{k,i} = H_{i,k}$

Summary

Newton's method approximates the objective function by means of a quadratic truncated Taylor expansion around last iterate $x^{(k)}$.

$$\hat{f}(x) = f_0 + g_0^T(x - x_0) + \frac{1}{2}(x - x_0)^T H_0(x - x_0)$$

- requires current position $x_0 := x^{(k)}$, function value $f_0 := f(x^{(k)})$, gradient $g_0 := \nabla f(x^{(k)})$ and Hessian $H_0 := \nabla^2 f(x^{(k)})$
- Newton's method is a descent method where the descent direction called Newton step Δx is computed as solution of a linear system of equations:

$$H_0\Delta x = -g_0$$

► Newton step is affine invariant.

Jnivers/

Summary (2/2)

- ▶ Newton's method works very well for many problems.
 - requires objective to be twice differentiable.
 - but often too slow for high-dimensional problems (with many variables)
 - ightharpoonup as Hessian has size N^2 and solving for the Newton step is $O(N^3)$
- ► Convergence of Newton's method decomposes in two phases:
 - damped phase:
 - far away from the optimum
 - ► requires step length control
 - ▶ f reduced by at least a constant per step
 - pure phase:
 - close to the optimum
 - ▶ always steplength 1 can be chosen
 - f-distance to minimum shrinks double exponentially in the number of steps

 $((\frac{1}{2})^{2^k};$ quadratic convergence).

Further Readings

- ► Newton's method including convergence proof
 - ► [Boyd and Vandenberghe, 2004, ch. 9.5]

Acknowledgement: Thanks to John Rothman for pointing out several typos in an earlier version of these slides. Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Stiversites.

References

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.