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Modern Optimization Techniques 1. Unconstrained Optimization

Unconstrained Convex Optimization Problem

arg min
x∈RN

f (x)

where
I f : X → R,X ⊆ RN is

I convex

I twice continuously differentiable

I esp. dom f = X = RN or convex and open.

I An optimal x∗ exists and p∗ := f (x∗) is finite
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Modern Optimization Techniques 1. Unconstrained Optimization

Reminder: 1st-order condition
1st-order condition: a differentiable function f is convex iff

I dom f is a convex set
I for all x, y ∈ dom f

f (y) ≥ f (x) +∇f (x)T (y − x)

f (x)

x
x

(x, f (x))

h(y) = f (x) +∇f (x)T (y − x)
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Modern Optimization Techniques 1. Unconstrained Optimization

Minimality Condition

x is minimal iff

∇f (x) = 0

f (x)

x
x

(x, f (x))
h(y) = f (x)
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Modern Optimization Techniques 1. Unconstrained Optimization

Methods for Unconstrained Optimization

I Start with an initial (random) point: x(0)

I Generate a sequence of points: x(k) with

f (x(k))→ f (x∗)

1 min-unconstrained(f , x(0)):
2 k := 0
3 repeat

4 x(k+1) := next-point(f , x(k))
5 k := k + 1

6 until converged(x(k), x(k−1), f )

7 return x(k), f (x(k))
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Modern Optimization Techniques 1. Unconstrained Optimization

Methods for Unconstrained Optimization

I Start with an initial (random) point: x(0)

I Generate a sequence of points: x(k) with

f (x(k))→ f (x∗)

1 min-unconstrained(f , x(0),K ):
2 for k := 0 : K − 1:

3 x(k+1) := next-point(f , x(k))

4 if converged(x(k+1), x(k), f ):

5 return x(k+1), f (x(k+1))
6 raise exception ”not converged in K iterations”
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Modern Optimization Techniques 1. Unconstrained Optimization

Convergence Criterion

converged(x(k+1), x(k), f )

I Different criteria in use
I different optimization methods may use different criteria

I One would like to use the optimality gap:

‖x(k+1) − x?‖22 < ε

I not possible as x? is unknown

I Minimum progress/change ε in x in last iteration:

converged(x(k+1), x(k), f ) := ‖x(k+1) − x(k)‖22 < ε

I cheap to compute

I can be used with any method

I requires parameter ε ∈ R+
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Modern Optimization Techniques 2. Descent Methods

Descent Methods
I a class/template of methods

I the next point is generated as:

x(k+1) := x(k) + µ∆x(k)

with
I a search direction ∆x(k) and
I a step size µ such that

f (x(k) + µ∆x(k)) < f (x(k))

I always exists if the step size µ is sufficient small
if the search direction ∆x(k) is a descent direction:

∇f (x(k))T∆x(k) < 0

I search directions ∆x(k) can be computed different ways
I Gradient Descent
I Steepest Descent
I Newton’s Method
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Modern Optimization Techniques 2. Descent Methods

Descent Methods

1 min-descent(f , x(0),K ):
2 for k := 0 : K − 1:

3 ∆x(k) := search-direction(f , x(k))

4 µ(k) := step-size(f , x(k), ∆x(k))

5 x(k+1) := x(k) + µ(k)∆x(k)

6 if converged(x(k+1), x(k), f ):

7 return x(k+1), f (x(k+1))
8 raise exception ”not converged in K iterations”
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Modern Optimization Techniques 3. Gradient Descent

Gradient Descent

I The gradient of a function f : X → R,X ⊆ RN at x yields the
direction in which the function is maximally growing locally.

I Gradient Descent is a descent method that searches in the opposite
direction of the gradient:

∆x := −∇f (x)

I Gradient:

∇f (x) := ∇x f (x) := (
∂f

∂xn
(x))n=1:N
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Modern Optimization Techniques 3. Gradient Descent

Gradient Descent

1 min-GD(f , x(0),K ):
2 for k := 0 : K − 1:

3 ∆x(k) := −∇f (x(k))

4 µ(k) := step-size(f , x(k), ∆x(k))

5 x(k+1) := x(k) + µ(k)∆x(k)

6 if converged(x(k+1), x(k), f ):

7 return x(k+1), f (x(k+1))
8 raise exception ”not converged in K iterations”
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Modern Optimization Techniques 3. Gradient Descent

Gradient Descent / Implementations

I for analysis usually all updated variables are indexed

x(k), ∆x(k), µ(k)

I in implementations, one usually does only need one copy
I or two, to compare against the last one

1 min-GD(f , x,K ):
2 for k := 0 : K − 1:
3 ∆x := −∇f (x)
4 µ := step-size(f , x, ∆x)

5 xold := x

6 x := xold + µ∆x

7 if converged(x, xold, f ):
8 return x, f (x)
9 raise exception ”not converged in K iterations”
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Modern Optimization Techniques 3. Gradient Descent

Gradient Descent / Considerations
I Stopping criterion: ||∇f (x)||2 ≤ ε

converged(x, xold, f ) :=

converged(∇f (x)) := ||∇f (x)||2 ≤ ε

I cheap to use as GD has to compute the gradient anyway

I GD is simple and straightforward

I GD has slow convergence
I esp. compared to Newton’s method

I Out-of-the-box, GD works only well for convex problems,
otherwise will get stuck in local minima
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Modern Optimization Techniques 3. Gradient Descent

Gradient Descent Example

Task:

minimize x2

I µ = 0.3

I −∇f (x) = −2x

Initial point: x0 = −1.5

x

f (x)
f (x) = x2

x = −1.5
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Modern Optimization Techniques 3. Gradient Descent

Gradient Descent Example

Task:

minimize x2

I µ = 0.3

I −∇f (x) = −2x

x0 = −1.5

x = −1.5− 0.3 · (2 · (−1.5))

x = −0.6
x

f (x)
f (x) = x2

x = −0.6
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Modern Optimization Techniques 3. Gradient Descent

Gradient Descent Example

Task:

minimize x2

I µ = 0.3

I −∇f (x) = −2x

x = −0.6

x = −0.6− 0.3 · (2 · (−0.6))

x = −0.24 x

f (x)
f (x) = x2

x = −0.24
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Modern Optimization Techniques 3. Gradient Descent

Gradient Descent Example

Task:

minimize x2

I µ = 0.3

I −∇f (x) = −2x

x = −0.24

x = −0.24− 0.3 · (2 · (−0.24))

x = −0.0384 x

f (x)
f (x) = x2

x = −0.0384
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Modern Optimization Techniques 3. Gradient Descent

Gradient Descent Example

Task:

minimize x2

I µ = 0.3

I −∇f (x) = −2x

x = −0.0384

x = −0.0384− 0.3 · (2 · (−0.0384))

x = −0.01536
x

f (x)
f (x) = x2

x = −0.01536
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Modern Optimization Techniques 3. Gradient Descent

Considerations about the Step Size

I Crucial for the convergence of the algorithm

I Step size too small  slow convergence

I Step size too large  divergence!
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Modern Optimization Techniques 3. Gradient Descent

Gradient Descent Example - A perfect Step Size

Task:

minimize x2

I µ = 0.5

I −∇f (x) = −2x

Initial point: x0 = −1.5

x

f (x)
f (x) = x2

x = −1.5
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Modern Optimization Techniques 3. Gradient Descent

Gradient Descent Example - A perfect Step Size

Task:

minimize x2

I µ = 0.5

I −∇f (x) = −2x

x0 = −1.5

x = −1.5− 0.5 · (2 · −1.5)

x = 0
x

f (x)
f (x) = x2

x = 0
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Modern Optimization Techniques 3. Gradient Descent

Gradient Descent Example - Too Large Step Size

Task:

minimize x2

I µ = 1.5

I −∇f (x) = −2x

Initial point: x0 = −1.5

x

f (x)
f (x) = x2

x = −1.5
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Modern Optimization Techniques 3. Gradient Descent

Gradient Descent Example - Too Large Step Size

Task:

minimize x2

I µ = 1.5

I −∇f (x) = −2x

x0 = −1.5

x = −1.5− 1.5 · (2 · −1.5)

x = 3 x

f (x)
f (x) = x2

x = 3
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Modern Optimization Techniques 3. Gradient Descent

Gradient Descent Example - Too Large Step Size

Task:

minimize x2

I µ = 1.5

I −∇f (x) = −2x

x0 = 3

x = 3− 1.5 · (2 · 3)

x = −6 x

f (x)
f (x) = x2
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Modern Optimization Techniques 4. Line search

Computing the Step Size

The step size can be computed in various ways:
I constant value

I e.g., 1

I decreasing sequence, e.g., γk for γ ∈ (0, 1)
I e.g., 1, 12 ,

1
4 ,

1
8 , . . .

I line search

I various heuristics depending on the specific algorithm
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Modern Optimization Techniques 4. Line search

Line search

I line search is the task to compute the step lenght in a descent
algorithm.

I a one-dimensional optimization problem in µ:

arg min
µ∈R+

f (x + µ∆x)
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Modern Optimization Techniques 4. Line search

Line Search Methods

I exact line search
I Used if the problem can be solved analytically or with low cost

I e.g., for unconstrained quadratic optimization:

arg min
x∈RN

f (x) :=
1

2
xTAx + bT x , A ∈ RN×N pos. def., b ∈ RN

I backtracking line search
I only approximative

I guarantees that the new function value is lower than a specific bound
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Modern Optimization Techniques 4. Line search

Backtracking Line Search

1 stepsize-backtracking(f , x, ∆x, α ∈ (0, 0.5), β ∈ (0, 1)):
2 µ := 1

3 while f (x + µ∆x) > f (x) + αµ∇f (x)T∆x:
4 µ := βµ
5 return µ

Loop eventually terminates: for sufficient small µ:

f (x + µ∆x) ≈ f (x) + µ∇f (x)T∆x < f (x) + αµ∇f (x)T∆x

as for a descent direction: ∇f (x)T∆x < 0
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Modern Optimization Techniques 4. Line search

Backtracking Line Search

9.2 Descent methods 465

t

f(x+ t∆x)

t = 0 t0

f(x) + αt∇f(x)T∆xf(x) + t∇f(x)T∆x

Figure 9.1 Backtracking line search. The curve shows f , restricted to the line
over which we search. The lower dashed line shows the linear extrapolation
of f , and the upper dashed line has a slope a factor of α smaller. The
backtracking condition is that f lies below the upper dashed line, i.e., 0 ≤
t ≤ t0.

The line search is called backtracking because it starts with unit step size and
then reduces it by the factor β until the stopping condition f(x + t∆x) ≤ f(x) +
αt∇f(x)T∆x holds. Since ∆x is a descent direction, we have ∇f(x)T∆x < 0, so
for small enough t we have

f(x+ t∆x) ≈ f(x) + t∇f(x)T∆x < f(x) + αt∇f(x)T∆x,

which shows that the backtracking line search eventually terminates. The constant
α can be interpreted as the fraction of the decrease in f predicted by linear extrap-
olation that we will accept. (The reason for requiring α to be smaller than 0.5 will
become clear later.)

The backtracking condition is illustrated in figure 9.1. This figure suggests,
and it can be shown, that the backtracking exit inequality f(x + t∆x) ≤ f(x) +
αt∇f(x)T∆x holds for t ≥ 0 in an interval (0, t0]. It follows that the backtracking
line search stops with a step length t that satisfies

t = 1, or t ∈ (βt0, t0].

The first case occurs when the step length t = 1 satisfies the backtracking condition,
i.e., 1 ≤ t0. In particular, we can say that the step length obtained by backtracking
line search satisfies

t ≥ min{1, βt0}.
When dom f is not all of Rn, the condition f(x+ t∆x) ≤ f(x)+αt∇f(x)T∆x

in the backtracking line search must be interpreted carefully. By our convention
that f is infinite outside its domain, the inequality implies that x+ t∆x ∈ dom f .
In a practical implementation, we first multiply t by β until x + t∆x ∈ dom f ;

source: [Boyd and Vandenberghe, 2004, p. 465]
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Modern Optimization Techniques 5. Convergence of Gradient Descent

Sublevel Sets

sublevel set of f : X → R,X ⊆ RN at level α ∈ R:

Sα := {x ∈ dom f | f (x) ≤ α}

basic facts:
I if f is convex, then all its sublevel sets Sα are convex sets.

I useful to show that a set is convex
I show that it can be represented as a sublevel set of a convex function.
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Modern Optimization Techniques 5. Convergence of Gradient Descent

Sublevel Sets / Examples

Sα(x2) =

{
[−√α,√α], α ≥ 0

∅, else

Sα(− log x ;R+) =

[e−α,∞)

Sα(
1

x
;R+) =

{
[ 1α ,∞), α ≥ 0

∅, else

Sα(x ;R+) =

{
(0, α], α > 0

∅, else
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Modern Optimization Techniques 5. Convergence of Gradient Descent

Sublevel Sets / Examples
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Modern Optimization Techniques 5. Convergence of Gradient Descent

Closed Functions
f : X → R,X ⊆ RN closed :⇐⇒ all its sublevel sets are closed.

examples:
I f (x) = x2 is closed.
I f (x) = 1/x on R+ is closed.

I f (x) = x on R+ is not closed.
I but f on R+

0 is closed.

I f (x) = x log x on R+ is not closed.
I but f on R+

0 is closed, defined by

f (x) :=

{
x log x , if x > 0

0, else

Classes of closed functions:
I continuous functions on all of RN

I continuous functions on an open set
that go to infinity everywhere towards the border
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Modern Optimization Techniques 5. Convergence of Gradient Descent

Semidefinite Matrices II

Let A,B ∈ RN×N symmetric matrices:

A � B :⇐⇒ A− B � 0

I A � mI ,m ∈ R+:
I all eigenvalues of A are ≥ m

I A � MI ,M ∈ R+:
I all eigenvalues of A are ≤ M
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Modern Optimization Techniques 5. Convergence of Gradient Descent

Strongly Convex Functions

Let f : X → R,X ⊆ RN be twice continuously differentiable.

f is strongly convex :⇐⇒
I dom f = X is convex and

I the eigenvalues of the Hessian are uniformly bounded from below:

∇2f (x) � mI , ∃m ∈ R+ ∀x ∈ dom f

Every strongly convex function f is also strictly convex.
I but not the other way around

I f (x) = x4 on R+ is strictly, but not strongly convex

I do not confuse strongly and strictly convex!
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Modern Optimization Techniques 5. Convergence of Gradient Descent

Strongly Convex Functions / Examples

x

f (x)

f (x) = x2

f ′′(x) = 2

x

f (x)

f (x) = x4

f ′′(x) = 12x2
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Modern Optimization Techniques 5. Convergence of Gradient Descent

Strongly Convex Functions / Basic Facts

(i) f is above a parabola:

f (y) ≥ f (x) +∇f (x)T (y − x) +
m

2
||y − x ||22

p∗ ≥ f (x)− 1

2m
||∇f (x)||22

(ii) if f is closed and S one of its sublevel sets, then
a) the eigenvalues of the Hessian are also uniformly bounded from above

on S :

∇2f (x) � MI , ∃M ∈ R+ ∀x ∈ S

b)

f (y) ≤ f (x) +∇f (x)T (y − x) +
M

2
||y − x ||22, x , y ∈ S

p∗ ≤ f (x)− 1

2M
||∇f (x)||22
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Modern Optimization Techniques 5. Convergence of Gradient Descent

Strongly Convex Functions / Basic Facts / Proofs
(i) for x , y ∈ dom f ∃z ∈ [x , y ]

(Taylor expansion with Lagrange mean value remainder):

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)︸ ︷︷ ︸

≥m||y−x||22

f (y) ≥ f (x) +∇f (x)T (y − x) +
m

2
||y − x ||22

≥ min
y

f (x) +∇f (x)T (y − x) +
m

2
||y − x ||22

considered as function in y has

minimum at ỹ := x − 1

m
∇f (x)

= f (x) +∇f (x)T (ỹ − x) +
m

2
||ỹ − x ||22

= f (x)− 1

2m
||∇f (x)||22

 p∗ = f (y = x∗) ≥ f (x)− 1

2m
||∇f (x)||22
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Modern Optimization Techniques 5. Convergence of Gradient Descent

Strongly Convex Functions / Basic Facts / Proofs (2/2)

(ii.a) I due to (i) all sublevel sets are bounded

I the maximal eigenvalue of ∇2f (x) is a continuous function on a closed
bounded set and thus itself bounded,

I i.e., it exists M ∈ R+: ∇2f (x) � MI

(ii.b) as for (i), using (ii.a)
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Modern Optimization Techniques 5. Convergence of Gradient Descent

Theorem (Convergence of Gradient Descent — exact line search)

If (i) f is strongly convex,
(ii) the initial sublevel set S := {x ∈ dom f | f (x) ≤ f (x (0))} is closed,
(iii) an exact line search is used,

then

f (x (k))− p∗ ≤ (1− m

M
)k (f (x (0))− p∗)

Equivalently, to guarantee f (x (k))− p∗ ≤ ε, GD requires

k :=
log f (x0)−p∗

ε

log 1
1− m

M

iterations.

Especially,

I GD converges, i.e., f (x (k)) approaches p∗

I the convergence is exponential in k (with basis c := 1− m
M )

I called linear convergence in the optimization literature

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

30 / 35



Modern Optimization Techniques 5. Convergence of Gradient Descent

Convergence of Gradient Descent / Proof

f̃ (t) := f (x − t∇f (x)), t ∈ {t ∈ R+
0 | x − t∇f (x) ∈ S}

f (xnext) = f̃ (texact)

≤ f̃ (0)− 1

2M
(f̃ ′(0))2, f̃ strongly convex (ii.b)

= f (x)− 1

2M
||∇f (x)||22︸ ︷︷ ︸
≥2m(f (x)−p∗)

, f strongly convex (i)

f (xnext)− p∗ ≤ f (x)− p∗ − 1

2M
2m(f (x)− p∗) = (1− m

M
)(f (x)− p∗)

f (x (k))− p∗ ≤ (1− m

M
)k(f (x (0))− p∗)
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Convergence of Gradient Descent / in x

GD’s convergence can also be described in x (instead of in f ):

||x (k) − x∗||2 ≤
s.c.(i)

2

m
(f (x (k))− p∗)

≤
conv

2

m
(1− m

M
)k(f (x (0))− p∗)

≤
s.c.(i)

(1− m

M
)k

2

m

1

2m
||(∇f (x))||2

= (1− m

M
)k
||(∇f (x (0)))||2

m2
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Modern Optimization Techniques 5. Convergence of Gradient Descent

Theorem (Convergence of Gradient Descent — Backtracking)

If (i) f is strongly convex,
(ii) the initial sublevel set S := {x ∈ dom f | f (x) ≤ f (x (0))} is closed,
(iii) a backtracking line search is used,

then

f (x (k))− p∗ ≤ ck (f (x (0))− p∗), c := 1−min{2αm, 2βαm/M}

Equivalently, to guarantee f (x (k))− p∗ ≤ ε, GD requires

k :=
log f (x0)−p∗

ε

log 1
c

iterations.

Especially,

I GD converges, i.e., f (x (k)) approaches p∗

I the convergence is exponential in k (with basis c; linear convergence)
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Modern Optimization Techniques 5. Convergence of Gradient Descent

Summary (1/2)

I Unconstrained optimization is the minimization of a function over
all of RN or an open subset X ⊆ RN .

I In Unconstrained convex optimization X also has to be convex
(and f , too).

I Descent methods iteratively find a next iterate x (k+1) with lower
function value than the last iterate and require:

I search direction: in which direction to search.
I Gradient Descent (GD): negative gradient of the target function

I step size: how far to go.

I convergence criterion: when to stop.
I small last step

I small gradient
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Summary (2/2)

I step size (aka line search) in rare cases can be computed exactly.
I one-dimensional optimization problem (exact line search)

I backtracking line search:
I Choose the largest stepsize that guarantees a decrease in function

value.

I guaranteed to terminate

I GD has linear convergence
I exponential in the number of steps

I with basis 1−m/M
for smallest/largest eigenvalues m,M of the Hessian

I if f is strongly convex, its initial sublevel set closed and
exact line search is used.
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Further Readings

I Unconstrained minimization problems:
I Boyd and Vandenberghe [2004], chapter 9.1

I Descent methods:
I Boyd and Vandenberghe [2004], chapter 9.2

I Gradient descent:
I Boyd and Vandenberghe [2004], chapter 9.3

I also accessible from here:
I steepest descent — Boyd and Vandenberghe [2004], chapter 9.4
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