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1. Markov Models

— Luther Day —
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3. State Space Models
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7. Reinforcement Learning

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

35



Planning and Optimal Control

Outline

1. Hidden Markov Models (HMMs)

2. Inference in HMMs

3. Inference in HMMs II: MAP

4. Learning HMMs

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

/ 35



Planning and Optimal Control 1. Hidden Markov Models (HMMs)

. NN
Outline v

1. Hidden Markov Models (HMMs)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1/35



Planning and Optimal Control 1. Hidden Markov Models (HMMs)

HMMs \

Markov models cannot easily represent long-range dependencies:

» state of a single observation is not rich enough to represent full prior
sequence

» state sequence of h last observations are rich enough (for h
sufficiently large),

but yield a huge state space (exponentially in h)
Idea:

» do not use observed states to represent the state of an instance,
but introduce artificial latent states z

» latent states represents full state of an instance:
» Markov model p(z:11 | z:) of latent states
» observation model p(x; | z;)

> observed states depend on current latent state only:
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Planning and Optimal Control 1. Hidden Markov Models (HMMs)

HMMs \

» observation model:
» for discrete observations:

B:=(p(xt =1i| zt = h))h=1.H,i=11 H X | observation matrix
» for continuous observations: Gaussian observations model
p(xt | ze = h) = N(xe; pun, 07)
» the number H of hidden states parametrizes model complexity

» joint distribution:

p(x.2) = p(2)p(x | 2) = p(21) H 2 H p(xt | z:)
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Planning and Optimal Control 1. Hidden Markov Models (HMMs)

HMM Applications

» Automatic speech recognition
» x;: (features extracted from) speech signal

» z:: word/phoneme being spoken
» observation model p(x; | z;): acoustic model

» transition model p(z;41 | z:): language model

v

Activity recognition
» x;: (features extracted from) video frame

» z;: activity person is involved in (running, walking etc.)

v

Part of speech tagging:
» x;: word in a sentence

» z;: part-of-speech of the word (noun, verb, adjective, ...)

\4

Gene finding:
» x;: DNA nucleotide (A,C,G,T)

. st " . /
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Planning and Optimal Control 2. Inference in HMMs

Types of Inferences for Temporal Models

» Filtering: p(z: | x1:t)
» can be done online

» less noisy state estimation than p(z; | x;)
» Smoothing: p(z; | x1.7)
» offline, requires access to whole sequence
» allows to explain sequence in hindsight
» Fixed Lag Smoothing: p(z;_y | x1.¢), £ > 0 lag
» compromise between filtering (¢ = 0) and smoothing (¢ = o0)

» online with delay ¢
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Planning and Optimal Control 2. Inference in HMMs

Types of Inferences for Temporal Models

» Forecasting: p(x¢+p | x1:t), h > 0 horizon

P(xern | x1:t) = ZP(XH—h | zen)P(ze4n | X1:t)

Zt+h
t+h—1
= ZP Xtih | Zeth) Z H p(zs+1 | zs)p(zt | x1:t)
Zith Zy:p4h—1 S=t

=BT (A7) p(z: | x1:¢)

» MAP estimation: argmax,,  p(z1.7 | x1.T)
» most probable state sequence to generate observation sequence

» Viterbi decoding

» Posterior samples: z;.7 ~ p(z1.7 | x1:7)
» richer information than smoothing

» Probability of the evidence: p(x;.7) = ZZLT p(z1:7,x1:7)

» useful as density estimator
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Planning and Optimal Control 2. Inference in HMMs

Types of Inferences for Temporal Models

t
t

proscin [ T, ¢

vecizs
smoothing
L
fixed-lag t T
smoothing
(offline)

Teanrra: Murnhy 2012 n ANRT
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Planning and Optimal Control 2. Inference in HMMs

. . . N
Example: Occasionally Dishonest Casino HMM “
0.95 0.90

1: 1/6 01 1: 110
2: 1/6 2: 110
3: 1/6 3: 110
4: 106 0.05 4110
5: 1/6 —— 5: 1/10
6: 1/6 6: 5/10

» occasionally dishonest casino: [source: Murphy 2012, p.607]

» x; € {1,2,3,4,5,6} dice
» z € {1,2} dice being used
» p(xe |z =1) = (%1, %,1%,5, %1, %)lfaisr dice,
p(x: | z2=2) = (35> 16> 16> 15> 19> 10) |0aded dice
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Planning and Optimal Control

a) Filtering

2. Inference in HMMs

b) Smoothing

p(z: | x1:t)
filtered
1
00 5;0 1 60 150 2(‘)0 2‘50 300
roll number
(a)
gray: ground truth I(z; = 2), i.e., loaded

P(Zt ! X1:T)
smoothed
1
0.5
. ‘ ‘ : : |
0 50 100 150 200 250 300
roll number

(b)

[source: Murphy 2012, p.607]
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Planning and Optimal Control 2. Inference in HMMs

b) Smoothing

p(ze | x1:7)
smoothed
1
Fl
8
805
S
a
0 . . d Y
0 50 100 150 200 250 300
roll number

(b)

b) MAP

—loaded)

fair, 1

MAP state (0:

% .
arg max Zl;TP(Zl:T | X1:T)

Viterbi

TR | ]

0.5

[ 50 100 150 200 250 300
roll number

(c)

[source: Murphy 2012, p.607]
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Planning and Optimal Control 2. Inference in HMMs

Filtering

The filtered latent state

Q= P(Zt | Xl:t)

can be computed recursively:

a1 = p(z1 | x1) = normalize(B 5, © )

ar = p(z¢ | x1:¢) = normalize(B. 4, ® AT 1)
proof:

p(z1,x1)

p(z1 | x1) = m = normalize(p(z1, x1))

= normalize(p(x1 | z1)p(z1)) = normalize(B ,, © )
Note: x ® y := (Xn¥n)n=1:n €lementwise product of x,y € RN,
normalize(x) = x/ Z,’:’:l xn normalization to sum 1 of x € RV,
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Planning and Optimal Control 2. Inference in HMMs

Filtering

proof (ctd.):

p(z¢ | x1:¢) = normalize(p(z¢, x1:¢))

= normalize(z p(xe | ze)p(ze | ze—1)p(ze—1 | X1:6-1))

Zt—1

= normalize(z p(xt | zt)ATat,l)
Zt—1

= normalize(z B . © ATozt_l)
Zt—1
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Planning and Optimal Control 2. Inference in HMMs

Filtering / Forwards Algorithm

1 infer-filtering-forwards(x, A, B, 7):
> T :=|x|

3 oy = normalize(B 4, ©® )

4 fort=2,...,T:

5 a; := normalize(B._,, ©® ATa; q)
6 return ay.1

where

v

x €{1,2,...,L}* observed sequence

A € [0,1]7*H latent state transition matrix
B € [0, 1]"*L observation matrix

» 7 € [0,1]" latent state start vector

vy

yields a1.7 = (p(z¢ | x1:t)) =17 filtered latent state
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Planning and Optimal Control 2. Inference in HMMs
Smoothing

The smoothed latent state

Ve = p(ze | xuT)

can be computed as

v+ = normalize(a;: © B¢)
from

Q.= P(Zt | Xl:t)
Bt = p(Xe41:7 | 2¢)

proof:

p(ze | x1:7) X p(2e, Xew1:7 | X1:¢) = p(2¢ | x1:6)p(Xes1:T | e Xx7) = it - Bt
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Planning and Optimal Control 2. Inference in HMMs
Smoothing / Computing 3
B1:7 := p(xe+1:7 | zt) can be computed recursively as
Br=(1,1,...,1)
Bt = A(B.xe11 © Br+1)
proof:
Be = p(xe1:7 | 2¢)

= p(xerrT | ze41)p(2er1 | 20)

Zt+1

= ZP(XH-ZT | zev1)p(xerr | zes1)p(zesn | 2¢)

Zt+1

= A(B~,Xt+1 © /3t+1)
Br_1=p(xT | 27-1) = ZP(XT | zr)p(zT | 27-1)

= AB.,, = A(B.x, ® B7) for B :=(1,1,...,1)
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Planning and Optimal Control 2. Inference in HMMs

Smoothing / Forwards-Backwards Algorithm

1 backwards(x, A, B):

> T :=|x|

s Bro=(1,1,...,1)

4 for t=T —1,...,1 backwards:

5 Be = A(B. xs © Bey1)

6 return SBq.1

7

s infer-smoothing-forwards-backwards(x, A, B, 7):
o« := infer-filtering-forwards(x, A, B, )

10 3 := backwards(x, A, B)

11 Yi=a® ﬁ

12 return -y

where
» x, A, B, as for forwards algorithm

yields v1:7 = (p(z¢ | x1:7))t=1:7 smoothed latent state
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Planning and Optimal Control 3. Inference in HMMs II: MAP
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Planning and Optimal Control 3. Inference in HMMs II: MAP

MAP vs MPM

» Maximum Aposteriori estimation (MAP):

argmax p(zy.1 | x1:7)
Z1:t
» (jointly) most probable state sequence to generate observation
sequence

» Maximum Posterior Marginals (MPM):

-
arg maxH p(ze | x1:7) = (arg max p(z¢ | x1:7))eecr:T
21:t =1 Zt

» sequence of most probable states at each time

» Example: X;=0 X;=1
X, =0| 0.04 0.3 0.34
X =1| 0.36 0.3 0.66
0.4 0.6
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Planning and Optimal Control 3. Inference in HMMs II: MAP

MAP vs MPM

» Maximum Aposteriori estimation (MAP):

argmax p(zy.1 | x1:7)
Z1:t

» (jointly) most probable state sequence to generate observation
sequence

» Maximum Posterior Marginals (MPM):

-
arg maxH p(ze | x1:7) = (arg max p(z¢ | x1:7))eecr:T
21:t =1 Zt

» sequence of most probable states at each time

» Example: X;=0 X =1
X, =0| 0.04 0.3 0.34
MAP = (0,1), Xo=1| 036 03 |0.66
MPM = (1.1) 0.4 0.6
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Planning and Optimal Control

MAP

3. Inference in HMMs II: MAP

The probabilities for aposteriori latent states

0¢(zt) o< max p(z1:¢ | x1:¢)
Z1:t—1
can be computed recursively:
h=pz|x)=B 0O

0r = max p(z1:t | x1:t) = B.x, © rowmax(A' diag(6:—1))
Z1:t—1

proof:
p(z1 | x1) x p(x1 | z1)p(z1) = B g O

Note: rowmax(A) := (maxXm=1:1 An,m)n=1:N Fowwise maxima of a matrix A € RVXM
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Planning and Optimal Control 3. Inference in HMMs II: MAP

MAP

proof (ctd.):

max p(zl:t ‘ Xl:t)
Z1:t—1

X g‘af p(Xt | zt, X1t=T, Zut=T) P(2t | Zt—1, X1:0=T, Z1:0=7) P(Z1:t-1 | X1:6-1)
it—
= max p(xt | zt)p(zt | zt—1) max p(z1:e-1 | x1:6-1)
Zr 1 Z1:t—2
= Bth © (Tai( Azt—lazt((st_l)zt—l)zt
o

= B, ® rowmax(A" diag(6;_1))
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Planning and Optimal Control 3. Inference in HMMs II: MAP

B
MAP / Traceback i

The MAP latent states
zy.7 = argmaxp(zy. 1 | x1:7)
Z1:T
can be computed recursively:

zr = argmax (071)z,
zr

-
ze—1 =argmax (A, ©0t-1)z_,
Zr—1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 3. Inference in HMMs II: MAP

B
MAP / Viterbi Algorithm i

infer-MAP-viterbi(x, A, B, 7):

T = |x|
(51 = B_7X1 (O¥¢
for t=2,...,T:
§¢ == B, © rowmax(ATdiag(d;-1))
z7 i=argmax,, (07)z
for t=T,...,2:
Zt—1 = arg math_l (Az—zt © 5t—1)2t—1
return zy.71
where

» x € {1,2,...,L}* observed sequence

A € [0,1]"*H latent state transition matrix

B < [0,1]"*L observation matrix

7 € [0,1]" latent state start vector

yields z;.7 = argmax,, _ p(z1.7 | x1.7) MAP latent state

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 3. Inference in HMMs II: MAP
N
MAP / Example i
x = (C1,C3,Ca, C6)

0.3 0.9 0.4

v ¥
C1 0.5 0 0
C2 0.3 0 0
C3 0.2 0.2 0
Cc4 0 0.7 0.1
C5 0 0.1 0
C6 0 0 0.5
Cc7 0 0 04

(a) (b)

Note: Correct typo: le,Cz =02, le,C_a, =03. [source: Murphy 2012, p.615]
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Planning and Optimal Control 3. Inference in HMMs II: MAP

Posterior Samples

v

MAP describes only the most likely posterior hidden state sequence.

\4

Often one is interested in more fine-grained information,
also about other likely hidden state sequences.

v

The Viterbi algorithm can be extended to deliver the top-K most
likely hidden state sequences.

» but they often turn out to be very similar to each other.

v

better way: draw samples from the posterior:

zi.T ~ pziT | *1:7)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 3. Inference in HMMs II: MAP

Posterior Samples

zi.Tr ~ plzT | x:7)

» forwards inference — backwards sampling:

zr ~ p(zr | xu1) = ar
ze1| zeT ~ p(ze-1 | ze:7, X1:7)
o p(ze-1 | 2t, ZeprT, X101, XeT)
X P(Zt ’ Zt—l,ﬁl/:tfl’) P(Zt—l ‘ Xlzt—l)
=A_ Oai1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 3. Inference in HMMs II: MAP
. P2
Posterior Samples / Forward—lnference—Backwards—Samﬁe

1 sample-posterior(x, A, B, 7, S):

2 T :=|x]|
s« := infer-filtering-forwards(x, A, B, )
s S:=10

5 for s:=1:8S:
6 zZr ~ OaT

7 for t:=T:2:

8 z;_1 ~ normalize(A_,, ©® a¢_1)
9 S:=8SU {Zl:T}

10 return S

where

» x,A, B, as before,
» S € N number of samples

yields S C {1,..., H}T set of posterior latent state samples
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Planning and Optimal Control 4. Learning HMMs
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Planning and Optimal Control 4. Learning HMMs

Learning HMMs da

Learning an HMM means to estimate its parameters © := (m, A, B) from
observation data D C X*

m = (p(z1 = h))p=1:H hidden state start vector

A= (p(zt41 = h | 2zt = g))g=1:H,n=1:H hidden state transition matrix

B := (p(xt =i | ze = h))h=1:H,i=1:1 observation matrix (discrete)

or

B := (tth, Z2)h=1.H observation means/var (Gaussian

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 4. Learning HMMs

B
Learning HMMs from Complete Data “

When data is completely observed, i.e., also “hidden” states are observed:
Dc(Xx{12,....,H})"

» learning is straight-forward
» estimate 7, A as for Markov models
» estimate By from the state-specific data subset

Dlp:={x|(x,h') € D, = h}

» e.g., for discrete observation models:

Bh,i = IXZ;I
N T, N T,

Npi =Y hne=hxpe=1), Np:=>_> T(hye=h)
n=1 t=1 n=1 t=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 4. Learning HMMs

B
Learning HMMs from Complete Data “

» estimate By, from the state-specific subset D,
» e.g., for Gaussian observation models:

[ = ;h//\/h, %5 == (%% — Napinpg )/ N

thzz nt*tht

n=1 t=1
N T,

Xx<p = > U(hne = h)xnex,),

n=1 t=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27

35



Planning and Optimal Control 4. Learning HMMs

Learning HMMs via EM / Naive

Complete loglikelihood:

Th—1

f(ﬂ', Aa B; z1.n; Xl:N Z |0g Tzp1 + Z IOg Azn t42Zn,t41 + Z |0g an £4Xn, ¢

block coordinate descent / EM:
» maximize w.r.t. m, A, B (maximize, M-step):
» as learning HMMs from complete data

» maximize w.r.t. z (estimate, E-step):

zp i=argmax p(zi.7 | Xn.1:7,)
Z1.T

» MAP / Viterbi algorithm

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 4. Learning HMMs

Learning HMMs via EM (Baum-Welch)

» naive version is inefficient and brittle
» as only a single completion z;.7 per instance is used

» assume we would have access to the distribution p(z;.7 | x1.7) of

completions
» we only would need
» p(z1 | x1:7) = 71 to estimate 7 and
> p(z: | x1:7) =+ to estimate B and

> p(zt,ze41 | x1:7) =: & to estimate A.
& = p(zt,zt41 | x1:7) two-slice smoothed marginals
oc p(zt | x1:6)P(Ze11 | 2, Xeq1:T)

X P(Zt | Xl:t)P(Xt+1:T ’ Zt’Zt+1)P(Zt+1 ‘ Zt)
X P(Zt | Xlzt)P(Xt+1 ‘ Zt+1)P(Xt+2:T ‘ Zt+1)P(Zt+1 ’ Zt)

= at(B sy © Bri1) T OA

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 4. Learning HMMs

NN
Smoothing / Forwards-Backwards Algorithm “

with two-sliced smoothed marginals

1 sinfer-moothing-forwards-backwards(x, A, B, ):
2« := filtering-forwards(x, A, B, )
3 [ := backwards(x, A, B)
4 vi=a0p

5 for t=1:T:

6 &= a(B g, © ﬂt+1)T ®©A

7 return v, &1

where
» x, A, B, as for forwards algorithm

yields v1.7 = (p(z¢ | x1:7))¢t=1.7 smoothed latent state
and &1.17 = (p(2t, Ze+1 | x1:7))t=1:T two-slice smoothed marginals

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 4. Learning HMMs

B
Learning HMMs via EM “

block coordinate descent / EM:

» maximize w.r.t. 7, A, B (maximize, M-step):

N
= normalize(z Yn,1)
n=1
N Tp—
A = normalize- rows(z Z nt)
n=1 t=1
N T
B, ::ZZ%J Xpp=1), i=1,...,1

n=1 t=1

B := normalize-rows(B)

» maximize w.r.t. 7, & (estimate, E-step):
» estimate 7,, &, using forwards-backwards algorithm for x,, n=1: N

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

31

35



Planning and Optimal Control 4. Learning HMMs

Learning HMMs via EM

1 learn —HMM—EM(xq:n):
2 initialize =, A, B

3 do until convergence:
4

for n=1:N:
5 Yny €n := smoothing-forwards-backwards(x,, 7, A, B)
. , N
6 7 :=normalize(},_; Vn1)
7 A= normalize—rows(X:g:1 o1
8 for i=1:1:
5 N T .
o B.it=2 0121 ~%,tH(Xn,t =1i)
10 B := normalize-rows(B)

11 return 7w, A B

where

> xq.y With x, € {1,2,..., L}* observed sequences
yields 7w, A, B HMM parameters
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Planning and Optimal Control 4. Learning HMMs

B
Learning HMMs via EM “

> Ynt.h is the case weight for case (h, x,,+)
for the observation model

> &ntg.h is the case weight for case (g, h) (for instance n, at time t)
for the transition model

» this way EM generalizes to any observation and transition model
by just replacing the M-step

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 4. Learning HMMs

Summary
» Hidden Markov Models (HMMs) model sequences via
» a Markov Model on hidden states: transition model p(z;11 | z;) and
» a model for observations per hidden state: observation model
pxe | z¢).
» The number of hidden states describes the complexity of a HMM.

» The probability p(z: | x1.¢) of the current hidden state based on past
observations can be inferred online (filtering; forwards algorithm).

» The probability p(z: | x1.7) of a hidden state based on past and
future observations can be inferred by a two-pass algorithm
(smoothing; forwards-backwards algorithm).

» The jointly most-probable hidden state sequence can be inferred using
a two-pass algorithm (MAP; Viterbi algorithm).
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Summary (2/2) YA

» If "hidden” states are observed, HMMs are just Markov models and
parameters can be learnt from observations by counting.

» For truely hidden states, HMMs can be learnt by an EM algorithm
(Baum-Welche algorithm)

» forwards-backwards algorithm is used for the E-step.
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Further Readings

» Hidden Markov Models:
Murphy 2012, chapter 17.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
36 / 35



Planning and Optimal Control

References

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
37 /35



	1. Hidden Markov Models (HMMs)
	2. Inference in HMMs
	3. Inference in HMMs II: MAP
	4. Learning HMMs
	Appendix

