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Modern Optimization Techniques 1. Stochastic Gradients

Unconstrained Convex Optimization

arg min f(x)
x&dom f

» dom f C R" is convex and open (unconstrained optimization)
» eg., domf =RV

» f is convex
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Modern Optimization Techniques 1. Stochastic Gradients
Stochastic Gradient
Gradient Descent makes use of the gradient

Vf(x)

Stochastic Gradient Descent: makes use of Stochastic Gradient only:

g(x) ~ p(g eR" [ x), Ep(g(x)) = VF(x)

» for each point x € RV:
random variable over RN with distribution p (conditional on x)

» on average yields the gradient (at each point)
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Modern Optimization Techniques 1. Stochastic Gradients

Stochastic Gradient / Example: Big Sums

fis a “big sum”:
1.6
F(x) = = D)
c=1

with f. convex, ¢c=1,...,C

g is the gradient of a random summand:
p(g | x) :==Unif({Vf(x) | c=1,...,C})
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Modern Optimization Techniques 1. Stochastic Gradients

NN
Stochastic Gradient / Example: Least Squares “

in f(x) = ||Ax — b|[3
min £(x) := || Ax = bll2

» will find solution for Ax = b if there is any (then ||Ax — b||> = 0)

» otherwise will find the x where the difference Ax — b of left and right
side is as small as possible (in the squared L2 norm)

> is a big sum:

M M
F(x) = |lAx = b5 = > ((AX)m — = (Am.x — bp)?
m=1 m=1

1 M
= 2 D ) Fan(x) = M(Am.X — bn)?

» stochastic gradient g:
» gradient for a random component m
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Modern Optimization Techniques 1. Stochastic Gradients

Stochastic Gradient / Example: Supervised Learning

N
f ns 9 (X, 0)) + N||6]13
min £(x) := g Yo 30, 0)) + N 613

» where
> (Xn,Yn) € RM x RT are N training samples,

» ¥ is a parametrized model, e.g., logistic regression
J(x:0):=(1+ efoTX)fl, P=MT:=1
» [ is a loss, e.g., negative binomial loglikelihood:
Uy,9) = —ylogy — (1 —y)log(l - 9)
> )€ Rg is the regularization weight.
» will find parametrization with best trade-off between low loss and low

model complexity
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Modern Optimization Techniques 1. Stochastic Gradients

B2
Stochastic Gradient / Example: Supervised Learning (2)‘{5

N
argﬁgnpfx ; Yns ¥ (Xn, 0 +)‘H9H2

» where
> (Xn,¥n) € RM x RT are N training samples,

> L.

» is a big sum:

N
:%an(e), f2(60) = L(¥n, §(xn, 0)) + A||6]13

n=1

» stochastic gradient g:
» gradient for a random sample n
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Modern Optimization Techniques 2. Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent

» the very same as Gradient Descent

» but use stochastic gradient g(x) instead of exact gradient V£(x) in

each step

1 min-sgd(f, p, x, 1, K):

2 for k:=1,...,K:

5 draw gD ~ p(g | x)

. Ax(k=1) .— (k 1)

5 ptk=1) —,u(f x(k=1) - Ax(k=1)y

6 x(K) = x(k=1) 4y (k=1) Ax(k=1)

7 if converged(...):

8 return x(k)

o raise exception "not converged in K iterations”

where
» p (distribution of the) stochastic gradient of £

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Modern Optimization Techniques 2. Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent / For Big Sums

1 min-sgd((f.)e=1,.c, (V)e=1....c, X0, u, K):

2

where

for k:=1,. K

draw c(k— 1) ~ Unif(1,...,C)
g(kl ka1(k1))
Ax(k=1) = _g(k=1)

D) = i, kD) Ax(k-1))
) = k1) (k1) Ay (k-1)
if converged(...):

return x(¥)

raise exception "not converged in K iterations”

» (fc)c=1,..c objective function summands, f := % 25:1 fe

» (Vfc)c=1,. c gradients of the objective function summands
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Modern Optimization Techniques 2. Stochastic Gradient Descent (SGD)

SGD / For Big Sums / Epochs

1 min-sgd((2)c=1,...c. (Vfc)ezt,...c, X9, p, K):
2 C:=(1,2,...,0)

3 x(0.0) .= x(0

4 for k:=1,... K:

5 randomly shuffle C

6 »(K0) .y (k=1,C)

7 for i=1,...,C:

6 gki=1) = Vf, (x(ki=1))

0 Ax(ki=1) .= glki=1)

0 pi=1) = y(F, x(ki=1) | Ax(ki=1))
" XU = x(oi=1) gy ki=1) Ax(kii=1)

12 return X(K’C)
where
1

> (fc)c=1,..,c objective function summands, f := & chzl fe

| S
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Modern Optimization Techniques 2. Stochastic Gradient Descent (SGD)

Theorem (Convergence of Gradient Descent) [review]

If

(i) f is strongly convex,
(ii) the initial sublevel set S := {x € dom f | f(x) < f(x(9))} is closed,

(iii) an exact line search is used,

then gradient descent converges, esp.

F(9) = p* < (1= 1)* (F(9) = p)

m V)2

k *12
K — 72 < (1 - Ty
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Modern Optimization Techniques 2. Stochastic Gradient Descent (SGD)

Theorem (Convergence of SGD)

If
(i) f is strongly convex (||V2f(x)|| = mI,m € RY),

(ii) the expected squared norm of its stochastic gradient g is uniformly
bounded (3G € Ry Vx : E(||g(x)|?) < G?) and

(iii) the step size u(k) = m is used,
then SGD converges, esp.

. 1
() = x'|12) < = max{|Ix® x|,

2}
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Modern Optimization Techniques 2. Stochastic Gradient Descent (SGD)

P2
Convergence of SGD / Proof i
f(x*) — f(x) > V()T (x* — x) + gHX* —x||? str. conv. (i)
F(x) = F(x*) = VF() T (x = x*) + ZlIx = x |12 = Zx" = x|
summing both yields
0> VF(x)T(x* = x) + m||x* — x||?
V()T (x = x*) = ml[x* —x||? (1)

E(|[x®*) — X*IIZ)

I]E(HX (k 1) (kfl) *X*Hz)
= B(|[x*D — x*|]?) -2 (k_l)E((g(k_l))T(X(k_l) —x*) + (W IYE(| g
= B(||x* D — x*|?) = 20, VE(VF ()T (A — ) 4 (uEDYE(| g5
("i) (1)

E(|[x*Y — x*|?) —2M(k_1)m]E(HX* — x5V 4 (w262
= (1—2u(k Dm)E(||x*D —x*[]?) + (uk V)62 (2)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Modern Optimization Techniques 2. Stochastic Gradient Descent (SGD)

MR
Convergence of SGD / Proof (2/2) v

induction over k: k :=

2 G
L, L:=max{|[x(® —x*|]2, — 1

X —x*||? <
m

»—l\n—-

k> 0:

@)
E(|x" —x*|?) < (1 = 264D m)E(|x* = x*|) + (u*Y)? 62

@ (1= 2y — ) + 2
ind. 2

ndShyP ( %);L—i— fk2

def. L 1 1

<f- )kL al
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Modern Optimization Techniques 3. More on Line Search: Bold Driver

Choosing the step size for SGD

» The step size u is a crucial parameter of gradient descent

» Given the low cost of the SGD update,
using exact line search for the step size is a bad choice

» Possible alternatives:
» Fixed step size

» Exponentially decreasing step size

v

Backtracking / Armijo principle
Bold-Driver
Adagrad

v

v
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Modern Optimization Techniques 3. More on Line Search: Bold Driver

Example: Body Fat prediction

We want to estimate the percentage of body fat based on various
attributes:

Age (years)

Weight (Ibs)

Height (inches)

Neck circumference (cm)

Chest circumference (cm)
Abdomen 2 circumference (cm)
Hip circumference (cm)

Thigh circumference (cm)
Knee circumference (cm)

vV V. vV vV VvV vV VY VvV VY Yy

http://1ib.stat.cmu.edu/datasets/bodyfat
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Modern Optimization Techniques 3. More on Line Search: Bold Driver

Example: Body Fat prediction

The data is represented it as:

1 a1 a2 ... aim n

1 a1 a2 ... am y2
A= . . . ) y=

1 any1 an2 ... anm YN

with N =252, M = 14

We can model the percentage of body fat y
as a linear combination of the body measurements with parameters x:

Vn = xTan =xpl + X1an,1 + X2an2 + ...+ Xpmanm
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NN
SGD - Fixed Step Size on the Body Fat dataset “

SGD Step Size

& 4
s © 0.0001
© 0.001
© 0.01
P 001
i
8 2
= o
8 | } ‘
g .
T T T T T T
0 100 200 300 400 500
Iterations
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Modern Optimization Techniques 3. More on Line Search: Bold Driver

Bold Driver Heuristic

» idea: use smaller step sizes closer to the minimum.
> adjust step size based on the value of £(x(kK)) — f(x(k=1))

» if the value of f(x) grows,
the step size must decrease

» if the value of f(x) decreases,
the step size can increase for faster convergence

» adapt stepsize only once after each epoch,
not for every (inner) iteration.
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Modern Optimization Techniques 3. More on Line Search: Bold Driver

Bold Driver Heuristic — Update Rule

We need to define

» an increase factor u™ > 1, e.g. ut :=1.05, and
» a decay factor = € (0,1), e.g., = :=0.5.

Step size update rule:

v

Cycle through the whole data and update the parameters
Evaluate the objective function f(x(¥))
if £(x(9)) < £(x(~V) then p — ptp
else £(x(9)) > f(x(k=1) then p — p~p
different from the bold driver heuristics for batch gradient descent,
there is no way to evaluate f(x + puAx) for different p.

» stepsize i is adapted once after the step has been done

vV vyyVvyy
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Modern Optimization Techniques 3. More on Line Search: Bold Driver

Bold Driver

1 stepsize-bd (11, few, foid, T, 1 7):

2 |f fnew < fold

s p=pta

4 else

5 pi=pp
6 return pu

where

» 1 stepsize of last update

> foews foid = F(xK), F(x¥71) function values before and after the last
update

» 1T, stepsize increase and decay factors
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Modern Optimization Techniques 3. More on Line Search: Bold Driver

Considerations

v

works well for a range of problems

v

initial © just needs to be large enough

v

" and p~ have to be adjusted to the problem at hand
» often used values: p* =1.05 and = = 0.5

v

may lead to faster convergence
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4. More on Line Search: AdaGrad
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Modern Optimization Techniques 4. More on Line Search: AdaGrad

AdaGrad

» idea: adjust the step size
individually for each variable to be optimized

» use information about past gradients

» often leads to faster convergence

» does not have parameters
» such as u* and = for Bold Driver

» update stepsize for every inner iteration
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Modern Optimization Techniques 4. More on Line Search: AdaGrad

AdaGrad - Update Rule

We have
g(x) ~ p(g e RV [ x), Ey(g(x)) = Vf(x)
Update rule:
» Update the gradient square history
G2 = G2 + g(x) © g(x)

» The step size for variable x,, is

PR
VG2, 4 e
» Update
X" = x = p© g(x)
e, xpt = x, — S - X))n

G2, +¢

© denotes the elementwise product, G2 a variable name, not a square.
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Modern Optimization Techniques 4. More on Line Search: AdaGrad

AdaGrad A

1 stepsize-adagrad(g, G?; 10, €):
> G?:=G2+gog

o _
3 un.—ﬁforn—l,...,N

4 return (u,G?)

where

» returns a vector of stepsizes, one for each variable
» g~ p(g e RV |x), E,y(g(x)) = Vf(x) current (stochastic) gradient
» G past gradient square history

» o initial stepsize
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NN
AdaGrad Step Size “

ADAGRAD Step Size

& 4 \
S © 0.001
\ © 0.01
© 01
0 \ o1
2 -
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) |
TN N T | et A1 J
o
o 4
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T T T T T T
0 100 200 300 400 500
Iterations
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4. More on Line Search: AdaGrad

NN
AdaGrad vs Fixed Step Size “

MSE
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Modern Optimization Techniques 4. More on Line Search: AdaGrad

M
Adam v

1 stepsize-adam(g, G, G2, t; o, B1, Bo, €):
2 G:=pG+(1-701)g
3 G2:=3G2+(1-P)gog

o G,/(1-B) —
4 fp = Uo N forn=1,...,N

5 return (u, G, G?)

where

» returns a vector of stepsizes, one for each variable

g~ p(g € RV |x), E,(g(x)) = VF(x) current (stochastic) gradient
G, G2 past gradient and gradient square history

t iteration

po initial stepsize

v vyyVvyy

Note: Adagrad is a special case for 51 :=0, 5> := % and iteration-dependent

Ad d
po(t) = 210%™ //1 — 0.5%. : R
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NN
Summary “

» Stochastic Gradient Descent (SGD) is like Gradient Descent,

» but instead of the exact gradient uses
just a random vector called stochastic gradient

> with expectation of the true/exact gradient.

» stochastic gradients occur naturally when the objective is a big sum

» then the gradient of a uniformly random component is a stochastic
gradient

» e.g., objectives for most machine learning problems are big sums over
instance-wise losses (and regularization terms).

» SGD converges with a rate of 1/k in the number of steps k.
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Modern Optimization Techniques 4. More on Line Search: AdaGrad

Summary (2/2)

» step size and convergence critera have to be adapted
> to aggregate over several update steps, e.g., an epoche

» cannot test for different step sizes (like backtracking)

» Bold driver step size control:
» update per epoche based on additional function evaluation.

» Adagrad step size control:
» individual step size for each variable

» 1/ g2 for past gradients.
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Modern Optimization Techniques
Further Readings

» SGD is not covered in Boyd and Vandenberghe [2004].

» Leon Bottou, Frank E. Curtis, Jorge Nocedal (2016): Stochastic
Gradient Methods for Large-Scale Machine Learning, ICML 2016
Tutorial, http://users.iems.northwestern.edu/~nocedal/ICML

» Francis Bach (2013): Stochastic gradient methods for machine
learning, Microsoft Machine Learning Summit 2013,
http://research.microsoft.com/en-us/um/cambridge/
events/mls2013/downloads/stochastic_gradient.pdf

» for the convergence proof:
Ji Liu (2014), Notes “Stochastic Gradient Descent”,
htto://www.cs.rochester.edu/~i11iu/CSC-576-2014fall.html
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