

Modern Optimization Techniques

3. Equality Constrained Optimization / 3.2. Methods

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

Syllabus

Mon. 28.10.	(0)	0. Overview
Mon. 4.11.	(1)	 Theory Convex Sets and Functions
Mon. 11.11. Mon. 18.11. Mon. 25.11. Mon. 2.12. Mon. 19.12. Mon. 16.12.	(2) (3) (4) (5) (6) (7)	2. Unconstrained Optimization 2.1 Gradient Descent 2.2 Stochastic Gradient Descent 2.3 Newton's Method 2.4 Quasi-Newton Methods 2.5 Subgradient Methods 2.6 Coordinate Descent — Christmas Break —
Mon. 6.1. Mon. 13.1. Mon. 20.1.	(8) (9)	 3. Equality Constrained Optimization 3.1 Duality 3.2 Methods 4. Inequality Constrained Optimization 4.1 Primal Methods
Mon. 27.1. Mon. 3.2.	(11) (12)	4.2 Barrier and Penalty Methods 4.3 Cutting Plane Methods

Stildeshelf

Outline

- 1. Equality Constrained Optimization
- 2. Quadratic Programming
- 3. Newton's Method for Equality Constrained Problems
- 4. Infeasible Start Newton Method

- 1. Equality Constrained Optimization
- 2. Quadratic Programming
- 3. Newton's Method for Equality Constrained Problems
- 4. Infeasible Start Newton Method

Equality Constrained Optimization Problems

A **constrained optimization problem** has the form:

minimize
$$f(\mathbf{x})$$

subject to $g_p(\mathbf{x}) = 0, \quad p = 1, \dots, P$

Where:

- ▶ $f: \mathbb{R}^N \to \mathbb{R}$ objective function
- ▶ $g_1, \dots, g_P : \mathbb{R}^N \to \mathbb{R}$ equality constraints
- ► a feasible, optimal **x*** exists

Convex Equality Constrained Optimization Problems

An equality constrained optimization problem:

minimize
$$f(\mathbf{x})$$

subject to $g_p(\mathbf{x}) = 0, \quad p = 1, \dots, P$

is convex iff:

- ► *f* is convex
- ▶ $g_1, ..., g_P$ are affine

minimize
$$f(\mathbf{x})$$

subject to $A\mathbf{x} = \mathbf{a}, \quad A \in \mathbb{R}^{P \times N}, a \in \mathbb{R}^{P}$

Affine Equality Constraints Ax = a

- ▶ Always can assume: A has rank $P \leq N$.
 - otherwise delete extra rows in A (by Gauss elimination).
- \blacktriangleright each row in A is a normal vector for \mathcal{X} .
- \blacktriangleright the feasible set \mathcal{X} is simple, just an affine set.

P = rank(A)	feasible set ${\mathcal X}$	$dim(\mathcal{X})$
N	point	0
N-1	line	1
N-2	plane	2
N-3	3d volume	3
:	:	:
1	hyperplane	N-1
0	unconstrained	Ν

Silvers/tag

Optimality criterion

Given a convex equality constrained optimization problem

minimize
$$f(\mathbf{x})$$
 subject to $A\mathbf{x} = \mathbf{a}, \quad A \in \mathbb{R}^{P \times N}, \mathbf{a} \in \mathbb{R}^{P}$

Its Lagrangian is given by:

$$L(\mathbf{x}, \nu) = f(\mathbf{x}) + \nu^{T} (A\mathbf{x} - \mathbf{a})$$

with derivative:

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \nu) = \nabla_{\mathbf{x}} f(\mathbf{x}) + A^T \nu$$

Optimality criterion

Given a convex equality constrained optimization problem

minimize
$$f(\mathbf{x})$$

subject to $A\mathbf{x} = \mathbf{a}, \quad A \in \mathbb{R}^{P \times N}, \, \mathbf{a} \in \mathbb{R}^{P}$

The optimal solution \mathbf{x}^* must fulfill the KKT conditions:

Optimality criterion

Given a convex equality constrained optimization problem

minimize
$$f(\mathbf{x})$$

subject to $A\mathbf{x} = \mathbf{a}, \quad A \in \mathbb{R}^{P \times N}, a \in \mathbb{R}^{P}$

The optimal solution \mathbf{x}^* must fulfill the KKT conditions:

1. primal feasibility:
$$g_p(\mathbf{x}) = 0$$
 and $h_q(\mathbf{x}) \leq 0$, $\forall p, q$

2. dual feasibility:
$$\lambda \geq 0$$

3. complementary slackness:
$$\lambda_q h_q(\mathbf{x}) = 0, \quad \forall q$$

4. stationarity:
$$\nabla f(\mathbf{x}) + \sum_{p=1}^{p} \nu_p \nabla g_p(\mathbf{x}) + \sum_{q=1}^{Q} \lambda_q \nabla h_q(\mathbf{x}) = 0$$

Optimality criterion

Given a convex equality constrained optimization problem

minimize
$$f(\mathbf{x})$$
 subject to $A\mathbf{x} = \mathbf{a}, \quad A \in \mathbb{R}^{P \times N}, \mathbf{a} \in \mathbb{R}^{P}$

The optimal solution \mathbf{x}^* must fulfill the KKT conditions:

1. primal feasibility:
$$g_p(\mathbf{x}) = 0$$
 and $h_q(\mathbf{x}) \leq 0$, $\forall p, q$
2. dual feasibility: $X \geqslant 0$

3. complementary slackness:
$$\lambda_q h_q(\mathbf{x}) = 0, \forall q$$

4. stationarity:
$$\nabla f(\mathbf{x}) + \sum_{p=1}^{p} \nu_p \nabla g_p(\mathbf{x}) + \sum_{q=1}^{Q} \lambda_q \nabla h_q(\mathbf{x}) = 0$$

Since there are no inequality constraints, stroke-through conditions are irrelevant.

Shiversite.

Optimality criterion

Given a convex equality constrained optimization problem

minimize
$$f(\mathbf{x})$$
 subject to $A\mathbf{x} = \mathbf{a}, \quad A \in \mathbb{R}^{P \times N}, \mathbf{a} \in \mathbb{R}^{P}$

The optimal solution \mathbf{x}^* must fulfill the KKT conditions:

1. primal feasibility:

Ax = a

2. stationarity:

$$\nabla f(\mathbf{x}) + A^T \nu^* = 0$$

▶ i.e., a feasible x^* is optimal, if there exists a ν^* with $\nabla f(\mathbf{x}^*) + A^T \nu^* = 0$

Example

Given the following problem:

minimize
$$(x_1 - 2)^2 + 2(x_2 - 1)^2 - 5$$

subject to $x_1 + 4x_2 = 3$

optimality condition:

1. primal feasibility:
$$Ax = a$$

2. stationarity:
$$\nabla f(\mathbf{x}) + A^T \nu^* = 0$$

instantiated for the example problem:

1. primal feasibility:
$$x_1 + 4x_2 = 3$$

Jainersit

Example

Given the following problem:

minimize
$$(x_1 - 2)^2 + 2(x_2 - 1)^2 - 5$$

subject to $x_1 + 4x_2 = 3$

instantiated for the example problem:

1. primal feasibility:

$$x_1+4x_2=3$$

2. stationarity:

$$\left(\begin{array}{c} 2x_1 - 4 \\ 4x_2 - 4 \end{array}\right) + \left(\begin{array}{c} 1 \\ 4 \end{array}\right)^T v = 0$$

can be simplified to:

$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 4 & 4 \\ 1 & 4 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \nu \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ 3 \end{pmatrix}$$

Example

Given the following problem:

minimize
$$(x_1 - 2)^2 + 2(x_2 - 1)^2 - 5$$

subject to $x_1 + 4x_2 = 3$

instantiated for the example problem:

1. primal feasibility:

$$x_1+4x_2=3$$

2. stationarity:

$$\left(\begin{array}{c} 2x_1 - 4 \\ 4x_2 - 4 \end{array}\right) + \left(\begin{array}{c} 1 \\ 4 \end{array}\right)' v = 0$$

can be simplified to:

$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 4 & 4 \\ 1 & 4 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \nu \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ 3 \end{pmatrix}$$
 with solution $x_1 = \frac{5}{3}, x_2 = \frac{1}{3}, \nu = \frac{2}{3}$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Generic Handling of Equality Constraints

Two generic ways to handle equality constraints:

- 1. Eliminate affine equality constraints
 - ▶ and then use any unconstrained optimization method.
 - ► limited to **affine** equality constraints
- 2. Represent equality constraints as inequality constraints
 - ▶ and then use any optimization method for inequality constraints.

1. Eliminating Affine Equality Constraints

Reparametrize feasible values:

$$\{x \mid Ax = a\} = x_0 + \{x \mid Ax = 0\} = x_0 + \{Fz \mid z \in \mathbb{R}^{N-P}\}\$$

with

- $\blacktriangleright x_0 \in \mathbb{R}^N$: any feasible value: $Ax_0 = a$
- ▶ $F \in \mathbb{R}^{N \times (N-P)}$ composed of N-P basis vectors of the nullspace of
 - ightharpoonup AF = 0 (e.g., compute F by Gauss elimination)

equality constrained problem: $\underset{x^*=x_0+Fz^*}{\iff}$

reduced unconstrained problem:

$$\min_{x} f(x)$$

$$\min_{z} \tilde{f}(z) := f(x_0 + Fz)$$

subject to Ax = a

1. Eliminating Affine Eq. Constr. / KKT Conditions

Be z^* the solution of the reduced unconstrained problem, i.e., $\nabla \tilde{f}(z^*) = 0$. Then $z^* := z_0 + Fz^*$ fulfills the KKT conditions with

Then
$$x^* := x_0 + Fz^*$$
 fulfills the KKT conditions with

$$\nu^* := -(AA^T)^{-1}A\nabla f(x^*)$$

1. Eliminating Affine Eq. Constr. / KKT Conditions

Be z^* the solution of the reduced unconstrained problem, i.e., $\nabla \tilde{f}(z^*) = 0$.

Then $x^* := x_0 + Fz^*$ fulfills the KKT conditions with

$$\nu^* := -(AA^T)^{-1}A\nabla f(x^*)$$

Proof:

i. primal feasibility:
$$Ax^* = Ax_0 + AFz^* = a + 0 = a$$

ii. stationarity:
$$\nabla f(x^*) + A^T \nu^* \stackrel{?}{=} 0$$

$$\begin{pmatrix} F^T \\ A \end{pmatrix} (\nabla f(x^*) + A^T \nu^*) = \begin{pmatrix} F^T \nabla f(x^*) - F^T A^T (AA^T)^{-1} A \nabla f(x^*) \\ A \nabla f(x^*) - AA^T (AA^T)^{-1} A \nabla f(x^*) \end{pmatrix}$$

$$= \begin{pmatrix} \nabla \tilde{f}(z^*) - (AF)^T (\dots) \\ A \nabla f(x^*) - A \nabla f(x^*) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

and as $\binom{F'}{A}$ has full rank / is invertible

$$\nabla f(x^*) + A^T \nu^* = 0$$

2. Reducing to Inequality Constraints

► *P* equality constraints obviously can be represented as 2*P* inequality constraints:

$$g_p(x) = 0, \quad p = 1, \dots, P \quad \Longleftrightarrow \quad -g_p(x) \le 0, \quad p = 1, \dots, P$$

$$g_p(x) \le 0, \quad p = 1, \dots, P$$

- ► Then any method for inequality constraints can be used (see next chapter).
- ► For non-linear equality constraints, the problem is not convex anymore.

Equality Constraints / Algorithms

1. Reparametrize:

```
1 min-eq-reparam(f, A, a, ...):
   x_0 := solve(Ax = a)
F := solve-all(Ax = 0)
  z^* := min-unconstrained(\tilde{f}(z)) := f(x_0 + Fz), \ldots)
   return x_0 + Fz^*
```

2. Represent as inequalities:

```
1 min-eq-represent-ineq(f, g_{1:P}, \ldots):
     h_{1 \cdot P} := g_{1 \cdot P}
     h_{P+1\cdot 2P} := -g_{1\cdot P}
  x^* := \min-ineq(f, h_{1:2P}, \ldots)
     return x^*
```

Outline

- 1. Equality Constrained Optimization
- 2. Quadratic Programming
- 3. Newton's Method for Equality Constrained Problems
- 4. Infeasible Start Newton Method

Quadratic Programming

minimize
$$\frac{1}{2}\mathbf{x}^T P \mathbf{x} + \mathbf{q}^T \mathbf{x} + r$$

subject to $A\mathbf{x} = \mathbf{a}$

with given $P \in \mathbb{R}^{N \times N}$ pos. semidef., $\mathbf{q} \in \mathbb{R}^N$, $r \in \mathbb{R}$.

Optimality Condition:

$$\begin{pmatrix} P & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} \mathbf{x}^* \\ \nu^* \end{pmatrix} = \begin{pmatrix} -\mathbf{q} \\ \mathbf{a} \end{pmatrix}$$

- ► KKT Matrix
- ▶ solve the linear system of equations to compute a solution/minimum.
 - ▶ unique if the *KKT* matrix is invertible/non-singular:

$$\begin{pmatrix} \mathbf{x}^* \\ \nu^* \end{pmatrix} = \begin{pmatrix} P & A^T \\ A & 0 \end{pmatrix}^{-1} \begin{pmatrix} -\mathbf{q} \\ \mathbf{a} \end{pmatrix}$$

Quadratic Programming / Unique Solutions

Unconstrained quadratic programs have a unique solution, iff P is pos.def.: $\mathbf{x} \neq 0 \quad \Rightarrow \quad \mathbf{x}^T P \mathbf{x} > 0$

Linearly constrained quadratic programs have a unique solution, iff P is pos.def. on the nullspace of A:

$$A\mathbf{x} = 0, \quad \mathbf{x} \neq 0 \quad \Rightarrow \quad \mathbf{x}^T P \mathbf{x} > 0$$

Quadratic Programming / Unique Solutions

Unconstrained quadratic programs have a unique solution, iff P is pos.def.: $\mathbf{x} \neq 0 \quad \Rightarrow \quad \mathbf{x}^T P \mathbf{x} > 0$

Linearly constrained quadratic programs have a unique solution, iff P is pos.def. on the nullspace of A:

$$A\mathbf{x} = 0, \quad \mathbf{x} \neq 0 \quad \Rightarrow \quad \mathbf{x}^T P \mathbf{x} > 0$$

Proof: show that the KKT matrix is invertible:

$$\begin{pmatrix} P & A^{T} \\ A & 0 \end{pmatrix} \begin{pmatrix} x \\ \nu \end{pmatrix} = 0 \quad \rightsquigarrow \text{(i)} \ Px + A^{T} \nu = 0, \quad \text{(ii)} \ Ax = 0$$

$$\underset{(i)}{\rightsquigarrow} \quad 0 = x^{T} (Px + A^{T} \nu) = x^{T} Px + (Ax)^{T} \nu \underset{(ii)}{=} x^{T} Px \quad \underset{ass.}{\rightsquigarrow} x = 0$$

$$\underset{(i)}{\rightsquigarrow} \quad A^{T} \nu = 0 \quad \rightsquigarrow \quad \nu = 0 \text{ as } A \text{ has full rank}$$

Example

minimize
$$(x_1 - 2)^2 + 2(x_2 - 1)^2 - 5$$

subject to $x_1 + 4x_2 = 3$

is an example for a quadratic programming problem:

$$f(x) = (x_1 - 2)^2 + 2(x_2 - 1)^2 - 5$$

$$= x_1^2 - 4x_1 + 4 + 2x_2^2 - 2x_2 + 1 - 5$$

$$= x_1^2 + 2x_2^2 - 4x_1 - 2x_2$$

$$P := \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}, \quad \mathbf{q} := \begin{pmatrix} -4 \\ -2 \end{pmatrix}, \quad r := 0$$

$$A := \begin{pmatrix} 1 & 4 \end{pmatrix}, \quad \mathbf{a} := \begin{pmatrix} 3 \end{pmatrix}$$

Outline

- 2. Quadratic Programming
- 3. Newton's Method for Equality Constrained Problems
- 4. Infeasible Start Newton Method

Descent step for equality constrained problems Given the following problem:

minimize
$$f(\mathbf{x})$$
 subject to $A\mathbf{x} = \mathbf{a}$

- ► start with a feasible solution x
- ightharpoonup compute a step Δx such that
 - f decreases: $f(\mathbf{x} + \Delta \mathbf{x}) \leq f(\mathbf{x})$
 - yields feasible point: $A(\mathbf{x} + \Delta \mathbf{x}) = \mathbf{a}$
- which means solving the following problem for Δx :

minimize
$$f(\mathbf{x} + \Delta \mathbf{x})$$

subject to $A(\mathbf{x} + \Delta \mathbf{x}) = \mathbf{a}$

Newton Step

The Newton Step is the solution for the minimization of the second order approximation of f:

minimize
$$\hat{f}(\mathbf{x} + \Delta \mathbf{x}) := f(\mathbf{x}) + \nabla f(\mathbf{x})^T \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^T \nabla^2 f(\mathbf{x}) \Delta \mathbf{x}$$

subject to $A(\mathbf{x} + \Delta \mathbf{x}) = \mathbf{a}$

which can be simplified to

$$A\Delta \mathbf{x} = 0$$

if the last iterate is feasible already

$$Ax = a$$

Newton Step

The Newton Step is the solution for the minimization of the second order approximation of f:

minimize
$$\hat{f}(\mathbf{x} + \Delta \mathbf{x}) := f(\mathbf{x}) + \nabla f(\mathbf{x})^T \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^T \nabla^2 f(\mathbf{x}) \Delta \mathbf{x}$$
 subject to $A\Delta \mathbf{x} = \mathbf{0}$

This is a quadratic programming problem with:

- $P := \nabla^2 f(\mathbf{x})$
- $ightharpoonup q := \nabla f(\mathbf{x})$
- $ightharpoonup r := f(\mathbf{x})$

and thus optimality conditions:

- $\rightarrow A \triangle x = 0$

Newton Step

The Newton Step is the solution for the minimization of the second order approximation of f:

minimize
$$\hat{f}(\mathbf{x} + \Delta \mathbf{x}) := f(\mathbf{x}) + \nabla f(\mathbf{x})^T \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^T \nabla^2 f(\mathbf{x}) \Delta \mathbf{x}$$
 subject to $A\Delta \mathbf{x} = \mathbf{0}$

Is computed by solving the following system:

$$\begin{pmatrix} \nabla^2 f(\mathbf{x}) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} \Delta \mathbf{x} \\ \nu \end{pmatrix} = \begin{pmatrix} -\nabla f(\mathbf{x}) \\ \mathbf{0} \end{pmatrix}$$

Newton's Method for Unconstrained Problems (Review)

```
1 min-newton(f, \nabla f, \nabla^2 f, x^{(0)}, \mu, \epsilon, K):
      for k := 1, ..., K:
2
         \Delta x^{(k-1)} := -\nabla^2 f(x^{(k-1)})^{-1} \nabla f(x^{(k-1)})
         if -\nabla f(x^{(k-1)})^T \Delta x^{(k-1)} < \epsilon:
            return x^{(k-1)}
        \mu^{(k-1)} := \mu(f, x^{(k-1)}, \Delta x^{(k-1)})
        x^{(k)} := x^{(k-1)} + \mu^{(k-1)} \Delta x^{(k-1)}
      return "not converged"
```

where

- f objective function
- $ightharpoonup \nabla f$, $\nabla^2 f$ gradient and Hessian of objective function f
- \triangleright $x^{(0)}$ starting value
- μ step length controller
- ightharpoonup convergence threshold for Newton's decrement
- K maximal number of iterations

Newton's Method for Affine Equality Constraints

```
1 min-newton-eq(f, \nabla f, \nabla^2 f, A, x^{(0)}, \mu, \epsilon, K):
        for k := 1, ..., K:
           \begin{pmatrix} \Delta x^{(k-1)} \\ \nu^{(k-1)} \end{pmatrix} := -\begin{pmatrix} \nabla^2 f(x^{(k-1)}) & A^T \\ A & 0 \end{pmatrix}^{-1} \begin{pmatrix} \nabla f(x^{(k-1)}) \\ 0 \end{pmatrix}
           if -\nabla f(x^{(k-1)})^T \Delta x^{(k-1)} < \epsilon:
               return x^{(k-1)}
        u^{(k-1)} := u(f, x^{(k-1)}, \Delta x^{(k-1)})
          x^{(k)} := x^{(k-1)} + \mu^{(k-1)} \Delta x^{(k-1)}
        return "not converged"
```

where

- A affine equality constraints
- $ightharpoonup x^{(0)}$ feasible starting value (i.e., $Ax^{(0)} = a$)

Convergence

▶ The iterates $x^{(k)}$ are the same as those of the Newton algorithm for the eliminated unconstrained problem

$$\tilde{f}(z) := f(x_0 + Fz), \quad x^{(k)} = x_0 + Fz^{(k)}$$

- as the Newton steps $\Delta x = F \Delta z$ coincide as they fulfil the KKT conditions of the quadratic approximation
- ▶ Thus convergence is the same as in the unconstrained case.

Outline

- 1. Equality Constrained Optimization
- 2. Quadratic Programming
- 3. Newton's Method for Equality Constrained Problems
- 4. Infeasible Start Newton Method

Newton Step at Infeasible Points

If x is infeasible, i.e. $Ax \neq a$, we have the following problem:

minimize
$$\hat{f}(\mathbf{x} + \Delta \mathbf{x}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^T \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^T \nabla^2 f(\mathbf{x}) \Delta \mathbf{x}$$
 subject to $A\Delta \mathbf{x} = \mathbf{a} - A\mathbf{x}$

which can be solved for Δx by solving the following system of equations:

$$\begin{pmatrix} \nabla^2 f(\mathbf{x}) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} \Delta \mathbf{x} \\ \nu \end{pmatrix} = - \begin{pmatrix} \nabla f(\mathbf{x}) \\ A\mathbf{x} - \mathbf{a} \end{pmatrix}$$

- ► An undamped iteration of this algorithm yields a feasible point.
- ▶ With step length control: points will stay infeasible in general.

Step Length Control

- \blacktriangleright Δx is not necessarily a descent direction for f
- ▶ but $(\Delta x \ \nu)$ is a descent direction for the norm of the **primal-dual residuum**:

$$r(x,\nu) := ||\begin{pmatrix} \nabla f(x) + A^T \nu \\ Ax - a \end{pmatrix}||$$

► The Infeasible Start Newton algorithm requires a proper convergence analysis (see [Boyd and Vandenberghe, 2004, ch. 10.3.3])

Newton's Method for Lin. Eq. Cstr. / Infeasible Start

```
1 min-newton-eq-inf(f, \nabla f, \nabla^2 f, A, \mathbf{a}, \mathbf{x}^{(0)}, \mathbf{\nu}^{(0)}, \mu, \epsilon, K):
         for k := 1, ..., K:
              if r(x^{(k-1)}, \nu^{(k-1)}) < \epsilon:
                   return x^{(k-1)}
         \begin{pmatrix} \Delta x^{(k-1)} \\ \Delta \nu^{(k-1)} \end{pmatrix} := - \begin{pmatrix} \nabla^2 f(x^{(k-1)}) & A^T \\ A & 0 \end{pmatrix}^{-1} \begin{pmatrix} \nabla f(x^{(k-1)}) + A^T \nu^{(k-1)} \\ A x^{(k-1)} - a \end{pmatrix} 
          \mu^{(k-1)} := \mu(r, \begin{pmatrix} \chi^{(k-1)} \\ \nu^{(k-1)} \end{pmatrix}, \begin{pmatrix} \Delta \chi^{(k-1)} \\ \Delta \nu^{(k-1)} \end{pmatrix})
    x^{(k)} := x^{(k-1)} + \mu^{(k-1)} \Delta x^{(k-1)}
           \nu^{(k)} := \nu^{(k-1)} + \mu^{(k-1)} \Delta \nu^{(k-1)}
         return "not converged"
```

where

- ► A. a affine equality constraints
- \triangleright $x^{(0)}$ possibly infeasible starting value (i.e., $Ax^{(0)} \neq a$)
- $\triangleright \nu^{(0)}$ starting multiplier (e.g., random)
- r is the norm of the primal-dual residuum (see previous slide)

Solving KKT systems of equations

The KKT systems are systems of equations that look like this:

$$\begin{pmatrix} H & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} \mathbf{v} \\ \mathbf{w} \end{pmatrix} = - \begin{pmatrix} \mathbf{g} \\ \mathbf{h} \end{pmatrix}$$

Standard methods for solving it:

- ► LDL^T factorization
- ► Elimination (might require inverting *H*)

Summary

- ► Optimal solutions for equality constrained optimization problems
 - ▶ have to fulfill KKT conditions:
 - 1. primal feasibility:

$$g_p(x)=0, \quad p=1,\ldots,P$$

2. stationarity:
$$\nabla f(x) + \sum_{p=1}^{P} \nu_p \nabla g_p(x) = 0$$

for convex equality contrained problems,

$$Ax = a$$

$$\nabla f(x) + A^T \nu = 0$$

- ► Equality problems can be handled two ways:
 - 1. if they are affine, eliminate them.
 - ► reparametrize feasible values

$$\{x \mid Ax = a\} = x_0 + \{x \mid Ax = 0\} = x_0 + \{Fz \mid z \in \mathbb{R}^{N-P}\}$$

- ▶ then solve reduced unconstrained problem in z
- 2. represent them as two inequality constraints each.

Summary (2/2)

▶ quadratic programming: affine constrained quadratic objectives can be optimized by solving a linear system of equations.

$$\begin{pmatrix} P & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} \mathbf{x}^* \\ \nu^* \end{pmatrix} = \begin{pmatrix} -\mathbf{q} \\ \mathbf{a} \end{pmatrix}$$

► Equality constraints can be **integrated into Newton's method** by extending the linear system for the descent direction:

$$\begin{pmatrix} \nabla^2 f(\mathbf{x}) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} \Delta \mathbf{x} \\ \nu \end{pmatrix} = \begin{pmatrix} -\nabla f(\mathbf{x}) \\ \mathbf{0} \end{pmatrix}$$

- ▶ if the last iterate was already feasible
- ► Alternatively, for **infeasible starting points**,

$$\begin{pmatrix} \nabla^2 f(\mathbf{x}) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} \Delta \mathbf{x} \\ \nu \end{pmatrix} = - \begin{pmatrix} \nabla f(\mathbf{x}) \\ A\mathbf{x} - \mathbf{a} \end{pmatrix}$$

- either an undamped step to become feasible or
- damped steps to reduce the primal-dual residuum

Further Readings

- equality constrained problems, quadratic programming, Newton's method for affine/linear equality constrained problems:
 - ► [Boyd and Vandenberghe, 2004, ch. 10]
- further methods for non-linear equality constrained optimization:
 - Murray [2008]

Shivers/rdy

References

Stephen Boyd and Lieven Vandenberghe. *Convex Optimization*. Cambridge University Press, 2004. Walter Murray. Lecture notes on nonlinear constraints / Chapter 3: Nonlinear Constraints, 2008.