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Planning and Optimal Control

Syllabus

Tue. 24.10. (1) 1. Markov Models
Tue. 31.10. — — Luther Day —
Tue. 7.11 (2) 1b. Markov Models (ctd.)

Tue. 14.11. (3) 2. State Space Models
Tue. 21.11. (4) 3. Markov Random Fields
Tue. 28.11. (5) 4. Markov Decision Processes
Tue. 5.12. (6)

Tue. 12.12. (7) 5. Partially Observable Markov Decision Processes
Tue. 19.12. (8)
Tue. 26.12. — — Christmas Break —

Tue. 9.1. (9) 6. Reinforcement Learning
Tue. 16.1. (10)
Tue. 23.1. (11)
Tue. 30.1. (12)
Tue. 6.2. (13)
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Planning and Optimal Control 1. ML Problems for Sequence Data

Sequence Data

Examples:

I DNA sequence

I sentences and texts
I physical sensor data

I from machines in production: intelligent production, industry 4.0
I physiological data from humans: ML for medicine
I from cars: intelligent transport, automatic driving
I speech, audio, video

I information systems
I e-commerce and the web: page view sequences, market basket

sequences
I social media: short message streams
I technology enhanced learning: learning management / student

interactions

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 22



Planning and Optimal Control 1. ML Problems for Sequence Data

Sequence Data

other names:
I time series:

I usually measured quantity is numeric
I usually index is time

I data stream:
I usually index is time
I usually data is large (big data)
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Planning and Optimal Control 1. ML Problems for Sequence Data

1. Classification/Regression/Prediction of a Sequence

I predict a target variable for instances being sequences
I input is a sequence
I output usually is a scalar

I examples:
I classify EEGs of patients as depressed or healthy (classification)
I predict the rating of a text review (regression, for a numeric rating

scale)

I most evolved area: time series classification
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Planning and Optimal Control 1. ML Problems for Sequence Data

2. Forecasting of a Sequence

I predict the value of a sequence in the future
I input is a sequence
I output is a scalar (of same type as the input)

I examples:
I predict sales of a company for next quarter (based on past sales)

I very rich economic literature on time series forecasting
(econometrics)

I often for a single very long time series

I closely related to 2b. sequence imputation
I estimate values of a sequence at some positions where the value is

missing
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Planning and Optimal Control 1. ML Problems for Sequence Data

3. Sequence Prediction

I for instances, predict a sequence valued target
I input is an attribute vector or a sequence
I output is a sequence

I examples:
I predict sequence of exercises a student should work on to learn most
I predict sequence of ad expenses for a company to sell most
I predict sequence of steering wheel movements to keep a car on a lane

I planning is a special case
I likely the most important one
I from ML perspective, sequence prediction is a special case of

structured prediction
I forecasting for several time points is another special case
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Planning and Optimal Control 1. ML Problems for Sequence Data

4. Sequence Labeling

I predict a target for each index of a sequence
I input is a sequence
I output is a sequence of same length

I examples:
I predict sequence of part-of-speech classes for every word of a sentence

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 22



Planning and Optimal Control 1. ML Problems for Sequence Data

Density estimation

Given a dataset Dtrain ⊂ X sampled from an unknown distribution p, find
a density model p̂ : X → [0, 1] from a model space M s.t.

Ex∼p p̂(x) ≥ Ex∼p q̂(x), ∀q̂ ∈M

Operational: s.t. for data Dtest ⊂ X sampled from the same distribution,

∏

x∈Dtest

p̂(x) ≥
∏

x∈Dtest

q̂(x), ∀q̂ ∈M
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Planning and Optimal Control 1. ML Problems for Sequence Data

What are Density Models Good for?

I outlier analysis:
I the smaller p̂(x), the more unlikely/uncommon x is
I this is an unsupervised / ill-defined problem

I missing value imputation:
I given incomplete instances x (with values of some attributes not

observed),
find the values of the non-observed attributes

I = find the most likely complete instance x̄ that has the same values as
x for the observed attributes

I classification/regression/prediction:
I build a class-specific density p(X | Y ) for instances of each class and

use Bayes rule:

p(Y | X ) ∝ p(X | Y ) p(Y )

I as Linear Discriminant Analysis and Naive Bayes classifiers
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Planning and Optimal Control 1. ML Problems for Sequence Data

Why are Naive Bayes Densities not Useful for Sequences?

Density models in Naive Bayes:

p̂(X ) :=
M∏

m=1

p̂(Xm)

p(xm) :=
freq(xm, projmDtrain) + 1

|Dtrain|+ Km
, for discrete xm with Km levels

p(xm) := N (xm; x̄m, σ
2
m), for continuous xm with average x̄m and variance σ2

m

Applied to sequence data:

I density value does not depend on the order of the values
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Note: projm :
∏M

m=1 Xm → Xm, x 7→ xm projection and

projmD := {projm(x) | x ∈ D} for D ⊆ X :=
∏M

m=1 Xm.
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Planning and Optimal Control 2. Markov Models

Markov Model

p(x) := p(x1)p(x2 | x1)p(x3 | x2) · · · p(xT | xT−1)

= p(x1)
T∏

t=2

p(xt | xt−1), x ∈ X ∗

I Markov model, Markov chain
I homogeneous, stationary, time-invariant:

I p(xt+1 | xt) does not depend on t, i.e.,

p(xt+1 | xt) = p(xt′+1 | xt′) ∀t, t ′

I parameter tying: same parameters shared for multiple variables
I models arbitrary number of variables

using a fixed number of parameters: stochastic process

I discrete-state, finite-state: X := {1, . . . , I}
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Planning and Optimal Control 2. Markov Models

Transition Matrix

for discrete-state Markov models:

A := (p(xt+1 = j | xt = i))i ,j=1,...,I I × I transition matrix

π := (p(x1 = i))i=1,...,I I -dim. start vector

I stochastic matrix:
∑

j Ai ,j = 1

discrete-state, stationary Markov models:

I equivalent to a stochastic automaton
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Planning and Optimal Control 2. Markov Models

Transition Matrix / State Transition Diagram
discrete-state, stationary Markov models:

I visualized as state transition diagram:
I directed graph with

I states as nodes and
I edges for non-zero elements of A

I examples:
590 Chapter 17. Markov and hidden Markov models

1 2

α

β

1− α 1− β

(a)

1 2 3

A12 A23

A11 A22 A33

(b)

Figure 17.1 State transition diagrams for some simple Markov chains. Left: a 2-state chain. Right: a
3-state left-to-right chain.

A stationary, finite-state Markov chain is equivalent to a stochastic automaton. It is common
to visualize such automata by drawing a directed graph, where nodes represent states and arrows
represent legal transitions, i.e., non-zero elements of A. This is known as a state transition
diagram. The weights associated with the arcs are the probabilities. For example, the following
2-state chain

A =

(
1− α α
β 1− β

)
(17.2)

is illustrated in Figure 17.1(left). The following 3-state chain

A =

⎛
⎝
A11 A12 0
0 A22 A23

0 0 1

⎞
⎠ (17.3)

is illustrated in Figure 17.1(right). This is called a left-to-right transition matrix, and is com-
monly used in speech recognition (Section 17.6.2).

The Aij element of the transition matrix specifies the probability of getting from i to j in
one step. The n-step transition matrix A(n) is defined as

Aij(n) � p(Xt+n = j|Xt = i) (17.4)

which is the probability of getting from i to j in exactly n steps. Obviously A(1) = A. The
Chapman-Kolmogorov equations state that

Aij(m+ n) =
K∑

k=1

Aik(m)Akj(n) (17.5)

In words, the probability of getting from i to j in m+ n steps is just the probability of getting
from i to k in m steps, and then from k to j in n steps, summed up over all k. We can write
the above as a matrix multiplication

A(m+ n) = A(m)A(n) (17.6)

Hence

A(n) = A A(n− 1) = A A A(n− 2) = · · · = An (17.7)

Thus we can simulate multiple steps of a Markov chain by “powering up” the transition matrix.

[source: Murphy 2012, p.590]

a) A :=

(
1− α α
β 1− β

)
, b) A :=




1− α α 0
0 1− β β
0 0 1


 ,

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 22



Planning and Optimal Control 2. Markov Models

n-Step Transition Matrix A(n)
I get from i to j in exactly n steps

A(n) := (p(xt+n = j | xt = i))i ,j=1,...,I

I can be computed simply by

A(n) = An

proof:

A(1) = A

A(n + m)i ,j =
I∑

k=1

A(m)i ,kA(n)k,j = A(m)i ,.A(n).,j

A(n + m) = A(m)A(n)

A(n) = AAn−1 = AAA(n−2) = . . . = An
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Planning and Optimal Control 2. Markov Models

n-grams / subsequences

n-grams: (=subsequences of length n, windows)

gramn : X ∗ → (X n)∗

x 7→ (xt:t+n−1)t=1,...,|x |−n+1

example:

gram2((2, 3, 5, 7)) = ((2, 3), (3, 5), (5, 7))
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Planning and Optimal Control 2. Markov Models

Frequencies of 1- and 2-grams592 Chapter 17. Markov and hidden Markov models

 1   0.16098   _
 2   0.06687   a
 3   0.01414   b
 4   0.02938   c
 5   0.03107   d
 6   0.11055   e
 7   0.02325   f
 8   0.01530   g
 9   0.04174   h
10   0.06233   i
11   0.00060   j
12   0.00309   k
13   0.03515   l
14   0.02107   m
15   0.06007   n
16   0.06066   o
17   0.01594   p
18   0.00077   q
19   0.05265   r
20   0.05761   s
21   0.07566   t
22   0.02149   u
23   0.00993   v
24   0.01341   w
25   0.00208   x
26   0.01381   y
27   0.00039   z

Unigrams
_ a b c d e f g h i j k l m n o p q r s t u v w x y z

_
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z

Bigrams

Figure 17.2 Unigram and bigram counts from Darwin’s On The Origin Of Species. The 2D picture on the
right is a Hinton diagram of the joint distribution. The size of the white squares is proportional to the
value of the entry in the corresponding vector/ matrix. Based on (MacKay 2003, p22). Figure generated by
ngramPlot.

17.2.2.1 MLE for Markov language models

We now discuss a simple way to estimate the transition matrix from training data. The proba-
bility of any particular sequence of length T is given by

p(x1:T |θ) = π(x1)A(x1, x2) . . . A(xT−1, xT ) (17.8)

=
K∏

j=1

(πj)
I(x1=j)

T∏

t=2

K∏

j=1

K∏

k=1

(Ajk)
I(xt=k,xt−1=j) (17.9)

Hence the log-likelihood of a set of sequences D = (x1, . . . ,xN ), where xi = (xi1, . . . , xi,Ti)
is a sequence of length Ti, is given by

log p(D|θ) =
N∑

i=1

log p(xi|θ) =
∑

j

N1
j log πj +

∑

j

∑

k

Njk logAjk (17.10)

where we define the following counts:

N1
j �

N∑

i=1

I(xi1 = j), Njk �
N∑

i=1

Ti−1∑

t=1

I(xi,t = j, xi,t+1 = k) (17.11)

[source: Murphy 2012, p.592]

letter grams in Darwin’s On the Origin of Species.
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Planning and Optimal Control 2. Markov Models

Maximum Likelihood Estimator

`(A;D) := log
∏

x∈D
πx1

|x |−1∏

t=1

Axt ,xt+1

=
I∑

i=1

N1
i log πi +

I∑

i=1

I∑

j=1

Ni ,j logAi ,j

N1
i := freq(i , proj1D) =

N∑

n=1

I(xn,1 = i)

Ni ,j := freq((i , j), gram2D) =
N∑

n=1

|xn|−1∑

t=1

I(xn,t = i , xn,t+1 = j)
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Planning and Optimal Control 2. Markov Models

Maximum Likelihood Estimator

`(A;D) =
I∑

i=1

N1
i log πi +

I∑

i=1

I∑

j=1

Ni ,j logAi ,j

under constraints
∑

i πi = 1 and
∑

j Ai ,j = 1 maximal for

π̂i :=
N1
i∑I

i ′=1 N
1
i ′

, i = 1, . . . , I

Âi ,j :=
Ni ,j∑I

j ′=1 Ni ,j ′
, i , j = 1, . . . , I

or to avoid zeros in A, esp. for large I , sparse data:

Âi ,j :=
Ni ,j + 1

(
∑I

j ′=1 Ni ,j ′) + I
, i , j = 1, . . . , I
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Planning and Optimal Control 2. Markov Models

Long-Range Dependencies: Markov Models of Higher
Order

I Markov models have no memory
I future sequence depends on the past only through the last state

I easy to model dependencies on the last h ≥ 1 states:
I replace each data sequence x by the sequence gramh(x)
I I h × I h transition matrix from sequences X h to X h

I but with structural zeros for all i , j with i2:h 6= j1:h−1

I yields a I h × I transition matrix from sequences X h to X

I I h dim. start vector

I Markov model mechanism works out-of-the-box, e.g., MLE estimates
I number of parameters exponential in h

I data sizes usually allow only small h
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Planning and Optimal Control 3. Organizational Stuff

Character of the Lecture

This is an advanced lecture:

I I will assume good knowledge of Machine Learning I and II.

I Slides will contain major keywords, not the full story.

I For the full story, you need to read the referenced chapters in one of
the books.
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Planning and Optimal Control 3. Organizational Stuff

Exercises and Tutorials
I There will be a weekly sheet with 2 exercises

handed out each Tuesday in the lecture.
1st sheet will be handed out a little bit late this week, Thur. 26.10.

I Solutions to the exercises can be
submitted until next Tuesday noon, 12pm
1st sheet is due a little bit late Wed. 1.11. morning, 8am

I Exercises will be corrected.

I Tutorials each Thursday 8am-10am or Friday 12pm-2pm,
1st tutorial next week, Thur. 2.11.

I Successful participation in the tutorial gives up to 10% bonus points
for the exam.

I group submissions are OK (but yield no bonus points)
I Plagiarism is illegal and usually leads to expulsion from the program.
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Planning and Optimal Control 3. Organizational Stuff

Exam and Credit Points

I There will be a written exam at end of term
(2h, 4 problems).

I The course gives 6 ECTS (2+2 SWS).

I The course can be used in
I International Master in Data Analytics (mandatory)
I IMIT MSc. / Informatik / Gebiet KI & ML
I Wirtschaftsinformatik MSc / Informatik / Gebiet KI & ML

& Wirtschaftsinformatik MSc / Wirtschaftsinformatik / Gebiet BI
I as well as in all IT BSc programs.
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Planning and Optimal Control 3. Organizational Stuff

Some Books

I Kevin P. Murphy (2012):
Machine Learning, A Probabilistic Approach, MIT Press.

I H. Geffner, B. Bonet (2013):
A Concise Introduction to Models and Methods for Automated
Planning.

I D. Nau, M. Ghallab, P. Traverso (2004):
Automated Planning: Theory and Practice.

I Steve LaValle (2006): Planning Algorithms.

I Dimitri P. Bertsekas (2007):
Dynamic Programming and Optimal Control, 3rd ed. Vols. I and II.

I Richard S. Sutton and Andrew G. Barto. (1998):
Reinforcement Learning: An Introduction.
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Planning and Optimal Control

Further Readings

I Markov Models:
Murphy 2012, chapter 17.
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