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Modern Optimization Techniques 1. Inequality Constrained Minimization Problems

Inequality Constrained Minimization Problem
A problem of the form:

arg min f(x)
xERN

subject to gp(x) =0, p=1,...,P
he(x) <0, g=1,...,Q

where:

» f: RN — R objective function
> g1,...,8p : RN — R equality constraints
» hi,...,hg : RN — R inequality constraints

» A feasible optimal x* exists, p* := f(x*)
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Modern Optimization Techniques 1. Inequality Constrained Minimization Problems

Inequality Constrained Minimization Problem / Convex
A problem of the form:

arg min f(x)
xERN

subject to Ax —a =0
he(x) <0, g=1,...,Q

where:

» f: RN = R convex and twice differentiable

» Ac RPN 3 cRP: P affine equality constraints

» hi,...,hg : RN — R convex and twice differentiable
» A feasible optimal x* exists, p* := f(x*)
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Modern Optimization Techniques 1. Inequality Constrained Minimization Problems

Inequality Constrained Minimization Problem / Affine

arg min f(x)
xERN

subject to Ax —a =0
Bx—b<0

where:

» f: RN — R convex and twice differentiable
» Ac RPN 5 cRP: P affine equality constraints
» Be RN p e RQ: Q affine inequality constraints

» A feasible optimal x* exists, p* := f(x*)
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Modern Optimization Techniques 1. Inequality Constrained Minimization Problems

Primal Methods

» Primal methods tackle the problem directly,
» starting from a feasible point x(%)

» staying all time within the feasible area
> ie., all x%¥) are feasible
Advantages:

1. If stopped early,
yields a feasible point with often already small objective value.

2. If converged,
also for non-convex objectives yields at least a local optimum.

3. Generally applicable, as they do not rely on special problem structure.
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Modern Optimization Techniques 1. Inequality Constrained Minimization Problems

Active Set Methods / General Idea

» split inequality constraints into
» active constraints: hg(x) =0

» inactive constraints: hg(x) <0

» enhance methods for equality constraints to
> retain strict inequality constraints hq(x) < 0
» by taking small steps

» to stop, once they hit an inequality constraint hq(x) =0

Further procedure:

1. enhance backtracking to respect strict inequality constraints
2. enhance gradient projection to respect strict inequality constraints
» gradient descent with affine equality constraints

3. sketch the general strategy of active set methods
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Modern Optimization Techniques 2. Maintaining Strict Inequality Constraints

Backtracking Line Search (Review)

1 linesearch-bt(f, V£, x, Ax; «, 5):
2 p:i=1
Af = aVf(x)TAx

3
4 while f(x 4+ pAx) > f(x) + pAf:
5 wi=Pu
6 return [
where

f:RN - R, Vf: RN — R: objective function and its gradient
x € RV: current point

Ax € RV: update/search direction

o € (0,0.5): minimum descent steepness

B € (0,1): stepsize shrinkage factor

YyVYyVYYVYY
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Modern Optimization Techniques 2. Maintaining Strict Inequality Constraints

Backtracking Line Search / Inequality Constraints

1 linesearch-bt-ineq(f, V£, h, x, Ax; a, 5):
2 pi=1

3 Af :=aVf(x)TAx
4 while f(x + pAx) > f(x) + pAf or not h(x + pAx) <0:
5 wi= B
6 return p
where

f:RN — R, Vf : RN — R: objective function and its gradient
x € RV: current point, feasible: h(x) <0

Ax € RV: update/search direction

a € (0,0.5): minimum descent steepness

B € (0,1): stepsize shrinkage factor

h:RN — R?: Q inequality constraints: h(x) <0

YyVYVYVYYY
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Modern Optimization Techniques 2. Maintaining Strict Inequality Constraints

: : : : B
Backtracking Line Search / Affine Inequality Constramtd
For affine inequality constraints

h(x)=Bx—b<0
feasibility of an update can be guaranteed by a maximal stepsize:
h(x + pAx) =
B(x + uAx)—b<0
uBAx < —(Bx — b)
(BAx)g < —(Bx—b)g Vge{l,...,Q}

Mgm’ Yge{l,...,Q}: (BAx)g >0
Mgmin{m|qe{1,...,o};(BAx)q>0}
= KUmax
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Modern Optimization Techniques 2. Maintaining Strict Inequality Constraints

NN
Backtracking Line Search / Affine Inequality Constraint@

1 linesearch-bt-affineq(f, Vf, B, b, x, Ax; a, 5):
> pi=min{ =A% [g € {1,...,Q}: (BAX), > 0}
Af = aVf(x)TAx

3
4 while f(x+ pAx) > f(x) + pAf:
5 p= B
6 return p
where

f:RN — R, Vf:RY — R: objective function and its gradient
x € RN: current point, feasible: Bx — b < 0

Ax € RV: update/search direction

o € (0,0.5): minimum descent steepness

B € (0,1): stepsize shrinkage factor

B € ROXN b e RQ: Q affine inequality constraints: Bx — b < 0

YVYVVYYY
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Modern Optimization Techniques 3. Gradient Projection Method for Affine Equality Constraints

Right Inverse Matrix

For A€ RNXM (N < M) with full rank,
the right inverse of A is

-1 T Ty-1
right =A (AA )
Proof:

AA;glht = AAT(AAT) 1 =
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Modern Optimization Techniques 3. Gradient Projection Method for Affine Equality Constraints

N B4

Nullspace Projection “

For A€ RNXM (N < M) with full rank, the matrix
Fi=l—AgA=1—-AT(AAT) 1A

is a projection onto the nullspace of A:

{xeRM | Ax =0} = {FX' | ¥ e RM}

Proof:
"D AR = Al - A AX = (A-AX =0
“we

C" : show: for any x with Ax = 0, there exists x' : x = Fx’
X'i=x:1FxX' =Fx=(—-AT(AAT)"1A)x =x— AT(AAT) 1Ax

=x—-0=x
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Modern Optimization Techniques 3. Gradient Projection Method for Affine Equality Constraints

B
Gradient Projection Method / Affine Equality Constrainé

1 min-gp-affeq(f, Vf, A, x© 1 e K):
2 F:=1-AT(AAT)"1A

3 for k:=1,... K:

4 Axk=1) = —FTVf(X(kfl))

5 if ||AxED|| < e

6 return x(k—1)

7 pk =) = p(F, xk=1 ) Ax(k=1))
8 x(K) = x(k=1) oy (k=1) Ax(k=1)
9 return "not converged”

where

> AcRPXN 53¢ RP: P affine equality constraints
> x(0) feasible starting point, i.e., AxO —53=0
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Modern Optimization Techniques 3. Gradient Projection Method for Affine Equality Constraints

s
Grad. Proj. Meth. / Aff. Eq. Cstr. + strict In.eq. Consﬁ

1 min-gp-affeq-strictineq(f, Vf, A, h,x©), €, K):
> F:=1-AT(AAT)"1A

3 for k:=1,...,K:

o AxED = —FTVF(x(k-1)

5 if ||Ax*=Y|| <e

6 return X(kfl)

7 pk =) = p(F, by x(=1) | Ax(k=1))
8 x(K) = x(k=1) o (k=1) g x (k=)

9 if Ige {1,...,Q}: hy(x¥)=0:
10 return x(¥)

11 return "not converged”

where

> Ac RPXN 53¢ RP: P affine equality constraints

> x(0) strictly feasible starting point, i.e., h(x(o))<0, Ax(®) — 3=0

» pu(...,h,...) stepsize controller that retains inequality constraints h
» h:RN - R?: Q inequality constraints: h(x) <0
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Modern Optimization Techniques 4. Active Set Methods: General Strategy

B
Active Set Method / Idea i

» split inequality constraints into
» active constraints: hg(x) =0

» inactive constraints: hq(x) <0

» minimize on the feasible subspace retaining the active constraints
» add active inequality constraints (temporarily) to the equality
constraints: g

» make small steps p s.t. inactive constraints remain inactive
» stop if a step hits one of the inactive constraints, activating them.

» once the minimum on the subspace of the current active constraints
is found,
» if we had to stop because of hitting an active constraint:
» add one of the hit constraints to the active constraints

» otherwise:
> inactivate one of the active constraints
one on whos interior side the objective is decreasing (A\q < 0)
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Modern Optimization Techniques 4. Active Set Methods: General Strategy

NS
Active Set Methods / General Strategy i

1 min-activeset(f, g, h, x(©), K, min-eq):
2 Q:={ge{l,...,Q} | hy(xV) =0}
. [ & ho—
3 &= (hg) v h=haone
4 for k:=1,...,K:
5 x(K) = min-eq(f, &, ;I,X(kil))
6 if 3ge€{1,...,Q}\ Q: hg(x) =0:
7 Q := QU {q} for an arbitrary g € {1,...,Q} \ Q with hg(x) =0
5 g B o=
8 g:= (hQ) v h=hp L one
9 else :
10 if |Q] =0
11 return x(¥)
12 compute Lagrange multipliers g for hg, q € Q
13 it A >0
14 return x(¥)
15 = Q \ {q} for an arbitrary g € Q with \q < 0
16 &= (hgg)  h=hp o one

17 return "not converged”

where
» g:RN — RP: P equality constraints: g(x) =0
> h:RN 5 RP: Q inequality constraints: h(x) <0
» x(0) feasible starting point, i.e., g(x) = 0, h(x) <0
» min-eq: solver for equality constraints and strict inequality constraints, e.g.,

min-on-affaa_ctrictinen
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Modern Optimization Techniques 4. Active Set Methods: General Strategy

Computing the Lagrange Multipliers (line 12)

complementary slackness:
Aghg(x) =0 ~ A =0Vq ¢ Q

stationarity:

P Q P
Vf(x) + Z vpVgp(x) + Z AqVhg(x) = V£(x) + Z 7pVEp(x) =0
p=1 q=1 p=1

~ solve LSE

(Vgl(X), ey Vé"r;(X)) : - —Vf(X)
Pp
N\g:=0p, forpe{l,....P}:g,=hy qcQ

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Modern Optimization Techniques 4. Active Set Methods: General Strategy

Active Set Method / Remarks

» Limitation: To work with non-linear inequality constraints hg, the
active set method requires an equality-constrained optimizer min-eq
that can cope with non-linear equality constraints.

» because active inequality constraints hq are used as equality constraints
8p.-
» The active set method can be accelerated by solving the equality
constrained problem only approximately: €

» but for the risk of zigzagging

AvAvA A |
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Modern Optimization Techniques 4. Active Set Methods: General Strategy

B
Convergence “

Theorem (Active Set Theorem)

If for every subset Q of inequality constraints the problem

arg min f(x)

x€ERN
subject to Ax —a=20
BQX - bQ =0

Box—bg <0, Q:={l,...,Q}\Q

is well-defined with a unique nondegenerate solution (i.e.,A\q # 0 Yq € Q), then
the active set method converges to the solution of the inequality constrained
problem.

Proof:
> After the minimum over the subspace defined by an active set has been found,
» the function value further decreases when removing a constraint.
» Thus the algorithm cannot possibly return to the same active set.
» As there are only finite many possible active sets, it eventually will terminate.
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Modern Optimization Techniques 5. Gradient Projection Method for Affine Inequality Constraints

Gradient Projection / Idea

» Gradient Projection:

» use the active set strategy for Gradient Descent
(to solve the equality constrained subproblems)

» putting everything together
» esp. for affine constraints

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Modern Optimization Techniques 5. Gradient Projection Method for Affine Inequality Constraints

Gradient Projection / Idea

» split inequality constraints into
» active constraints: (Bx — b)g =0

» inactive constraints: (Bx — b)q <0

» find an update direction Ax that retains this state of the inequality
constraints
» add active inequality constraints (temporarily) to the equality
constraints: 74,5

» make small steps p s.t. inactive constraints remain inactive:
—(Bx — b)q

— <0~ p<
(B(X+HJAX) b)q —O H = (BAX)q i

for (BAx)q >0

» x + puAx may hit one of the inactive constraints, activating them.

» once the minimum on the subspace of the current active constraints
is found,
» inactivate one of the active constraints
» one on whos interior side the objective is decreasing (A, < 0)
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Gradient Projection / Affine Constraints

5. Gradient Projection Method for Affine Inequality Constraints

1 min-gp-aff(f, A, a, B, b, X(O), wy e, K):

2
3

© o N o aa

11
12

13

14
15
16
17

18
19

Q:={ge{L,...,Q} | (BxO — by =0}

~ A . a 5.
A= (BQ)’ = (bg)’ F=priQl
F=1- AT(AZ\T)*lA

if |Q| = 0: return x(k D)

X = solve(AX = —vf(x(k—1)y)

if S‘P+1:I3 > 0: return x(k=1)

Q := Q\ {q} for an arbitrary g € Q with \q := :\P+index(q,Q) <0

recompute A, 3, P, F, Ax(k—1) (= lines 3,4,6)

_ Bx(k 1) _ _
2D ming = BAx(k 3 qq lge{1,...,Q1\ Q,(Bax(k=1D), > 0}
pD =, K1), Ak ’”wﬂqkaxl))
x(K) = x(k=1) ) (k=1) Ay (k=1)

if oD = oY

., . e i et PR (1

Q = Q U {q} for an arbitrary g € {1,...,Q} \ Q with (BAx(kil))q = [max
recompute A, 3, P, F (= lines 3—4)

return "not converged”
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Modern Optimization Techniques 5. Gradient Projection Method for Affine Inequality Constraints

Gradient Projection / Affine Constraints (ctd.)

where

A € RPXN 3 € RP: P affine equality constraints

B € ROXN b e RQ: Q affine inequality constraints

x(0) feasible starting point

4(- - -, tmax) step length controller, yielding steplength < fimax
index(q, Q) :=i for g = g; and Q = (q1, 92, - - -, qé)

vyVyVYYVYY
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Modern Optimization Techniques 5. Gradient Projection Method for Affine Inequality Constraints

Remarks

» The projection matrix F does not have to be computed from scratch,
every time the active constraint set changes, but can be efficiently
updated.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Modern Optimization Techniques 5. Gradient Projection Method for Affine Inequality Constraints

Convergence / Rate of Convergence

» For the gradient projection method, a rate of convergence can be
established.

» But the proof is somewhat involved
(see [Luenberger and Ye, 2008, ch. 12.5]).
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Modern Optimization Techniques 5. Gradient Projection Method for Affine Inequality Constraints

Summary

» Primal methods optimize
> in the original variables,

» staying always within the feasible area.

» Backtracking line search can be modified to retain strict inequality
constraints.
» for affine inequality constraints: guaranteed by a maximum stepsize.

» The gradient projection method for affine equality constraints is a
modified gradient descent.
» simply project gradients to the nullspace of the affine constraints.
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Modern Optimization Techniques 5. Gradient Projection Method for Affine Inequality Constraints

Summary (2/2) YA

» Active set methods
» partition the inequality constraints into active and inactive ones
> an inequality constraint hq is active iff hg(x) = 0.

» add active inequality constraints temporarily to the equality constraints

» and solve this problem using an optimization method for equality
constraints.

» break away from a random active inequality constraint into whos
interior of the feasible area the objective decreases.

» The gradient projection method (for affine equality and inequality
constraints) is an active set method that uses the gradient projection
method for equality constraints to solve the equality constrained
subproblems.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Further Readings

» Primal methods for constrained optimization are not covered by Boyd
and Vandenberghe [2004].

» Primal methods often also are called feasible point methods.

» Active set methods:
» general idea: [Luenberger and Ye, 2008, ch. 12.3]

» Gradient projection method: [Luenberger and Ye, 2008, ch. 12.4+5],
[Griva et al., 2009, ch. 15.4]

» Reduced gradient method: [Luenberger and Ye, 2008, ch. 12.6+7],
[Griva et al., 2009, ch. 15.6]

» Further primal methods not covered here:
» Frank-Wolfe algorithm / conditional gradient method: [Luenberger and
Ye, 2008, ch. 12.1]
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