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Modern Optimization Techniques 1. Inequality Constrained Minimization Problems

Inequality Constrained Minimization (ICM) Problems

Smooth:

arg min
x∈RN

f (x)

subject to gp(x) = 0, p = 1, . . . ,P

hq(x) ≤ 0, q = 1, . . . ,Q

where:

I f : RN → R twice differentiable

I g1, . . . , gP : RN → R twice differentiable

I h1, . . . , hQ : RN → R twice differentiable

I A feasible optimal x∗ exists, p∗ := f (x∗)
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Modern Optimization Techniques 1. Inequality Constrained Minimization Problems

Inequality Constrained Minimization (ICM) Problems

Smooth and convex:

arg min
x∈RN

f (x)

subject to Ax− a = 0

hq(x) ≤ 0, q = 1, . . . ,Q

where:

I f : RN → R convex and twice differentiable

I A ∈ RP×N , a ∈ RP : P affine equality constraints

I h1, . . . , hQ : RN → R convex and twice differentiable

I A feasible optimal x∗ exists, p∗ := f (x∗)
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Modern Optimization Techniques 1. Inequality Constrained Minimization Problems

Inequality Constrained Minimization (ICM) Problems

Smooth, convex and with affine constraints:

arg min
x∈RN

f (x)

subject to Ax− a = 0

Bx− b ≤ 0

where:

I f : RN → R convex and twice differentiable

I A ∈ RP×N , a ∈ RP : P affine equality constraints

I B ∈ RQ×N , b ∈ RQ : Q affine inequality constraints

I A feasible optimal x∗ exists, p∗ := f (x∗)
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Modern Optimization Techniques 1. Inequality Constrained Minimization Problems

Barrier and Penalty Methods

General idea:
I reduce the problem to a

I sequence of optimization problems

I with a more complex objective function,

I but with simpler constraints

I apply a suitable optimization method to each of the problems
I often Newton

Advantages:

1. Does not suffer from combinatorical complexity for many constraints
(as primal methods / active set methods do)

2. Generally applicable, as they do not rely on special problem structure.
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Modern Optimization Techniques 2. Barrier Methods

Idea

I search only in the interior of the feasible area S
I ensure that an optimization algorithm stays within the interior by

adding a barrier function B to the objective

f (x) + c B(x)

I the barrier B grows unbounded when approaching the border of the
feasible area.

I aka as interior point methods

I iteratively reduce the weight c of the barrier.
I iterates x (k) converge to the optimum x∗,

possibly on the border of the feasible area.

I only applicable if the interior of the feasible area is not empty
I esp. there are no equality constraints.
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Modern Optimization Techniques 2. Barrier Methods

Idea

For f : S → R and S ⊆ RN :

x = arg min
x∈S

f (x) ⇐⇒ x = lim x (k), c(k) → 0

x (k) := arg min
x∈S◦

f̃c(k)(x)

f̃c(x) := f (x)+cB(x)

with a barrier function

B :S◦ → R
(i)B continuous

(ii)B(x)→∞ for x → ∂(S◦)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 36



Modern Optimization Techniques 2. Barrier Methods

Log Barrier Function
For an feasible area S defined by inequality constraints h : RN → RQ :

S := {x ∈ RN | h(x) ≤ 0}

log barrier function:

B(x) :=−
Q∑

q=1

log(−hq(x))

convex and twice differentiable:

∇B(x) =−
Q∑

q=1

1

hq(x)
∇hq(x)

∇2B(x) =
Q∑

q=1

1

(hq(x))2
∇hq(x)(∇hq(x))T − 1

hq(x)
∇2hq(x)
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Modern Optimization Techniques 2. Barrier Methods

Inverse Barrier Function
For an feasible area S defined by inequality constraints h : RN → RQ :

S := {x ∈ RN | h(x) ≤ 0}

inverse barrier function:

B(x) :=−
Q∑

q=1

1

hq(x)

convex and twice differentiable:

∇B(x) =
Q∑

q=1

1

(hq(x))2
∇hq(x)

∇2B(x) =
Q∑

q=1

−2

(hq(x))3
∇hq(x)(∇hq(x))T +

1

(hq(x))2
∇2hq(x)
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Modern Optimization Techniques 2. Barrier Methods

Barrier Methods / Generic Algorithm

1 min-barrier(f ,B, x (0), c , ε,K ):
2 for k := 1, . . . ,K :

3 x (k) := min(f + c(k)B, x (k−1))

4 if ||x (k) − x (k−1)|| < ε:

5 return x (k)

6 return ”not converged”

where

I f : RN → R objective function
I B : RN → R barrier function (encoding inequality constraints)
I x(0) ∈ RN strictly feasible starting point, i.e., B(x(0)) <∞
I c ∈ (R+)∗: barrier weights, c(k) → 0
I min: unconstrained minimization method
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Modern Optimization Techniques 2. Barrier Methods

Barrier Methods / Log Barrier Algorithm

1 min-barrier-log(f , h, x (0), c , ε,K ):
2 for k := 1, . . . ,K :

3 x (k) := min(f−c(k)
∑Q

q=1 log(−hq), x (k−1))

4 if ||x (k) − x (k−1)|| < ε:

5 return x (k)

6 return ”not converged”

where

I f : RN → R objective function
I h : RN → RQ inequality constraints
I x(0) ∈ RN strictly feasible starting point, i.e., h(x(0)) < 0
I c ∈ (R+)∗: barrier weights, c(k) → 0
I min: unconstrained minimization method
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Modern Optimization Techniques 2. Barrier Methods

Remarks

I The inner minimization step is called centering step.

I It is usually accomplished using Newton’s method.

I For a better stopping criterion see section 4.
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Modern Optimization Techniques 2. Barrier Methods

Equality Constraints

I equality constraints can be passed through to the inner problem:

x = arg min
x∈RN

f (x) ⇐⇒ x = lim x (k), c(k) → 0

s.t. g(x) = 0 x (k) := arg min
x∈S◦

f̃c(k)(x)

h(x) ≤ 0 s.t. g(x) = 0

f̃c(x) := f (x) + cB(x)

S◦ := {x ∈ RN | h(x) < 0}

with B a barrier function for inequality constraints h.

I the inner minimization method then has to be able to cope with
equality constraints.
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Modern Optimization Techniques 3. Penalty Methods

Idea

I search unconstrained in all of RN .
I penalize infeasible points

by adding a penalty function P to the objective
I the penalty P is zero for feasible points, non-zero for infeasible points.

I iteratively increase the weight c of the penalty.
I iterates x (k) converge to the optimum x∗,

possibly on the border of the feasible area.

I applicable to both, equality and inequality constraints,
but usually there are no inequality constraints.
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Modern Optimization Techniques 3. Penalty Methods

Idea

For f : S → R and S ⊆ RN :

x = arg min
x∈S

f (x) ⇐⇒ x = lim x (k), c(k) →∞

x (k) := arg min
x∈RN

f̃c(k)(x)

f̃c(x) := f (x)+cP(x)

with a penalty function

P : RN → R
(i) P continuous

(ii) P(x) ≥ 0

(iii) P(x) = 0⇔ x ∈ S
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Modern Optimization Techniques 3. Penalty Methods

Quadratic Penalty Function
For an feasible area S defined by equality constraints g : RN → RP :

S := {x ∈ RN | g(x) = 0}

quadratic penalty function:

P(x) :=
P∑

p=1

(gp(x))2

convex and twice differentiable:

∇P(x) =2
P∑

p=1

gp(x)∇gp(x)

∇2P(x) =2
P∑

p=1

∇gp(x)(∇gp(x))T + gp(x)∇2gp(x)
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Modern Optimization Techniques 3. Penalty Methods

Penalty Methods / Generic Algorithm

1 min-penalty(f ,P, x (0), c , ε,K ):
2 for k := 1, . . . ,K :

3 x (k) := min(f + c(k)P, x (k−1))

4 if ||x (k) − x (k−1)|| < ε:

5 return x (k)

6 return ”not converged”

where

I f : RN → R objective function
I P : RN → R penalty function (encoding equality constraints)
I x(0) ∈ RN starting point (possibly infeasible)
I c ∈ (R+)∗: penalty weights, c(k) →∞
I min: unconstrained minimization method
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Modern Optimization Techniques 3. Penalty Methods

Penalty Methods / Quadratic Penalty Algorithm

1 min-penalty-quad(f , g , x (0), c , ε,K ):
2 for k := 1, . . . ,K :

3 x (k) := min(f + c(k)
∑P

p=1(gp(x))2, x (k−1))

4 if ||x (k) − x (k−1)|| < ε:

5 return x (k)

6 return ”not converged”

where

I f : RN → R objective function
I g : RN → RP equality constraints
I x(0) ∈ RN starting point (possibly infeasible)
I c ∈ (R+)∗: penalty weights, c(k) →∞
I min: unconstrained minimization method
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Modern Optimization Techniques 3. Penalty Methods

Inequality Constraints
I inequality constraints h(x) ≤ 0 can be represented as (additional)

equality constraints:

h(x) ≤ 0 ⇐⇒ h+q (x) := max{0, hq(x)} = 0, q = 1, . . . ,Q

I the quadratic penalty function for h+ is differentiable with a
continuous gradient:

P(x) :=
Q∑

q=1

(h+q (x))2

∇P(x) =
Q∑

q=1

2h+q (x)

{
∇hq(x), if hq(x) ≥ 0

0, else
= 2h+q (x)∇hq(x)

I but the gradient is not differentiable at the border hq(x) = 0.
I thus second order methods like Newton will not work out of the box as

inner optimizers.
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Modern Optimization Techniques 4. Central Path

Sequential Subproblems
Analysis for

I general inequality constraints h(x) ≤ 0

I affine equality constraints Ax− a = 0

(v1) minimize f (x)

s.t. hq(x) ≤ 0, q = 1, . . . ,Q

Ax− a = 0

(v2) minimize f (x) + cB(x), c → 0

s.t. Ax− a = 0

(v3) minimize tf (x) + B(x), t →∞
s.t. Ax− a = 0
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Modern Optimization Techniques 4. Central Path

Central Path

Given our ICM problem

minimize tf (x) + B(x)

subject to Ax− a = 0

let x∗(t) be its the solution for a given t > 0 (called central point).

The set

{x∗(t) | t > 0}

of all central points is called central path.
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Modern Optimization Techniques 4. Central Path

Central Path — Example

Central path for a linear
program

minimize x cTx

subject to bT
q x ≤ aq,

q = 1, . . . , 6

cTx = cTx∗(t) is tangent to
the level curve of B through
x∗(t)

(From Stephen Boyd’s Lecture Notes)
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Modern Optimization Techniques 4. Central Path

Dual Points for Central Points 1/2
As solution of the ICM problem

minimize tf (x) + B(x) (1)

subject to Ax− a = 0

a central point x∗(t)

i) is strictly feasible

Ax∗(t) = a, hq(x∗(t)) < 0, q = 1, . . . ,Q

ii) fulfills the stationarity condition for (1): ∃ν ∈ RP :

0 = t∇f (x∗(t)) +∇B(x∗(t)) + ATν

=
log barrier B

t∇f (x∗(t)) +
Q∑

q=1

1

−hq(x∗(t))
∇hq(x∗(t)) + ATν
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Modern Optimization Techniques 4. Central Path

Dual Points for Central Points 2/2

t∇f (x∗(t)) +
Q∑

q=1

1

−hq(x∗(t))
∇hq(x∗(t)) + ATν = 0 | :t

∇f (x∗(t)) +
Q∑

q=1

1

−thq(x∗(t))︸ ︷︷ ︸
=:λ∗q (t)

∇hq(x∗(t)) + AT 1

t
ν︸︷︷︸

=:ν∗(t)

= 0

∇f (x∗(t)) +
Q∑

q=1

λ∗q(t)∇hq(x∗(t)) + ATν∗(t) = 0

is the stationarity condition for the Lagrangian of the original problem:

L(x, λ, ν) = f (x) +
Q∑

q=1

λqhq(x) + νT (Ax− a)

I x∗(t) minimizes the Lagrangian for λ = λ∗(t) and ν = ν∗(t)
I Thus λ∗(t), ν∗(t) is a dual feasible pair.
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Modern Optimization Techniques 4. Central Path

Convergence
With dual function g :

p∗ ≥
dual function

g(λ∗(t), ν∗(t))

= f (x∗(t)) +
Q∑

q=1

λ∗q(t)hq(x∗(t)) + ν∗(t)T (Ax∗(t)− a)

= f (x∗(t)) +
Q∑

q=1

− 1

thq(x∗(t))
hq(x∗(t)) + ν∗(t)T (Ax∗(t)− a)︸ ︷︷ ︸

=0

= f (x∗(t))− Q

t
thus

f (x∗(t))− p∗ ≤ Q/t

i.e., central points x∗(t) converge to a minimum of the original problem
as t →∞.
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Modern Optimization Techniques 4. Central Path

Centrality Conditions and the KKT Conditions

Central points x = x∗(t) fulfill the following conditions:
there exist λ, ν with:

Ax = a, hq(x) ≤ 0, q = 1, . . . ,Q

λ ≥ 0

∇f (x) +
Q∑

q=1

λq∇hq(x) + ATν = 0

−λqhq(x) =
1

t
, q = 1, . . . ,Q

I Thus, central points x∗(t) almost fulfill the KKT conditions.
I complementary condition −λqhq(x) = 0 only holds approximately

(= 1/t)
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Modern Optimization Techniques 4. Central Path

Stopping Criterion
I as stopping criterion, simply

Q

t
≤ ε, t →∞

or equivalently

Qc ≤ ε, c → 0can be used.

I Why solving sequential problems? Why not just solve a single
problem with a sufficiently small c? E.g.,

c :=
ε

Q

I It does not work well for large scale problems.
I It does not work well for small accuracy ε.
I It needs a “good” starting point.

I Trade-off about the schedule of c :
I the smaller c , the fewer centering steps, but the more Newton steps /

centering step

I can be adaptively controlled.
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Modern Optimization Techniques 5. Convergence Analysis
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Modern Optimization Techniques 5. Convergence Analysis

Convergence Analysis

Assume that tf + B can be minimized by Newton’s method for
t = t(0), µt(0), µ2t(0), . . . , the t in the k-th outer step is

t(k) = µkt(0)

From this, it follows that, in the k-th outer step, the duality gap is

Q

µkt(0)
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Modern Optimization Techniques 5. Convergence Analysis

Convergence Analysis

Then the number of outer iterations k∗ needed to achieve accuracy ε is

ε =
Q

µk∗t(0)

µk
∗

=
Q

εt(0)

log(µk
∗
) = log(

Q

εt(0)
)

k∗ log(µ) = log(
Q

εt(0)
)

k∗ =
log( Q

εt(0)
)

log(µ)
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Modern Optimization Techniques 5. Convergence Analysis

Convergence Analysis

The number of outer iterations is:⌈
log( Q

εt(0)
)

logµ

⌉

plus the initial step to compute x∗(t(0))

The inner problem
minimize tf (x) + B(x)

is solved by Newton’s method (for its convergence analysis, see section 2.3)
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Modern Optimization Techniques 5. Convergence Analysis

Examples
Inequality form Linear Program (m = 100 inequalities, n = 50 variables)

(From Stephen Boyd’s Lecture Notes)

I starts with x on central path (t(0) = 1, duality gap 100)
I terminates when t = 108 (gap 10−6)
I centering uses Newton’s method with backtracking
I total number of Newton iterations not very sensitive for µ ≥ 10
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Modern Optimization Techniques 5. Convergence Analysis

Examples
Family of Linear Programs (A ∈ Rm×2m):

minimize cT x

subject to AT x ≤ a, x � 0

m = 10, . . . , 1000; for each m solve 100 randomly generated instances
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Modern Optimization Techniques 6. Feasibility and Phase I Methods
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Modern Optimization Techniques 6. Feasibility and Phase I Methods

Feasibility and Phase I Method

I The barrier method requires a strictly feasible starting point x(0).

I Phase I denotes the computation of such a point x(0)

(or the constraints are found to be infeasible).

I The barrier method algorithm then starts from x(0)

(called phase II stage).
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Modern Optimization Techniques 6. Feasibility and Phase I Methods

Basic Phase I Method
Find strictly feasible x for constraints

hq(x)<0, q = 1, . . . ,Q, Ax− a = 0 (1)

Problem for strictly feasible starting value (phase I):

minimize s (2)

subject to hq(x) ≤ s, q = 1, . . . ,Q

Ax− a = 0

over x ∈ RN , s ∈ R

I for (2), a strictly feasible starting point is easy to compute:
I compute x (0) with Ax (0) − a = 0
I s(0) := maxq=1,...,Q hq(x (0)) + ε, ε > 0

I if x, s is feasible, with s < 0, then x is strictly feasible for (1)
I if s∗ > 0, then problem (1) is infeasible
I if s∗ = 0 and attained, then problem (1) is feasible (but not strictly)
I if s∗ = 0 and not attained, then problem (1) is infeasible
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Modern Optimization Techniques 6. Feasibility and Phase I Methods

Sum of Infeasibilities Phase I Method

Problem for feasible starting value (phase I):

minimize 1T s (2′)

subject to s ≥ 0

hq(x) ≤ sq, q = 1, . . . ,Q

Ax− a = 0

over x ∈ RN , s ∈ RQ

strictly feasible starting point for (2′):

I compute x (0) with Ax (0) − a = 0
I s

(0)
q := max{0, hq(x (0))}+ ε, ε > 0, q = 1, . . . ,Q
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Modern Optimization Techniques 6. Feasibility and Phase I Methods

Summary
I Barrier and penalty methods cast a constrained minimization

problem into a series of unconstrained problems:
I Barrier methods by adding to the objective a barrier function B that

approaches infinity at the border of the feasible area.
I e.g., the log barrier or the inverse barrier functions.

I reduce Barrier weight to zero over iterations.

I Penalty methods by adding to the objective a weighted penalty
function P that is zero on the feasible set and positive outside.

I e.g., the quadratic penalty function.

I increase penalty weight to infinity over iterations.

I For barrier methods, equality constraints are passed through to the
inner problems.

I For penalty methods, inequality constraints are cast into equality
constraints (positive part)

I once continuous differentiable, but not twice
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Modern Optimization Techniques 6. Feasibility and Phase I Methods

Summary (2/2)

I The solutions of the Barrier problem for varying Barrier weights form
a continuous path (central path).

I The solution of the Barrier problem with weight c and Q constraints
has suboptimality for the original problem of at most Q · c .

I esp. the Barrier method will converge for c → 0.

I Q · c can be used as stopping criterion.

I To compute a strictly feasible starting point for the Barrier
method, a problem with similar structure, but trivial feasible starting
point, can be constructed and solved (phase I methods).
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Further Readings

I Barrier methods:
I [Boyd and Vandenberghe, 2004, ch. 11]

I [Griva et al., 2009, ch. 16]

I [Luenberger and Ye, 2008, ch. 13]

I [Nocedal and Wright, 2006, ch. 19.6]

I Penalty methods:
I [Griva et al., 2009, ch. 16]

I [Luenberger and Ye, 2008, ch. 13]

I [Nocedal and Wright, 2006, ch. 17.1–2]
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