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Modern Optimization Techniques 1. Constrained Optimization

Constrained Optimization Problems

A constrained optimization problem has the form:

minimize f (x)

subject to gp(x) = 0, p = 1, . . . ,P

hq(x) ≤ 0, q = 1, . . . ,Q

where:

I f : RN → R is called the objective or cost function,

I g1, . . . , gP : RN → R are called equality constraints,

I h1, . . . , hQ : RN → R are called inequality constraints,

I a feasible, optimal x∗ exists
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Modern Optimization Techniques 1. Constrained Optimization

Constrained Optimization Problems
A convex constrained optimization problem:

minimize f (x)

subject to gp(x) = 0, p = 1, . . . ,P

hq(x) ≤ 0, q = 1, . . . ,Q

is convex iff:
I f , the objective function is convex,
I g1, . . . , gP the equality constraint functions are affine:

gp(x) = aT
p x− bp, and

I h1, . . . , hQ the inequality constraint functions are convex.

minimize f (x)

subject to aT
p x− bp = 0, p = 1, . . . ,P

hq(x) ≤ 0, q = 1, . . . ,Q
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Modern Optimization Techniques 1. Constrained Optimization

Linear Programming
A convex problem with an
I affine objective and
I affine constraints

is called Linear Program (LP).

Standard form LP:

minimize cTx

subject to aT
p x = bp, p = 1, . . . ,P

x ≥ 0

Inequality form LP:

minimize cTx

subject to aT
q x ≤ bq, q = 1, . . . ,Q

I No analytical solution
I There are specialized algorithms available
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Modern Optimization Techniques 1. Constrained Optimization

Quadratic Programming

A convex problem with

I a quadratic objective and
I affine constraints

is called Quadratic Program (QP).

Inequality form QP:

minimize
1

2
xTCx + cTx

subject to aT
q x ≤ bq, q = 1, . . . ,Q

where:

I C � 0 pos.def. or
I C = 0, a special case: linear programs.
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Modern Optimization Techniques 1. Constrained Optimization

Example: Maximum Margin Separating Hyperplanes
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Modern Optimization Techniques 1. Constrained Optimization

Example: Support Vector Machines

If the instances are not completely separable,
we can allow some of them to be on the wrong side of the decision
boundary.

The closer the “wrong” points are to the boundary,
the better (modeled by slack variables ξn).

minimize
1

2
||x||2 + γ

N∑
n=1

ξn

subject to yn(a0 + xTan) ≥ 1− ξn, n = 1, . . . ,N

ξn ≥ 0,¸ n = 1, . . . ,N
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Modern Optimization Techniques 2. Duality

Lagrangian

Given a constrained optimization problem in the standard form:

minimize f (x)

subject to gp(x) = 0, p = 1, . . . ,P

hq(x) ≤ 0, q = 1, . . . ,Q

We can put

I the objective function f and
I the constraints gp and hq

in a joint function called primal Lagrangian:

f (x) +
P∑

p=1

νp gp(x) +
Q∑

q=1

λq hq(x)
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Modern Optimization Techniques 2. Duality

Primal Lagrangian

The primal Lagrangian of a constrained optimization problem is a
function

L: RN × RP × RQ → R

L(x, ν, λ) :=f (x) +
P∑

p=1

νp gp(x) +
Q∑

q=1

λq hq(x)

where:
I νp and λq are called Lagrange multipliers.

I νp is the Lagrange multiplier associated with the constraint gp(x) = 0

I λq is the Lagrange multiplier associated with the constraint hq(x) ≤ 0.
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Modern Optimization Techniques 2. Duality

Dual Lagrangian

Be D the domain of the problem, the dual Lagrangian of a constrained
optimization problem is a function g : RP × RQ → R:

g(ν, λ) := inf
x∈D

L(x, ν, λ)

= inf
x∈D

f (x) +
P∑

p=1

νp gp(x) +
Q∑

q=1

λq hq(x)


I g is concave.

I as infimum over concave (affine) functions

I for non-negative λq, g is a lower bound on f (x∗):

g(ν, λ) ≤ f (x∗) for λ ≥ 0
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Modern Optimization Techniques 2. Duality

Dual Lagrangian / Proof
Proof of the lower bound property of:

g(ν, λ) := inf
x∈D

L(x, ν, λ)

= inf
x∈D

f (x) +
P∑

p=1

νp gp(x) +
Q∑

q=1

λq hq(x)


for any feasible x we have:

I gp(x) = 0

I hq(x) ≤ 0

thus, with λ ≥ 0:

f (x) ≥ L(x, ν, λ) ≥ inf
x′∈D

L(x′, ν, λ) = g(ν, λ)

minimizing over all feasible x, we have f (x∗) ≥ g(ν, λ)
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Modern Optimization Techniques 2. Duality

Least-norm solution of linear equations

minimize xTx

subject to Ax = b

I Lagrangian: L(x, ν) = xTx + νT (Ax− b)

I Dual Lagrangian:
I minimize L over x:

∇xL(x, ν) = 2x + ATν = 0

x = −1

2
ATν

I Substituting x in L we get g :

g(ν) = −1

4
νTAATν − bTν
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Modern Optimization Techniques 2. Duality

The Dual Problem

Once we know how to compute the dual, we are interested in computing
the best lower bound on f (x∗):

maximize g(ν, λ)

subject to λ ≥ 0

where:

I this is a convex optimization problem (g is concave)

I let d∗ be the maximal value of g
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Modern Optimization Techniques 2. Duality

Weak and Strong Duality

Say p∗ is the optimal value of f
and d∗ is the optimal value of g

Weak duality: d∗ ≤ p∗

I always holds

I can be useful to find informative lower bounds for difficult problems

Strong duality: d∗ = p∗

I does not always hold

I but holds for a range of convex problems

I properties that guarantee strong duality are called
constraint qualifications
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Modern Optimization Techniques 2. Duality

Slater’s Condition / Strict Feasibility

If the following primal problem

minimize f (x)

subject to Ax = b

hq(x) ≤ 0, q = 1, . . . ,Q

is:

I convex and

I strictly feasible, i.e.

∃x : Ax = b and hq(x)< 0, q = 1, . . . ,Q

then strong duality holds for this problem.
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Modern Optimization Techniques 2. Duality

Duality Gap

How close is the value of the dual lagrangian to the primal objective?

Given a primal feasible x and a dual feasible ν, λ,
the duality gap is defined as:

f (x)− g(ν, λ)

Since g(ν, λ) is a lower bound on f :

f (x)− f (x∗) ≤ f (x)− g(ν, λ)

If the duality gap is zero, then x is primal optimal.

I This is a useful stopping criterion:
if f (x)− g(ν, λ) ≤ ε, then we are sure that f (x)− f (x∗) ≤ ε
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Modern Optimization Techniques 3. Karush-Kuhn-Tucker Conditions

Consequences of Strong Duality

Assume strong duality:

I let x∗ be primal optimal and
I (ν∗, λ∗) be dual optimal.

f (x∗) =
s.d.

g(ν∗, λ∗) = inf
x∈D

L(x, ν∗, λ∗)

≤L(x∗, ν∗, λ∗)

≤
lower bound

f (x∗)

hence

L(x∗, ν∗, λ∗) = inf
x∈D

L(x, ν∗, λ∗) = f (x∗)
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Modern Optimization Techniques 3. Karush-Kuhn-Tucker Conditions

Consequences of Strong Duality I: Stationarity

Assume strong duality:

I let x∗ be primal optimal and
I (ν∗, λ∗) be dual optimal.

L(x∗, ν∗, λ∗) = inf
x∈D

L(x, ν∗, λ∗)

i.e., x∗ minimizes L(x, ν∗, λ∗) and thus

∇xL(x∗, ν∗, λ∗) =∇f (x∗) +
P∑

p=1

ν∗p∇gp(x∗) +
Q∑

q=1

λ∗q∇hq(x∗)
!

= 0

I condition called stationarity.
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Modern Optimization Techniques 3. Karush-Kuhn-Tucker Conditions

Consequences of Strong Duality II: Complementary
Slackness
Assume strong duality:
I let x∗ be primal optimal and
I (ν∗, λ∗) be dual optimal.

L(x∗, ν∗, λ∗) = f (x∗) +
P∑

p=1

ν∗p gp(x∗) +
Q∑

q=1

λ∗q hq(x∗) = f (x∗)

 complementary slackness:

λ∗q hq(x∗) = 0, q = 1, . . . ,Q

which means that
I If λ∗q > 0, then hq(x∗) = 0

I If hq(x∗) < 0, then λq = 0
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Modern Optimization Techniques 3. Karush-Kuhn-Tucker Conditions

Karush-Kuhn-Tucker (KKT) Conditions
The following conditions on x, ν, λ are called the KKT conditions:

1. primal feasibility: gp(x) = 0 and hq(x) ≤ 0, ∀p, q
2. dual feasibility: λ ≥ 0

3. complementary slackness: λq hq(x) = 0, ∀q

4. stationarity: ∇f (x) +
P∑

p=1

νp∇gp(x) +
Q∑

q=1

λq∇hq(x) = 0

If strong duality holds and x, ν, λ are optimal,
then they must satisfy the KKT conditions.

If x, λ, ν satisfy the KKT conditions,
then x is the primal solution and (ν, λ) is the dual solution.
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Modern Optimization Techniques 3. Karush-Kuhn-Tucker Conditions

Karush-Kuhn-Tucker (KKT) Conditions

Theorem (Karush-Kuhn-Tucker)

For a strongly dual problem, if x, λ, ν satisfy the KKT conditions,

1. primal feasibility: gp(x) = 0 and hq(x) ≤ 0, ∀p, q
2. dual feasibility: λ ≥ 0

3. complementary slackness: λq hq(x) = 0, ∀q

4. stationarity: ∇f (x) +
P∑

p=1

νp∇gp(x) +
Q∑

q=1

λq∇hq(x) = 0

then x is the primal solution and (ν, λ) is the dual solution.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 23



Modern Optimization Techniques 3. Karush-Kuhn-Tucker Conditions

Karush-Kuhn-Tucker (KKT) Conditions / Proof

Proof:

g(λ, ν) = sup
x ′∈D

f (x ′) +
P∑

p=1

νpgp(x ′) +
Q∑

q=1

λqhq(x ′)

=
4.stat.

f (x) +
P∑

p=1

νpgp(x) +
Q∑

q=1

λqhq(x)

= f (x)

i.e. duality gap is 0, and thus x and λ, ν optimal.
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Modern Optimization Techniques 3. Karush-Kuhn-Tucker Conditions

Summary

I The primal Lagrangian combines objective and constraints linearly
I constraint weights called multipliers
I multipliers viewed as additional variables
I inequality multipliers ≥ 0

I The dual Lagrangian g is the pointwise infimum of the primal
Lagrangian over the primal variables x.

I a lower-bound for f (x∗)
I difference g(ν, λ)− f (x∗) called duality gap

I Dual problem: Maximizing the dual Lagrangian
I = finding the best lower bound
I a convex problem
I solves the primal problem under strong duality (duality gap = 0)

I Constraint qualifications guarantee strong duality for a problem
I e.g., Slater’s condition: existence of a strictly feasible point.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 23



Modern Optimization Techniques 3. Karush-Kuhn-Tucker Conditions

Summary (2/2)

I Karush-Kuhn-Tucker (KKT) conditions for (x , ν, λ):

1. primal feasibility
2. dual feasibility
3. complementary slackness
4. stationarity

I KKT is a necessary condition for a primal/dual solution.

I If a problem is strongly dual,
KKT are also a sufficient condition for a primal/dual solution.
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Modern Optimization Techniques

Further Readings

I [Boyd and Vandenberghe, 2004, ch. 5]

I The proof that Slater’s condition is sufficient for strong duality can be
found in [Boyd and Vandenberghe, 2004, ch. 5.3.2].
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