

Modern Optimization Techniques

4. Inequality Constrained Optimization / 4.2. Barrier and Penalty Methods

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

Syllabus

Mon.	28.10.	(0)	0. Overview
Mon.	4.11.	(1)	 Theory Convex Sets and Functions
Mon. Mon. Mon. Mon.	11.11. 18.11. 25.11. 2.12. 19.12. 16.12.	(2) (3) (4) (5) (6) (7)	 2. Unconstrained Optimization 2.1 Gradient Descent 2.2 Stochastic Gradient Descent 2.3 Newton's Method 2.4 Quasi-Newton Methods 2.5 Subgradient Methods 2.6 Coordinate Descent Christmas Break —
Mon. Mon.	6.1. 13.1.	(8) (9)	 Equality Constrained Optimization Duality Methods
Mon. Mon. Mon.	20.1. 27.1. 3.2.	(10) (11) (12)	4. Inequality Constrained Optimization4.1 Primal Methods4.2 Barrier and Penalty Methods4.3 Cutting Plane Methods

Outline

- 1. Inequality Constrained Minimization Problems
- 2. Barrier Methods
- 3. Penalty Methods
- 4. Central Path
- 5. Convergence Analysis
- 6. Feasibility and Phase I Methods

Outline

1. Inequality Constrained Minimization Problems

- 2. Barrier Methods
- 3. Penalty Methods
- 4. Central Path
- 5. Convergence Analysis
- 6. Feasibility and Phase I Methods

Inequality Constrained Minimization (ICM) Problems Smooth:

$$\begin{array}{l} \mathop{\arg\min}_{x\in\mathbb{R}^N} \,\,f(\mathbf{x})\\ \text{subject to} \,\,\,g_p(\mathbf{x})=0,\quad p=1,\ldots,P\\ h_q(\mathbf{x})\leq 0,\quad q=1,\ldots,Q \end{array}$$

where:

- $f : \mathbb{R}^N \to \mathbb{R}$ twice differentiable
- $g_1, \ldots, g_P : \mathbb{R}^N \to \mathbb{R}$ twice differentiable
- $h_1, \ldots, h_Q : \mathbb{R}^N \to \mathbb{R}$ twice differentiable
- A feasible optimal \mathbf{x}^* exists, $p^* := f(\mathbf{x}^*)$

Inequality Constrained Minimization (ICM) Problems Smooth and convex:

$$\begin{array}{l} \mathop{\arg\min}_{x\in\mathbb{R}^N} \,\,f(\mathbf{x})\\ \text{subject to} \;\, A\mathbf{x}-a=0\\ h_q(\mathbf{x})\leq 0,\quad q=1,\ldots,Q \end{array}$$

where:

- $f : \mathbb{R}^N \to \mathbb{R}$ convex and twice differentiable
- $A \in \mathbb{R}^{P \times N}, a \in \mathbb{R}^{P}$: *P* affine equality constraints
- ▶ $h_1, \ldots, h_Q : \mathbb{R}^N \to \mathbb{R}$ convex and twice differentiable
- A feasible optimal \mathbf{x}^* exists, $p^* := f(\mathbf{x}^*)$

Inequality Constrained Minimization (ICM) Problems

Smooth, convex and with affine constraints:

arg min $f(\mathbf{x})$ subject to $A\mathbf{x} - a = 0$ $B\mathbf{x} - b \le 0$

where:

- $f: \mathbb{R}^N \to \mathbb{R}$ convex and twice differentiable
- ▶ $A \in \mathbb{R}^{P \times N}, a \in \mathbb{R}^{P}$: *P* affine equality constraints
- ► $B \in \mathbb{R}^{Q \times N}, b \in \mathbb{R}^{Q}$: *Q* affine inequality constraints
- A feasible optimal \mathbf{x}^* exists, $p^* := f(\mathbf{x}^*)$

Universiter.

Barrier and Penalty Methods

General idea:

- reduce the problem to a
 - sequence of optimization problems
 - ▶ with a more complex objective function,
 - but with simpler constraints
- ► apply a suitable optimization method to each of the problems
 - ► often Newton

Advantages:

- 1. Does not suffer from combinatorical complexity for many constraints (as primal methods / active set methods do)
- 2. Generally applicable, as they do not rely on special problem structure.

Outline

1. Inequality Constrained Minimization Problems

2. Barrier Methods

- 3. Penalty Methods
- 4. Central Path
- 5. Convergence Analysis
- 6. Feasibility and Phase I Methods

Idea

- search only in the interior of the feasible area S
 - ensure that an optimization algorithm stays within the interior by adding a barrier function *B* to the objective

$$f(x) + c B(x)$$

- ► the barrier *B* grows unbounded when approaching the border of the feasible area.
- aka as interior point methods
- ► iteratively reduce the weight *c* of the barrier.
 - iterates x^(k) converge to the optimum x*, possibly on the border of the feasible area.
- ▶ only applicable if the interior of the feasible area is not empty
 - esp. there are no equality constraints.

Idea

For
$$f: S \to \mathbb{R}$$
 and $S \subseteq \mathbb{R}^N$:

$$x = \underset{x \in S}{\operatorname{arg\,min}} f(\mathbf{x}) \iff x = \operatorname{li}_{x \in S}$$

$$\begin{aligned} x &= \lim x^{(k)}, \quad c^{(k)} \to 0 \\ x^{(k)} &:= \operatorname*{arg\,min}_{x \in S^{\circ}} \quad \tilde{f}_{c^{(k)}}(\mathbf{x}) \\ \tilde{f}_{c}(x) &:= f(\mathbf{x}) + cB(\mathbf{x}) \end{aligned}$$

(1)

(1)

with a barrier function

$$B: S^{\circ} \to \mathbb{R}$$

(*i*)*B* continuous
(*ii*) $B(x) \to \infty$ for $x \to \partial(S^{\circ})$

Log Barrier Function

Shiversiter Fildeshein

For an feasible area S defined by inequality constraints $h : \mathbb{R}^N \to \mathbb{R}^Q$:

$$S:=\{x\in\mathbb{R}^N\mid h(x)\leq 0\}$$

log barrier function:

$$B(x) := -\sum_{q=1}^{Q} \log(-h_q(x))$$

convex and twice differentiable:

$$\nabla B(x) = -\sum_{q=1}^{Q} \frac{1}{h_q(x)} \nabla h_q(x)$$
$$\nabla^2 B(x) = \sum_{q=1}^{Q} \frac{1}{(h_q(x))^2} \nabla h_q(x) (\nabla h_q(x))^T - \frac{1}{h_q(x)} \nabla^2 h_q(x)$$

Inverse Barrier Function

Shiversiter Shideshelf

For an feasible area S defined by inequality constraints $h : \mathbb{R}^N \to \mathbb{R}^Q$:

$$S:=\{x\in\mathbb{R}^N\mid h(x)\leq 0\}$$

inverse barrier function:

$$B(x):=-\sum_{q=1}^Q \frac{1}{h_q(x)}$$

convex and twice differentiable:

$$\nabla B(x) = \sum_{q=1}^{Q} \frac{1}{(h_q(x))^2} \nabla h_q(x)$$
$$\nabla^2 B(x) = \sum_{q=1}^{Q} \frac{-2}{(h_q(x))^3} \nabla h_q(x) (\nabla h_q(x))^T + \frac{1}{(h_q(x))^2} \nabla^2 h_q(x)$$

Barrier Methods / Generic Algorithm

1 min-barrier $(f, B, x^{(0)}, c, \epsilon, K)$: 2 for k := 1, ..., K: 3 $x^{(k)} := \min(f + c^{(k)}B, x^{(k-1)})$ 4 if $||x^{(k)} - x^{(k-1)}|| < \epsilon$: 5 return $x^{(k)}$

6 return "not converged"

where

- $f : \mathbb{R}^N \to \mathbb{R}$ objective function
- $B: \mathbb{R}^N \to \mathbb{R}$ barrier function (encoding inequality constraints)
- $x^{(0)} \in \mathbb{R}^N$ strictly feasible starting point, i.e., $B(x^{(0)}) < \infty$
- $c \in (\mathbb{R}^+)^*$: barrier weights, $c^{(k)} \to 0$
- min: unconstrained minimization method

Barrier Methods / Log Barrier Algorithm

- 1 min-barrier-log $(f, h, x^{(0)}, c, \epsilon, K)$: 2 for k := 1, ..., K: 3 $x^{(k)} := \min(f - c^{(k)} \sum_{q=1}^{Q} \log(-h_q), x^{(k-1)})$ 4 if $||x^{(k)} - x^{(k-1)}|| < \epsilon$: 5 return $x^{(k)}$
 - 6 return "not converged"

where

- $f : \mathbb{R}^N \to \mathbb{R}$ objective function
- $h: \mathbb{R}^N \to \mathbb{R}^Q$ inequality constraints
- $x^{(0)} \in \mathbb{R}^N$ strictly feasible starting point, i.e., $h(x^{(0)}) < 0$
- $c \in (\mathbb{R}^+)^*$: barrier weights, $c^{(k)} \to 0$
- min: unconstrained minimization method

Remarks

- The inner minimization step is called centering step.
- ► It is usually accomplished using Newton's method.
- ► For a better stopping criterion see section 4.

Equality Constraints

► equality constraints can be passed through to the inner problem:

$$\begin{aligned} x &= \underset{x \in \mathbb{R}^{N}}{\arg \min} f(x) &\iff x = \lim x^{(k)}, \quad c^{(k)} \to 0 \\ \text{s.t. } g(x) &= 0 & x^{(k)} := \underset{x \in S^{\circ}}{\arg \min} \tilde{f}_{c^{(k)}}(x) \\ h(x) &\leq 0 & \text{s.t. } g(x) = 0 \\ \tilde{f}_{c}(x) &:= f(x) + cB(x) \\ S^{\circ} &:= \{x \in \mathbb{R}^{N} \mid h(x) < 0\} \end{aligned}$$

with B a barrier function for inequality constraints h.

► the inner minimization method then has to be able to cope with equality constraints.

Outline

- 1. Inequality Constrained Minimization Problems
- 2. Barrier Methods
- 3. Penalty Methods
- 4. Central Path
- 5. Convergence Analysis
- 6. Feasibility and Phase I Methods

Idea

- search unconstrained in all of \mathbb{R}^N .
 - penalize infeasible points by adding a penalty function P to the objective
 - ► the penalty *P* is zero for feasible points, non-zero for infeasible points.
- iteratively increase the weight *c* of the penalty.
 - iterates x^(k) converge to the optimum x^{*}, possibly on the border of the feasible area.
- applicable to both, equality and inequality constraints, but usually there are no inequality constraints.

Idea

For
$$f : S \to \mathbb{R}$$
 and $S \subseteq \mathbb{R}^N$:

$$\begin{array}{ll} x = \mathop{\arg\min}\limits_{x \in S} \ f(\mathbf{x}) & \iff & x = \lim x^{(k)}, \quad c^{(k)} \to \infty \\ & x^{(k)} := \mathop{\arg\min}\limits_{x \in \mathbb{R}^N} \ \tilde{f}_{c^{(k)}}(\mathbf{x}) \\ & \tilde{f}_c(x) := f(\mathbf{x}) + cP(\mathbf{x}) \end{array}$$

with a penalty function

 $P : \mathbb{R}^N \to \mathbb{R}$ (i) *P* continuous
(ii) *P*(*x*) \geq 0
(iii) *P*(*x*) = 0 \Leftrightarrow *x* \in *S*

Quadratic Penalty Function

For an feasible area S defined by equality constraints $g : \mathbb{R}^N \to \mathbb{R}^P$:

$$S:=\{x\in\mathbb{R}^N\mid g(x)=0\}$$

quadratic penalty function:

$$P(x) := \sum_{p=1}^{P} (g_p(x))^2$$

convex and twice differentiable:

$$\nabla P(x) = 2 \sum_{p=1}^{P} g_p(x) \nabla g_p(x)$$
$$\nabla^2 P(x) = 2 \sum_{p=1}^{P} \nabla g_p(x) (\nabla g_p(x))^T + g_p(x) \nabla^2 g_p(x)$$

Penalty Methods / Generic Algorithm

 $\begin{array}{ll} & \text{min-penalty}(f, P, x^{(0)}, c, \epsilon, K):\\ & \text{for } k := 1, \dots, K:\\ & x^{(k)} := \min(f + c^{(k)}P, x^{(k-1)})\\ & \text{if } ||x^{(k)} - x^{(k-1)}|| < \epsilon:\\ & \text{s return } x^{(k)}\\ & \text{6 return "not converged"} \end{array}$

where

- ▶ $f : \mathbb{R}^N \to \mathbb{R}$ objective function
- $P: \mathbb{R}^N \to \mathbb{R}$ penalty function (encoding equality constraints)
- $x^{(0)} \in \mathbb{R}^N$ starting point (possibly infeasible)
- $c \in (\mathbb{R}^+)^*$: penalty weights, $c^{(k)} \to \infty$
- min: unconstrained minimization method

Penalty Methods / Quadratic Penalty Algorithm

- ¹ min-penalty-quad($f, g, x^{(0)}, c, \epsilon, K$):
- 2 for k := 1, ..., K: 3 $x^{(k)} := \min(f + c^{(k)} \sum_{k=1}^{P} (g_{0}(x))^{2}, x^{(k-1)})$

$$x^{(k)} := \min(t + c^{(k)}) \sum_{p=1}^{n} (g_p(x))^2, x^{(k-1)}$$

4 if
$$||x^{(k)} - x^{(k-1)}|| < \epsilon$$
:

s return
$$x^{(k)}$$

6 return "not converged"

where

- $f : \mathbb{R}^N \to \mathbb{R}$ objective function
- $g: \mathbb{R}^N \to \mathbb{R}^P$ equality constraints
- $x^{(0)} \in \mathbb{R}^N$ starting point (possibly infeasible)
- $c \in (\mathbb{R}^+)^*$: penalty weights, $c^{(k)} \to \infty$
- min: unconstrained minimization method

Inequality Constraints

► inequality constraints h(x) ≤ 0 can be represented as (additional) equality constraints:

$$h(x) \leq 0 \quad \Longleftrightarrow \quad h_q^+(x) := \max\{0, h_q(x)\} = 0, \quad q = 1, \dots, Q$$

the quadratic penalty function for h⁺ is differentiable with a continuous gradient:

$$P(x) := \sum_{q=1}^{Q} (h_q^+(x))^2$$
$$\nabla P(x) = \sum_{q=1}^{Q} 2h_q^+(x) \begin{cases} \nabla h_q(x), & \text{if } h_q(x) \ge 0\\ 0, & \text{else} \end{cases} = 2h_q^+(x) \nabla h_q(x)$$

- but the gradient is not differentiable at the border $h_q(x) = 0$.
 - thus second order methods like Newton will not work out of the box as inner optimizers.

Outline

- 1. Inequality Constrained Minimization Problems
- 2. Barrier Methods
- 3. Penalty Methods
- 4. Central Path
- 5. Convergence Analysis
- 6. Feasibility and Phase I Methods

Sequential Subproblems

Analysis for

- general inequality constraints $h(\mathbf{x}) \leq 0$
- affine equality constraints $A\mathbf{x} \mathbf{a} = 0$

$$\begin{array}{ll} (v1) & \mbox{minimize } f(\mathbf{x}) \\ & \mbox{s.t. } h_q(\mathbf{x}) \leq 0, \quad q = 1, \dots, Q \\ & A\mathbf{x} - \mathbf{a} = 0 \\ (v2) & \mbox{minimize } f(\mathbf{x}) + cB(\mathbf{x}), \quad c \to 0 \\ & \mbox{s.t. } A\mathbf{x} - \mathbf{a} = 0 \\ (v3) & \mbox{minimize } tf(\mathbf{x}) + B(\mathbf{x}), \quad t \to \infty \\ & \mbox{s.t. } A\mathbf{x} - \mathbf{a} = 0 \end{array}$$

Central Path

Universiter Stildesheim

Given our ICM problem

minimize $tf(\mathbf{x}) + B(\mathbf{x})$ subject to $A\mathbf{x} - \mathbf{a} = 0$

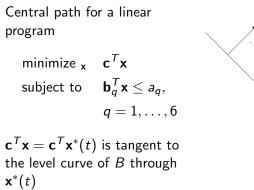
let $\mathbf{x}^*(t)$ be its the solution for a given t > 0 (called **central point**). The set

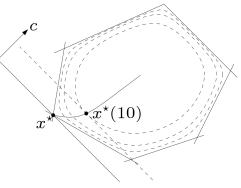
 $\{\mathbf{x}^*(t) \mid t > 0\}$

of all central points is called central path.

Modern Optimization Techniques 4. Central Path

Central Path — Example





(From Stephen Boyd's Lecture Notes)

Modern Optimization Techniques 4. Central Path

(1)

Dual Points for Central Points 1/2 As solution of the ICM problem

minimize $tf(\mathbf{x}) + B(\mathbf{x})$ subject to $A\mathbf{x} - \mathbf{a} = 0$

a central point $\mathbf{x}^*(t)$

i) is strictly feasible $A {f x}^*(t) = {f a}, \quad h_q({f x}^*(t)) < 0, \quad q=1,\ldots,Q$

ii) fulfills the stationarity condition for (1): $\exists \nu \in \mathbb{R}^{P}$: $0 = t \nabla f(\mathbf{x}^{*}(t)) + \nabla B(\mathbf{x}^{*}(t)) + A^{T} \nu$ $= t \nabla f(\mathbf{x}^{*}(t)) + \sum_{q=1}^{Q} \frac{1}{-h_{q}(\mathbf{x}^{*}(t))} \nabla h_{q}(\mathbf{x}^{*}(t)) + A^{T} \nu$

Dual Points for Central Points 2/2

$$\begin{split} t\nabla f(\mathbf{x}^*(t)) + \sum_{q=1}^Q \frac{1}{-h_q(\mathbf{x}^*(t))} \nabla h_q(\mathbf{x}^*(t)) + A^T \nu &= 0 \quad | :t \\ \nabla f(\mathbf{x}^*(t)) + \sum_{q=1}^Q \frac{1}{\underbrace{-th_q(\mathbf{x}^*(t))}_{=:\lambda_q^*(t)}} \nabla h_q(\mathbf{x}^*(t)) + A^T \underbrace{\frac{1}{t}\nu}_{=:\nu^*(t)} &= 0 \\ \nabla f(\mathbf{x}^*(t)) + \sum_{q=1}^Q \lambda_q^*(t) \nabla h_q(\mathbf{x}^*(t)) + A^T \nu^*(t) &= 0 \end{split}$$

is the stationarity condition for the Lagrangian of the original problem:

$$L(\mathbf{x}, \lambda, \nu) = f(\mathbf{x}) + \sum_{q=1}^{Q} \lambda_q h_q(\mathbf{x}) + \nu^T (A\mathbf{x} - \mathbf{a})$$

x*(t) minimizes the Lagrangian for λ = λ*(t) and ν = ν*(t)
 Thus λ*(t), ν*(t) is a dual feasible pair.

Convergence

With dual function g:

$$p^{*} \geq g(\lambda^{*}(t), \nu^{*}(t))$$

= $f(\mathbf{x}^{*}(t)) + \sum_{q=1}^{Q} \lambda_{q}^{*}(t)h_{q}(\mathbf{x}^{*}(t)) + \nu^{*}(t)^{T}(A\mathbf{x}^{*}(t) - a)$
= $f(\mathbf{x}^{*}(t)) + \sum_{q=1}^{Q} -\frac{1}{th_{q}(\mathbf{x}^{*}(t))}h_{q}(\mathbf{x}^{*}(t)) + \nu^{*}(t)^{T}\underbrace{(A\mathbf{x}^{*}(t) - a)}_{=0}$
= $f(\mathbf{x}^{*}(t)) - \frac{Q}{t}$

thus

$$f(\mathbf{x}^*(t)) - p^* \leq Q/t$$

i.e., central points $\mathbf{x}^*(t)$ converge to a minimum of the original problem as $t \to \infty$.

Universität -Hildesheim

Centrality Conditions and the KKT Conditions

Central points $\mathbf{x} = \mathbf{x}^*(t)$ fulfill the following conditions: there exist λ, ν with:

$$egin{aligned} & A\mathbf{x} = \mathbf{a}, \quad h_q(\mathbf{x}) \leq 0, \quad q = 1, \dots, Q \ & \lambda \geq 0 \end{aligned}$$
 $\nabla f(\mathbf{x}) + \sum_{q=1}^Q \lambda_q
abla h_q(\mathbf{x}) + A^T
u = 0 \ & -\lambda_q h_q(\mathbf{x}) = rac{1}{t}, \quad q = 1, \dots, Q \end{aligned}$

• Thus, central points $\mathbf{x}^*(t)$ almost fulfill the KKT conditions.

► complementary condition $-\lambda_q h_q(\mathbf{x}) = 0$ only holds approximately (=1/t)

Stopping Criterion

► as stopping criterion, simply

or equivalently $\dfrac{Q}{t} \leq \epsilon, \quad t
ightarrow \infty$ can be used. $Qc \leq \epsilon, \quad c
ightarrow 0$

Why solving sequential problems? Why not just solve a single problem with a sufficiently small c? E.g.,

$$c := \frac{\epsilon}{Q}$$

- It does not work well for large scale problems.
- It does not work well for small accuracy ϵ .
- It needs a "good" starting point.
- ► Trade-off about the schedule of *c*:
 - ► the smaller c, the fewer centering steps, but the more Newton steps / centering step

Outline

- 1. Inequality Constrained Minimization Problems
- 2. Barrier Methods
- 3. Penalty Methods
- 4. Central Path
- 5. Convergence Analysis
- 6. Feasibility and Phase I Methods

Convergence Analysis

Assume that tf + B can be minimized by Newton's method for $t = t^{(0)}, \mu t^{(0)}, \mu^2 t^{(0)}, \dots$, the *t* in the *k*-th outer step is

$$t^{(k)} = \mu^k t^{(0)}$$

From this, it follows that, in the k-th outer step, the duality gap is

 $\frac{Q}{\mu^k t^{(0)}}$

Convergence Analysis

Then the number of outer iterations k^* needed to achieve accuracy ϵ is

$$\begin{aligned} \epsilon &= \frac{Q}{\mu^{k^*}t^{(0)}} \\ \mu^{k^*} &= \frac{Q}{\epsilon t^{(0)}} \\ \log(\mu^{k^*}) &= \log(\frac{Q}{\epsilon t^{(0)}}) \\ k^* \log(\mu) &= \log(\frac{Q}{\epsilon t^{(0)}}) \\ k^* &= \frac{\log(\frac{Q}{\epsilon t^{(0)}})}{\log(\mu)} \end{aligned}$$

Convergence Analysis

The number of outer iterations is:

$$\left\lceil \frac{\log(\frac{Q}{\epsilon t^{(0)}})}{\log \mu} \right\rceil$$

plus the initial step to compute $\mathbf{x}^*(t^{(0)})$

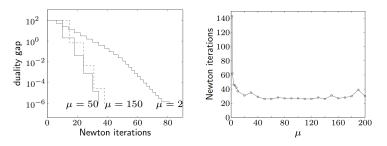
The inner problem

minimize $tf(\mathbf{x}) + B(\mathbf{x})$

is solved by Newton's method (for its convergence analysis, see section 2.3)

Examples

Inequality form Linear Program (m = 100 inequalities, n = 50 variables)



⁽From Stephen Boyd's Lecture Notes)

- ▶ starts with x on central path ($t^{(0)} = 1$, duality gap 100)
- terminates when $t = 10^8$ (gap 10^{-6})
- centering uses Newton's method with backtracking
- ▶ total number of Newton iterations not very sensitive for $\mu \ge 10$

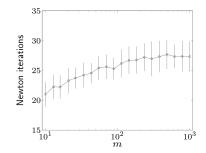
Examples

Family of Linear Programs ($A \in \mathbb{R}^{m \times 2m}$):

minimize
$$c^T x$$

subject to $A^T x \leq a, \quad x \succeq 0$

 $m = 10, \ldots, 1000$; for each m solve 100 randomly generated instances



Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Outline

- 1. Inequality Constrained Minimization Problems
- 2. Barrier Methods
- 3. Penalty Methods
- 4. Central Path
- 5. Convergence Analysis
- 6. Feasibility and Phase I Methods

Feasibility and Phase I Method

- The barrier method requires a strictly feasible starting point $\mathbf{x}^{(0)}$.
- Phase I denotes the computation of such a point x⁽⁰⁾ (or the constraints are found to be infeasible).
- The barrier method algorithm then starts from x⁽⁰⁾ (called phase II stage).

Basic Phase I Method

Find strictly feasible \mathbf{x} for constraints

$$h_q(\mathbf{x}) < 0, \quad q = 1, \dots, Q, \quad A\mathbf{x} - \mathbf{a} = 0$$
 (

Problem for strictly feasible starting value (phase I):

 $\begin{array}{ll} \text{minimize} & \textbf{s} \\ \text{subject to} & h_q(\textbf{x}) \leq \textbf{s}, \quad q = 1, \dots, Q \\ & A\textbf{x} - \textbf{a} = 0 \\ & \text{over} & \textbf{x} \in \mathbb{R}^N, \textbf{s} \in \mathbb{R} \end{array}$

- ► for (2), a strictly feasible starting point is easy to compute:
 - compute $x^{(0)}$ with $Ax^{(0)} a = 0$
 - $s^{(0)} := \max_{q=1,...,Q} h_q(x^{(0)}) + \epsilon, \quad \epsilon > 0$
- if \mathbf{x}, s is feasible, with s < 0, then \mathbf{x} is strictly feasible for (1)
- if $s^* > 0$, then problem (1) is infeasible
- if $s^* = 0$ and attained, then problem (1) is feasible (but not strictly)
- ▶ if $s^* = 0$ and not attained, then problem (1) is infeasible

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1)

(2)

Sum of Infeasibilities Phase I Method

Problem for feasible starting value (phase I):

 $\begin{array}{ll} \text{minimize} & \mathbf{1}^T \mathbf{s} \\ \text{subject to} & \mathbf{s} \geq 0 \\ & h_q(\mathbf{x}) \leq s_q, \quad q = 1, \dots, Q \\ & A \mathbf{x} - \mathbf{a} = 0 \\ & \text{over} & \mathbf{x} \in \mathbb{R}^N, s \in \mathbb{R}^Q \end{array}$

strictly feasible starting point for (2'):

▶ compute x⁽⁰⁾ with Ax⁽⁰⁾ - a = 0
 ▶ s_q⁽⁰⁾ := max{0, h_q(x⁽⁰⁾)} + ε, ε > 0, q = 1,..., Q

(2')

Summary

- Barrier and penalty methods cast a constrained minimization problem into a series of unconstrained problems:
 - ► Barrier methods by adding to the objective a **barrier function** *B* that **approaches infinity at the border** of the feasible area.
 - e.g., the **log barrier** or the **inverse barrier** functions.
 - reduce Barrier weight to zero over iterations.
 - Penalty methods by adding to the objective a weighted penalty function P that is zero on the feasible set and positive outside.
 - e.g., the **quadratic penalty** function.
 - increase penalty weight to infinity over iterations.
- For barrier methods, equality constraints are passed through to the inner problems.
- For penalty methods, inequality constraints are cast into equality constraints (positive part)
 - ► once continuous differentiable, but not twice

Summary (2/2)

- The solutions of the Barrier problem for varying Barrier weights form a continuous path (central path).
- ► The solution of the Barrier problem with weight *c* and *Q* constraints has suboptimality for the original problem of at most *Q* · *c*.
 - esp. the Barrier method will converge for $c \rightarrow 0$.
 - $Q \cdot c$ can be used as stopping criterion.
- To compute a strictly feasible starting point for the Barrier method, a problem with similar structure, but trivial feasible starting point, can be constructed and solved (phase I methods).

Further Readings

- Barrier methods:
 - ▶ [Boyd and Vandenberghe, 2004, ch. 11]
 - ▶ [Griva et al., 2009, ch. 16]
 - ▶ [Luenberger and Ye, 2008, ch. 13]
 - ▶ [Nocedal and Wright, 2006, ch. 19.6]
- Penalty methods:
 - ▶ [Griva et al., 2009, ch. 16]
 - ▶ [Luenberger and Ye, 2008, ch. 13]
 - ▶ [Nocedal and Wright, 2006, ch. 17.1–2]

References

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

- Igor Griva, Stephen G. Nash, and Ariela Sofer. *Linear and Nonlinear Optimization*. Society for Industrial and Applied Mathematics, 2009.
- David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming. Springer, 2008.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Science+ Business Media, 2006.