
Modern Optimization Techniques

Modern Optimization Techniques
0. Overview

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 35



Modern Optimization Techniques

Outline

1. Linear Optimization

2. Optimization Problems

3. Application Areas

4. Classification of Optimization Problems

5. Overview of the Lecture

6. Organizational Stuff

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 35



Modern Optimization Techniques 1. Linear Optimization

Outline

1. Linear Optimization

2. Optimization Problems

3. Application Areas

4. Classification of Optimization Problems

5. Overview of the Lecture

6. Organizational Stuff

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 35



Modern Optimization Techniques 1. Linear Optimization

Optimization Problems

find an x ∈ X with f (x) maximal

or for short

arg max
x∈X

f (x)

I f : RN → R: objective function

I X ⊆ RN : feasible area, e.g., X := RN

I x ∈ X : optimization variables x1, x2, . . . , xN

I x∗ ∈ arg maxx∈X f (x): optimum, solution
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Modern Optimization Techniques 1. Linear Optimization

Example

Plastic Cup Factory
A local family-owned plastic cup manufacturer wants to optimize their
production mix in order to maximize their profit. They produce per-
sonalized beer mugs and champagne glasses. The profit on a case of
beer mugs is $25 while the profit on a case of champagne glasses is
$20. The cups are manufactured with a machine called a plastic ex-
truder which feeds on plastic resins. Each case of beer mugs requires 20
lbs. of plastic resins to produce while champagne glasses require 12 lbs.
per case. The daily supply of plastic resins is limited to at most 1800
pounds. About 15 cases of either product can be produced per hour.
At the moment the family wants to limit their work day to 8 hours.
source: https: // sites. math. washington. edu/ ~ burke/ crs/ 407/ notes/ section1. pdf
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Modern Optimization Techniques 1. Linear Optimization

Example

resources
product materials time profit amount

A 20 1/15 25 x1

B 12 1/15 20 x2

limit ≤ 1800 ≤ 8 max.

max 25x1 + 20x2

s.t. 20x1 + 12x2 ≤ 1800

1/15x1 + 1/15x2 ≤ 8

x1, x2 ≥ 0

max cT x

s.t. Bx ≤ b

x ≥ 0

with c , x ∈ RN

B ∈ RQ×N

b ∈ RQ
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Modern Optimization Techniques 1. Linear Optimization

Linear Optimization Problems
I A problem max cT x

s.t. Bx ≤ b

x ≥ 0

with c , x ∈ RN , B ∈ RQ×N , b ∈ RQ

is called linear optimization problem.
I linear objective f (x) := cT x

I Bx ≤ b are called inequality constraints
I Q linear constraints

I define the feasible area X := {x ∈ RN | Bx ≤ b, x ≥ 0}

I most simple optimization problem

I linear optimization problems without constraints are unbounded
I no optimum exists, problem makes no sense

I the optimum always is at the border of the feasible area.
∂ X = {x ∈ X | ∃q : (Bx)q = bq or ∃n : xn = 0}
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Modern Optimization Techniques 1. Linear Optimization

Slack Variables

I Introduce Q further variables xN+1, . . . , xN+Q

to measure the slack of each constraint:

xN+1:N+Q := b − Bx ≥ 0

I each variable xn, n = 1:N + Q represents a constraint / a border of
the feasible region:
I xn, n = 1:N the constraint xn ≥ 0 and

I xN+q, q = 1:Q the constraint BT
q,.x ≤ bq

I xn = 0 means the constraint is sharp, i.e., x is on the respective border

I a linear objective assumes its maximum at the border of the feasible
region,
I always N constraints are sharp
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Modern Optimization Techniques 1. Linear Optimization

Simplex Tableau

I start with

x1:N := 0N

xN+1:N+Q := b − B x1:N = b

then holds (
B IQ×Q
c 0Q

)
x1:N+Q =

(
b
0

)
I coefficients can be collected in a matrix called simplex tableau:

T :=

(
B IQ×Q b
c 0Q 0

)
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Modern Optimization Techniques 1. Linear Optimization

Pivot Step
T :=

(
B IQ×Q b
c 0Q 0

)
I if cn > 0, we can increase the objective by increasing xn

I but increasing xn may also decrease some slacks xN+q:
for each q = 1:Q check:
I if Bq,n > 0, then we may increase xn maximally by

bq
Bq,n

I thus choose
q := arg min

q=1:Q

bq
Bq,n

xn :=
bq
Bq,n

, xN+q := 0

I make column n the q-th unit vector Iq (same as in Gaussian elimin.):
I normalize row q s.t. the pivot cell gets 1: Tq,. := Tq,./Tq,n

I eliminate column n in all other rows: Tr ,. := Tr ,. − Tr ,nTq,.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 35



Modern Optimization Techniques 1. Linear Optimization

Stop and Solution

I stop once there is no positive cn anymore.

I solution x∗:
I non-zero x∗n are those having unit vector Iq (for a q ∈ 1:Q)

in column n of the final tableau

I their value is just Tq,N+Q+1
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Modern Optimization Techniques 1. Linear Optimization

Worked Example

max cT x = (5 4 3)T x

s.t. Bx =

 2 3 1
4 1 2
3 4 2

 x ≤ b =

 5
11
8


x ≥ 0

T (0) :=

(
B IQ×Q b
cT 0Q 0

)
=


2 3 1 1 0 0 5
4 1 2 0 1 0 11
3 4 2 0 0 1 8
5 4 3 0 0 0 0


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Modern Optimization Techniques 1. Linear Optimization

Worked Example
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2 3 1 1 0 0 5
4 1 2 0 1 0 11
3 4 2 0 0 1 8
5 4 3 0 0 0 0
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T (1) =


1 3/2 1/2 1/2 0 0 5/2
0 −5 0 −2 1 0 1
0 −1/2 1/2 −3/2 0 1 1/2
0 −7/2 1/2 −5/2 0 0 −25/2



T (2) =


1 2 0 2 0 11 2
0 −5 0 −2 1 0 1
0 −1 1 −3 0 22 1
0 −3 0 −1 0 −11 −13


x∗ = (2 0 1)T with cT x∗ = 13
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Note: T (0) pivot (1, 1)

, T (1) pivot (3, 3).
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Modern Optimization Techniques 1. Linear Optimization

Simplex Algorithm (for x = 0N feasible, i.e. b ≥ 0)

1 max−simplex(c,B, b):

2 T :=

(
B IQ×Q b
cT 0Q 0

)
3 (n, q) := find-pivot(T )
4 while (n, q) 6= (−1,−1):
5 Tq,. = Tq,./Tq,n

6 for r := 1:Q + 1, r 6= q:
7 Tr,. := Tr,. − Tr,nTq,.

8 (n, q) := find-pivot(T )
9

10 x := 0N

11 for n := 1:N:
12 if ∃q ∈ 1:Q : T.,n = Iq:
13 xn := Tq,N+Q+1

14 return x

15 find−pivot(T ):
16 Ns := {n ∈ 1:N | TQ+1,n > 0}
17 if ∃n ∈ Ns : T−(Q+1),n ≤ 0Q

18 raise exception ”problem unbounded”
19 if Ns = ∅:
20 return (−1,−1)
21 n := arg maxn∈Ns TQ+1,n

22 q := argminq=1:Q,Tq,n>0
Tq,N+Q+1

Tq,n

23 return (n, q)
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Modern Optimization Techniques 2. Optimization Problems

Optimization Problems

An optimization problem has the form:

minimize f (x)

where

I f : RN → R

I An optimal x∗ exists and f (x∗) = p∗
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Modern Optimization Techniques 2. Optimization Problems

Optimization Problems — A simple example

Say we have f (x) = x2 + 1 :

minimize x2 + 1

∂f (x)

∂x
!

= 0

2x = 0

x = 0

So:

x∗ = 0

p∗ = f (x∗) = 02 + 1 = 1 x

f (x)

f (x) = x2

0
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Modern Optimization Techniques 2. Optimization Problems

Optimization Problems
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Modern Optimization Techniques 2. Optimization Problems

Optimization Problems — Constraints

A constrained optimization problem has the form:

minimize f (x)

subject to gp(x) = 0, p = 1, . . . ,P

hq(x) ≤ 0, q = 1, . . . ,Q

where

I f : RN → R

I g1, . . . , gP : RN → R

I h1, . . . , hQ : RN → R

I an optimal x∗ exists
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Modern Optimization Techniques 2. Optimization Problems

Optimization Problems — Vocabulary

minimize f (x)

subject to gp(x) = 0, p = 1, . . . ,P

hq(x) ≤ 0, q = 1, . . . ,Q

where

I f : RN → R is the objective function

I x ∈ RN is the optimization variable

I gp : RN → R, p = 1 : P are the equality constraint functions
I usually gp are linear: gp(x) := Ap,.x − ap, A ∈ RP×N , a ∈ RP

I hq : RN → R, q = 1 : Q are the inequality constraint functions
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Modern Optimization Techniques 3. Application Areas

What is optimization good for?

The optimization problem is an abstraction of the problem of making the
best possible choice of a vector in RN from a set of candidate choices

I Machine Learning

I Logistics

I Computer Vision

I Decision Making

I Scheduling

I ...
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Modern Optimization Techniques 3. Application Areas

Application Areas — Machine Learning
Task: Classification

x2

x1

w
· x

+
b

=
0

w
· x

+
b

=
1

w
· x

+
b

=
−1

2‖w‖

b‖w‖

w
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Modern Optimization Techniques 3. Application Areas

Application Areas — Logistics

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

Suppose we have:

I Factories

I Warehouses

I Roads with costs associated to them

Determine how many products to ship from
each factory to each warehouse to
minimize shipping cost while meeting
warehouse demands and not exceeding
factory supplies
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Modern Optimization Techniques 3. Application Areas

Application Areas — Computer Vision
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Modern Optimization Techniques 4. Classification of Optimization Problems

Classification

There are many different ways to group
mathematical optimization problems:

I Linear vs. Non-linear

I Convex vs. Non-convex

I Constrained vs. Unconstrained
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Modern Optimization Techniques 4. Classification of Optimization Problems

Linear vs. Non-Linear Problems
A function f : RN → R is linear if it satistfies

f (αx + βy) = αf (x) + βf (y)

where

I x , y ∈ RN

I α, β ∈ R

An optimization problem

minimize f (x)

is said to be linear if

I the objective function f is linear.

Remember: linear unconstrained problems make no sense as they are
unbounded.
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Modern Optimization Techniques 4. Classification of Optimization Problems

Convex Functions

A function f : RN → R is convex if it satisfies

f (αx + βy) ≤ αf (x) + βf (y)

where

I x , y ∈ RN

I α, β ∈ R

I α + β = 1, α ≥ 0, β ≥ 0
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A convex function

x

f (x)
f (x) = x2
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A non-convex function

x

f (x)

f (x) = 0.1x2 + sin x
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Modern Optimization Techniques 4. Classification of Optimization Problems

Convex vs. Non-Convex Optimization Problem

An (unconstrained!) optimization problem

minimize f (x)

is said to be convex if

I the objective function f is convex.
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Modern Optimization Techniques 4. Classification of Optimization Problems

Constrained vs. Unconstrained Problems
An unconstrained optimization problem has only

I the objective function f

minimize f (x)

A constrained optimization problem has besides

I objective function f

I the equality constraint functions g1, . . . gP and/or

I the inequality constraint functions h1, . . . hQ

minimize f (x)

subject to gp(x) = 0, p = 1, . . . ,P

hq(x) ≤ 0, q = 1, . . . ,Q
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Modern Optimization Techniques 4. Classification of Optimization Problems

Linear vs. Non-Linear Constrained Problems

A constrained optimization problem

minimize f (x)

subject to gp(x) = 0, p = 1, . . . ,P

hq(x) ≤ 0, q = 1, . . . ,Q

is said to be linear if

I the objective function f ,

I the equality constraints g1, . . . gP and

I the inequality constraints h1, . . . hQ are linear.
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Modern Optimization Techniques 4. Classification of Optimization Problems

Linear vs. Non-Linear Constrained Problems

A linear constrained optimization problem can be written as

minimize f (x) := cT x

subject to g(x) := Ax − a = 0

h(x) := Bx − b ≤ 0

with

I a vector c ∈ RN ,

I a matrix A ∈ RP×N , a vector a ∈ RP and

I a matrix B ∈ RQ×N , a vector b ∈ RQ .
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Modern Optimization Techniques 4. Classification of Optimization Problems

Convex vs. Non-Convex Constrained Problems

A constrained optimization problem

minimize f (x)

subject to gp(x) = 0, p = 1, . . . ,P

hq(x) ≤ 0, q = 1, . . . ,Q

is said to be convex if

I the objective function f and

I the inequality constraints h1, . . . hQ are convex and

I the equality constraints g1, . . . gP are even linear.
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Modern Optimization Techniques 5. Overview of the Lecture

Outline

1. Linear Optimization

2. Optimization Problems

3. Application Areas

4. Classification of Optimization Problems

5. Overview of the Lecture

6. Organizational Stuff
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Syllabus

Mon. 29.10. (0) 0. Overview

1. Theory
Mon. 5.11. (1) 1. Convex Sets and Functions

2. Unconstrained Optimization
Mon. 13.11. (2) 2.1 Gradient Descent
Mon. 19.11. (3) 2.2 Stochastic Gradient Descent
Mon. 26.11. (4) 2.3 Newton’s Method
Mon. 3.12. (5) 2.4 Quasi-Newton Methods
Mon. 10.12. (6) 2.5 Subgradient Methods
Mon. 17.12. (7) 2.6 Coordinate Descent

— — Christmas Break —

3. Equality Constrained Optimization
Mon. 7.1. (8) 3.1 Duality
Mon. 14.1. (9) 3.2 Methods

4. Inequality Constrained Optimization
Mon. 21.1. (10) 4.1 Primal Methods
Mon. 28.1. (11) 4.2 Barrier and Penalty Methods
Mon. 4.2. (12) 4.3 Cutting Plane Methods
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Modern Optimization Techniques 6. Organizational Stuff

Outline

1. Linear Optimization

2. Optimization Problems

3. Application Areas

4. Classification of Optimization Problems

5. Overview of the Lecture

6. Organizational Stuff
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Modern Optimization Techniques 6. Organizational Stuff

Exercises and Tutorials (1/2)

I weekly sheet with 2 exercises
I handed out each Monday 12:00 am at LearnWeb

https://www.ismll.uni-hildesheim.de/lehre/opt-17w/index_

en.html.

I 1st sheet will be handed out on 28.10.

I Solutions to the exercises can be submitted directly via post box at
Samelsonplatz
I until next Friday 12:00pm

I 1st sheet is due on Friday 08.11.

I Exercises will be corrected.
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Modern Optimization Techniques 6. Organizational Stuff

Exercises and Tutorials (2/2)

I Tutorials:
I Tue, 8am - 10am (Samelsonplatz B025; Nourhan Ahmed) and

I Wed, 2pm - 4am (Samelsonplatz B025; Mohsan Jameel)

starting next week.

I Successful participation in the tutorial gives up to 10% bonus points
for the exam.
I group submissions are OK (but yield no bonus points)

I Plagiarism is illegal and usually leads to expulsion from the program.
I about plagiarism see https://en.wikipedia.org/wiki/Plagiarism
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Modern Optimization Techniques 6. Organizational Stuff

Exams and credit points

I There will be a written exam at the end of the term
(2h, 4 problems).

I The course gives 6 ECTS (2+2 SWS)

I The course can be used in
I Data Analytics MSc. (mandatory)

I IMIT and AINF MSc. / Informatik / Gebiet KI & ML (elective)

I Wirtschaftsinformatik MSc / Business Intelligence (elective)
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Modern Optimization Techniques 6. Organizational Stuff

Some books

I Stephen Boyd, Lieven Vandenberghe (2004):
Convex Optimization, Cambridge University Press.

I David G. Luenberger, Yinyu Ye (2008; 3rd):
Linear and Nonlinear Programming, Springer.

I Jorge Nocedal, Steven Wright (2006):
Numerical Optimization, Springer.

I Igor Griva, Stephen G. Nash, Ariela Sofer (2009):
Linear and nonlinear optimization, SIAM.

I Dimitri P. Bertsekas (2016; 3rd):
Nonlinear Programming, Athena Scientific.
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Modern Optimization Techniques

Further Readings

I to review linear optimization:
I [Luenberger and Ye, 2008, ch. 2 and 31].

I general introduction to convex optimization:
I [Boyd and Vandenberghe, 2004, ch. 1].

I [Luenberger and Ye, 2008, ch. 1].

I [Nocedal and Wright, 2006, ch. 1].

I [Griva et al., 2009, ch. 1].
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