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Modern Optimization Techniques 1. Subgradients

Motivation

I If a function is once differentiable
we can optimize it using

I Gradient Descent,

I Stochastic Gradient Descent,

I Quasi-Newton Methods

(1st order information)

I If a function is twice differentiable
we can optimize it using

I Newton’s method

(2nd order information)

I What if the objective function is not differentiable?
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Modern Optimization Techniques 1. Subgradients

1st-Order Condition for Convexity (Review)

1st-order condition: a differentiable function f is convex iff

I dom f is a convex set and

I for all x, y ∈ dom f

f (y) ≥ f (x) +∇f (x)T (y − x)

I i.e., the tangent (= first order Taylor approximation) of f at x is a
global underestimator
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Modern Optimization Techniques 1. Subgradients

Tangent as a global underestimator

f (x)

x
x

h(y) = f (x) +∇f (x)T (y − x)

What happens if f is not differentiable?
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Modern Optimization Techniques 1. Subgradients

Subgradient
Given a function f and a point x ∈ dom f ,
g ∈ RN is called a subgradient of f at x if:
the hypersurface with slopes g through (x, f (x)) is a global underestimator
of f , i.e.

f (y) ≥ f (x) + gT (y − x), for all y ∈ dom f

f (x)

x

x (1) f (x (1)) + gT
1 (x − x (1))x (2)

f (x (2)) + gT
2 (x − x (2))

f (x (2)) + gT
3 (x − x (2))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 22



Modern Optimization Techniques 1. Subgradients

Subgradient
Given a function f and a point x ∈ dom f ,
g ∈ RN is called a subgradient of f at x if:
the hypersurface with slopes g through (x, f (x)) is a global underestimator
of f , i.e.

f (y) ≥ f (x) + gT (y − x), for all y ∈ dom f

f (x)

x
x (1) f (x (1)) + gT

1 (x − x (1))

x (2)

f (x (2)) + gT
2 (x − x (2))

f (x (2)) + gT
3 (x − x (2))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 22



Modern Optimization Techniques 1. Subgradients

Subgradient
Given a function f and a point x ∈ dom f ,
g ∈ RN is called a subgradient of f at x if:
the hypersurface with slopes g through (x, f (x)) is a global underestimator
of f , i.e.

f (y) ≥ f (x) + gT (y − x), for all y ∈ dom f

f (x)

x
x (1) f (x (1)) + gT

1 (x − x (1))x (2)

f (x (2)) + gT
2 (x − x (2))

f (x (2)) + gT
3 (x − x (2))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 22



Modern Optimization Techniques 1. Subgradients

Subgradient
Given a function f and a point x ∈ dom f ,
g ∈ RN is called a subgradient of f at x if:
the hypersurface with slopes g through (x, f (x)) is a global underestimator
of f , i.e.

f (y) ≥ f (x) + gT (y − x), for all y ∈ dom f

f (x)

x
x (1) f (x (1)) + gT

1 (x − x (1))x (2)

f (x (2)) + gT
2 (x − x (2))

f (x (2)) + gT
3 (x − x (2))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 22

– g1 is a subgradient of f at

x(1)

– g2 and g3 are

subgradients of f at x(2)



Modern Optimization Techniques 1. Subgradients

Example
For f : R→ R and f (x) = |x |:
I For x 6= 0 there is one subgradient: g = ∇f (x) = sign(x)

I For x = 0 the subgradients are: g ∈ [−1, 1]

x

f (x)

f (x)
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Modern Optimization Techniques 1. Subgradients

Subdifferential
Subdifferential ∂f (x): set of all subgradients of f at x

∂f (x) := {g ∈ RN | f (y) ≥ f (x) + gT (y − x) ∀y ∈ dom f }

I the subdifferential ∂f (x) is a convex set.

(αg + (1− α)h)T (y − x) = αgT (y − x) + (1− α)hT (y − x)

≤ α(f (y)− f (x)) + (1− α)(f (y)− f (x))

= f (y)− f (x)  (αg + (1− α)h) ∈ ∂f (x)

I for a convex function f :
I subgradients always exist: ∂f (x) 6= ∅
I f is differentiable at x

iff the subdifferential contains a single element (the gradient)

f differentiable at x ⇐⇒ ∂f (x) = {∇f (x)}
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Modern Optimization Techniques 1. Subgradients

Example

For f (x) = |x |:

x

f (x)

x

∂f (x)

−1

+1
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Modern Optimization Techniques 1. Subgradients

Subdifferential

For a non-convex function f :

I subgradients make less sense
I see generalized subgradients, defined on local information
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Modern Optimization Techniques 2. Subgradient Calculus
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Modern Optimization Techniques 2. Subgradient Calculus

Subgradient Calculus

Assume f convex and x ∈ dom f

Some algorithms require only one subgradient for optimizing
nondifferentiable functions f

Other algorithms, and optimality conditions require the whole
subdifferential at x

Tools for finding subgradients:

I Weak subgradient calculus: finding one subgradient g ∈ ∂f (x)

I Strong subgradient calculus: finding the whole subdifferential ∂f (x)
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Modern Optimization Techniques 2. Subgradient Calculus

Subgradient Calculus
We know that if f is differentiable at x then ∂f (x) = {∇f (x)}

There are a couple of additional rules:

I Scaling: for a > 0: ∂(a · f ) = {a · g | g ∈ ∂(f )}

I Addition: ∂(f1 + f2) = ∂f1 + ∂f2

I Affine composition: for h(x) = f (Ax + b) then

∂h(x) = AT∂f (Ax + b)

I Finite pointwise maximum: if f (x) = maxm=1 ...,M fm(x) then

∂f (x) = conv
⋃

m:fm(x)=f (x)

∂fm(x)

the subdifferential is the convex hull of the union of subdifferentials of
all active functions at x
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Modern Optimization Techniques 2. Subgradient Calculus

Subgradient Calculus / Pointwise Supremum

I Pointwise Supremum: if f (x) = supa∈A fa(x) then

∂f (x) ⊇ conv
⋃

a∈A:fa(x)=f (x)

∂fa(x)

I “=” if A is compact and f continuous in x and a.
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Modern Optimization Techniques 2. Subgradient Calculus

Subgradient Calculus / Function Composition

I Function Composition: if f (x) = h(g1(x), g2(x), . . . , gM(x)), then

∂f (x) ⊇ conv{(b1, b2, . . . , bM)a | bm ∈ ∂gm(x),m = 1 : M,

a ∈ (∂h)(g1(x), g2(x), . . . , gM(x))}

I chain rule

I for differentiable gm and h:
I Dg(x) = (b1, b2, . . . , bM)T Jacobi matrix of g := (g1, g2, . . . , gM)

I (∇h)(g(x)) = a gradient of h at g(x)
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Modern Optimization Techniques 2. Subgradient Calculus

Subgradients / More Examples

f (x) := ||x ||2

∂f (x) =

{
{ x
||x ||2 }, if x 6= 0N

{g ∈ RN | ||g ||2 ≤ 1}. if x = 0N

proof:

use ||x ||2 = max
z:||z||2≤1

zT x

“ ≤ ” : z :=
x

||x ||2
, “ ≥ ” : zT x ≤ ||z ||2||x ||2 Cauchy-Schwarz

∂(||x ||2) = ∂( max
z:||z||2≤1

zT x)

= conv
⋃

z:||z||2≤1,zT x max.

{z}, for x = 0

= conv
⋃

z:||z||2≤1

{z} = {z ∈ RN | ||z ||2 ≤ 1}
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Modern Optimization Techniques 3. The Subgradient Method
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Modern Optimization Techniques 3. The Subgradient Method

Descent Direction
I idea:

I choose an arbitrary subgradient g ∈ ∂f
I use its negative −g as next direction

I negative subgradients are in general no descent directions
I example:

f (x1, x2) :=|x1|+ 3|x2|

negative subgradients at x :=

(
1
0

)
:

−g1 :=−
(

1
0

)
descent direction

−g2 :=−
(

1
3

)
not a descent direction

I thus cannot use stepsize controllers such as backtracking.
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Modern Optimization Techniques 3. The Subgradient Method

Optimality Condition

For a convex f : RN → R:

x∗ is a global minimizer ⇔ 0 is a subgradient of f at x∗

f (x∗) = min
x∈dom f

f (x) 0 ∈ ∂f (x∗)

Proof:
If 0 is a subgradient of f at x∗, then for all y ∈ RN :

f (y) ≥ f (x∗) + 0T (y − x∗)

f (y) ≥ f (x∗)
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Modern Optimization Techniques 3. The Subgradient Method

Gradient Descent (Review)

1 min-gd(f ,∇f , x (0), µ, ε,K ) :
2 for k := 1, . . . ,K :

3 ∆x (k−1) := −∇f (x (k−1))

4 if ||∇f (x (k−1))||2 < ε:

5 return x (k−1)

6 µ(k−1) := µ(f , x (k−1),∆x (k−1))

7 x (k) := x (k−1) + µ(k−1)∆x (k−1)

8 return ”not converged”

where

I f objective function
I ∇f gradient of objective function f
I x(0) starting value
I µ step length controller
I ε convergence threshold for gradient norm
I K maximal number of iterations
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Modern Optimization Techniques 3. The Subgradient Method

Subgradient Method
1 min-subgrad(f , ∂f , x (0), µ,K ) :

2 x
(0)
best := x (0)

3 for k := 1, . . . ,K :

4 if 0 ∈ ∂f (x (k−1)):

5 return x
(k−1)
best

6 choose g ∈ ∂f (x (k−1)) arbitrarily

7 ∆x (k−1) := −g
8 µ(k−1) := µk−1

9 x (k) := x (k−1) + µ(k−1)∆x (k−1)

10 x
(k)
best :=

{
x (k), if f (x (k)) < f (x

(k−1)
best )

x
(k−1)
best , else

11 return ”not converged”

where
I µ ∈ R∗ step length schedule
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Modern Optimization Techniques 4. Convergence

Outline

1. Subgradients

2. Subgradient Calculus

3. The Subgradient Method

4. Convergence

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

18 / 22



Modern Optimization Techniques 4. Convergence

Slowly Diminishing Stepsizes

Proof of convergence requires slowly diminishing stepsizes:

lim
k→∞

µ(k) = 0,
∞∑
k=0

µ(k) =∞,
∞∑
k=0

(µ(k))2 <∞

for example:

µ(k) :=
1

k + 1

but not:

I constant stepsizes µ(k) := µ ∈ R

I too fast shrinking stepsizes, e.g., µ(k) := 1
(k+1)2

I adaptive stepsize chosen by a step length controller
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Modern Optimization Techniques 4. Convergence

Theorem (convergence of subgradient method)

Under the assumptions

I. f : X → R is convex, X ⊆ RN is open

II. f is Lipschitz-continuous with constant G > 0, i.e.

|f (x)− f (y)| ≤ G ||x− y||2, ∀x, y ∈ RN

I Equivalently: ||g||2 ≤ G for any subgradient g of f at any x

III. slowly diminishing stepsizes µ(k), i.e.,

lim
k→∞

µ(k) = 0,
∞∑
k=0

µ(k) =∞,
∞∑
k=0

(µ(k))2 <∞

the subgradient method converges and

f (x
(k)
best)− f (x∗) ≤

||x(0) − x∗||2 + G 2
∑k

j=0(µ(j))2

2
∑k

j=0 µ
(j)
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Modern Optimization Techniques 4. Convergence

Convergence / Proof (1/2)

||x(k+1) − x∗||22
= ||x(k) − µ(k)g(k) − x∗||22
= ||x(k) − x∗||22 − 2µ(k)(g(k))T (x(k) − x∗) + (µ(k))2||g(k)||22
≤
SG
||x(k) − x∗||22 − 2µ(k)(f (x(k))− f (x∗)) + (µ(k))2||g(k)||22

≤
rec
||x(0) − x∗||22 − 2

k∑
j=0

µ(j)(f (x(j))− f (x∗)) +
k∑

j=0

(µ(j))2||g(j)||22

≤
II
||x(0) − x∗||22 − 2

k∑
j=0

µ(j)(f (x(j))− f (x∗)) + G 2
k∑

j=0

(µ(j))2 (1)
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Modern Optimization Techniques 4. Convergence

Convergence / Proof (2/2)

f (x
(k)
best)− f (x∗) =

∑k
j=0(f (x

(k)
best)− f (x∗))µ(j)∑k
j=0 µ

(j)

≤
∑k

j=0(f (x(j))− f (x∗))µ(j)∑k
j=0 µ

(j)

≤
2
∑k

j=0(f (x(j))− f (x∗))µ(j) + ||x(k+1) − x∗||22
2
∑k

j=0 µ
(j)

≤
(1)

||x(0) − x∗||22 + G 2
∑k

j=0(µ(j))2

2
∑k

j=0 µ
(j)

lim
k→∞

f (x
(k)
best)− f (x∗) ≤ lim

k→∞

||x(0) − x∗||22 + G 2
∑k

j=0(µ(j))2

2
∑k

j=0 µ
(j)

=
III

0
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Modern Optimization Techniques 4. Convergence

Summary
I Subgradients generalize gradients (for convex functions):

I any slope of a hypersurface that is global underestimator.

I at a differentiable location: the gradient is the only subgradient.

I Example absolute value: ∂(|x |)|(0) = [−1,+1]

I subgradient calculus:
I scalar multiplication, addition, affine composition, pointwise maximum

I The subgradient method generalizes gradient descent:
I use an arbitrary subgradient

I stop if 0 is among the subgradients

I as subgradients generally are no descent direction,
the best location so far has to be tracked.

I The subgradient method is converging.
I for Lipschitz-continuous functions and slowly diminishing stepsizes.
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Modern Optimization Techniques

Further Readings

I Subgradient methods are not covered by Boyd and Vandenberghe
[2004]

I Subgradients:
I [Bertsekas, 1999, ch. B.5 and 6.1]

I Subgradient methods:
I [Bertsekas, 1999, ch. 6.3.1]
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Modern Optimization Techniques

References

Dimitri P. Bertsekas. Nonlinear Programming. Springer, 1999.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 22



Modern Optimization Techniques

Example: Text Classification

Features A: normalized word frequecies in text documents

Category y: topic of the text documents

Am,n =


1 a1,1 a1,2 a1,3 a1,4
1 a2,1 a2,2 a2,3 a2,4
...

...
...

...
...

1 am,1 am,2 am,3 am,4

 y =


y1
y2
...
ym



ŷi = σ(xTai)
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Modern Optimization Techniques

Text Classification: L1-Regularized Logistic Regression

For x ∈ RN , y ∈ Rm and A ∈ Rm×n we have the following problem

minimize −
m∑
i=1

yi log σ(xTai) + (1− yi ) log(1− σ(xTai)) + λ||x||1

Which can be rewritten as:

minimize −
m∑
i=1

yi log σ(xTai) + (1− yi ) log(1− σ(xTai)) + λ
N∑

k=1

|xk |

f is convex and non-smooth
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Modern Optimization Techniques

Example: L1-Regularized Logistic Regression

The subgradients of
f (x) = −

∑m
i=1 yi log σ(xTai) + (1− yi ) log(1− σ(xTai)) + λ||x||1 are:

g = −AT (y − ŷ) + λs

where s ∈ ∂||x||1, i.e.:

I sk = sign(xk) if xk 6= 0

I sk ∈ [−1, 1] if xk = 0
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Modern Optimization Techniques

Example - The algorithm

For x ∈ RN , y ∈ Rm and A ∈ Rm×n we have the following the problem

minimize −
m∑
i=1

yi log σ(xTai) + (1− yi ) log(1− σ(xTai)) + λ

N∑
k=1

|xk |

1. Start with an initial solution x(0)

2. t ← 0

3. fbest ← f (x(0))

4. Repeat until convergence

4.1 x(k+1) ← x(k)−µ(k)(−AT (y−ŷ)+λs)
4.2 t ← t + 1
4.3 fbest ← min(f (x(k)), fbest)

5. Return fbest

where s ∈ ∂||x||1, i.e.:

I sk = sign(xk) if xk 6= 0

I sk ∈ [−1, 1] if xk = 0
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