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1. Markov Models
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2. Hidden Markov Models
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3. State Space Models

4. Markov Random Fields

5. Markov Decision Processes
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Planning and Optimal Control 1. Linear Gaussian Systems

Linear Transformation of a Gaussian
The linear transformation of a Gaussian is again a Gaussian:

p(x) == N(x | p,X), p RN ¥ e RVXN
y = Ax+a, AcRM*N 5 c RM
~  p(y) = py(Ax+a) = N(y | Au+ a, AZAT)

Proof:

(Ax +a) = AE(x) +a=An+a
V(y) =E((y —E()(y —E(¥))")
(
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Planning and Optimal Control 1. Linear Gaussian Systems

M
Product of two Gaussian PDFs v

The product of two Gaussian PDFs is again Gaussian:

N(x | p1, Z1) - N(x | pz, X2) o N(x | p, X)
with ¥ :=(Z;t+ ¥,
o= (T 4+ 55 o)
Proof: elementary:

» log p is quadratic in x.
» complement squares.

Do not confuse this with

> N(le,zl)-/\/(yqu,Zz)ow\/(< ; ) | ( Z; >< 201 202 ))
> p(x2) for x ~ N(x | 1, T).
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Planning and Optimal Control 1. Linear Gaussian Systems

Conditional Distributions of Multivariate Normals (Revuﬁ)

Let ya, yg be jointly Gaussian

v (o)~ ) (e ) (5 50 )

then the conditional distribution is

P(ye | ya) = N(ye | 1Bja; ZB|A)
with
1igja =B + LAl an(va — 11a)
Ypia =88 — LBAY 41T AB
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Planning and Optimal Control 1. Linear Gaussian Systems

B
Conditional Distr. of Multiv. Normals / Information For@

Let ya, yg be jointly Gaussian

v ()~ )1 )= Ot ase )

then the conditional distribution is

p(ys | ya) = N(ye | 1pja; Npja)
with
1pia =pe + NgpNealya — 11a)
/\B|A :/\Eé
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Planning and Optimal Control 1. Linear Gaussian Systems

Linear Gaussian System

p(x) = N(x | 11x, Ex)
p(y | x) :=N(y | Ax+ b, X))
where

» x a multivariate Gaussian distributed random variable
> 4 € RV Y, € RVXN

» y a multivariate Gaussian distributed random variable
> py = A+ beRY ¥, € RMXM
» Ac RMXN pc RM

» y depends linearly on x
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Planning and Optimal Control 1. Linear Gaussian Systems

Linear Gaussian System

» LGS = multivariate multiple regression (y|x)
plus a Gaussian model for x.

» together, a generative Gaussian model.
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Planning and Optimal Control 1. Linear Gaussian Systems

LGS as Joint Gaussian

An LGS p(x) = N(x | fix, Zx)
p(y | x) = N(y | Ax+b,x,)

is equivalent to a jointly Gaussian distribution:

X . YL+ ATYIA —ATEE N\ 7Y
p( 0 =N, ) T ey
y Aux + b LA Py
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Planning and Optimal Control 1. Linear Gaussian Systems

LGS as Joint Gaussian / Information Form

An LGS p(x) = N(x | fax, Ax)
ply | x) = N(y | Ax+ b,Ay)

is equivalent to a jointly Gaussian distribution:

() ()
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Planning and Optimal Control 1. Linear Gaussian Systems

B
LGS as Joint Gaussian / Example i
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Planning and Optimal Control 1. Linear Gaussian Systems

B
LGS as Joint Gaussian / Proof i

log p(x, y)
= log p(x) + log p(y | x)
o (x — ﬂX)TAX(X = px) + (y — Ax — b)T/\y(y — Ax —b)
= (x = ) T As(x = 1)
+ (¥ = Atx = b= Alx = 1)) AV (y = Apix = b = Ax — j1x))
=(x— IUX)T(/\X + ATAyA)(X = Iix)
+(y = Apx — b)TA (y — Apx — b)
— 2y — Apx — b)TALA(x — 1)

o x—me [ MHATAA —ATA, X — i
\y—Aux—»b —N\/A A, y —Aux — b

Note: With A, = Z;l,/\y = ):;1 precision matrices.
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Planning and Optimal Control 1. Linear Gaussian Systems

Bayes Rule for Linear Gaussian Systems

For an LGS p(x) = N(x | px, Lx)
p(y | x) =N(y | Ax+b,X,)

Bayes' Rule reads:

p(x | y) =N(x | bxjy, Zxiy)
with %, = (I '+ ATE A

. Ty -1 -1
Px|y = ZX|y (A Zy (y - b) +3 :ux>
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Planning and Optimal Control 1. Linear Gaussian Systems

Bayes Rule for Linear Gaussian Systems / Proof

» LGS is equivalent to joint Gaussian:

x\y [ix (M ATAA ATA
p(<Y>)_N(<Aux+b>’A_< nA /\yy>)

» conditional of a joint Gaussian:

p(x | y) = N(x |ty Aay)
with
Ny =N x
Lixy =tx + NNy (v — i)
:A;i(AX,X,UX + /\ny(y - .Uy))
=N (Atix + ATA Ap + AT (y — Ay — b))

:A;,}((AXNX + AT/\y(y — b))
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Planning and Optimal Control 1. Linear Gaussian Systems

. N
Example: Inference from Noisy Measurements “

» underlying quantity x
> prior

p(x) = N(x | 1, A1)

» L noisy measurements yj.;:

plye | x) =Ny | x, A1), €el:L

» scalar LGS: N=M:=1, A:=1land b:=0: py|x =Ax+b=x
» vector LGS: N:=1, M =L y =y, Ny =X, - lix, Ai=1y,
b:= 01_,
Mylx =Ax+b=x-1;

Note: Inxn = (I(n = m))p me1:n identity matrix.
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Planning and Optimal Control 1. Linear Gaussian Systems

Example: Inference from Noisy Measurements .
» vector LGS: N =M =L y:=yi., \y =X\ - l1x1, A:=1,, b:=0,
Hy|x =Ax+b=x-1;
» Bayes rule:
p(x | y) = N(x | tixjy, Txiy)
with T 0=+ ATE A
= M+ Ly
pixty = Tty (AT My = b) + )

= (A + LAy)THA Zwmx)
=1
L

\ Ly, 1
T TN, ;”
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Planning and Optimal Control 1. Linear Gaussian Systems

Example: Inference from Noisy Measurements

prior variance = 1.00 prior variance = 5.00

— s FIOF
= u ik ==k
06| w mm 1 post 1 067 = ==« post

0.5F

0.4

0.3r

0.2r

[source: Murphy 2012, p.121]

p(X) ::N(X’07U2€{175})7 p(ylx) ::N(Y|X71)7 y=3

prior: p(x), MLE: N (x | y, 1), posterior: p(x | y)
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2. State Space Models
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Planning and Optimal Control 2. State Space Models

State Space Model

z = g(z-1) transition model
x¢ = h(z) observation model
z: € RK hidden state
Xt € RM observation

» like HMM, but with continuous hidden state z;

» g, h stochastic functions
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Planning and Optimal Control 2. State Space Models

Linear-Gaussian State Space Model

p(ze | ze—1) == N(z¢ | Aeze—1 + ar—1, X, t) transition model
p(xe | ze) == N(x¢ | Beze + b, Xy 1) observation model
7z € RK hidden state

Xt € RM observation

A € RKXK transition matrix at time t

B; € RMxK observation matrix at time t

Y, € RFXK state/system noise at time t

Yt € RM*M observation noise at time t

» transition and observation function is linear
» bias term often dropped: a;_1 :=0, b; :=0.

» state and observation noise is Gaussian
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Planning and Optimal Control 2. State Space Models

Stationary Linear-Gaussian State Space Model

p(z: | ze—1) = N(z: | Aze—1, %) transition model
p(xt | zt) == N(x¢ | Bz, X)) observation model
z: € RK hidden state

x¢ € RM observation

A e RKXK transition matrix

B € RM*K observation matrix

Y, € RFxK state/system noise

Y, € RMxM observation noise

» stationary, time-invariant:
» transition and observation matrices do not depend on time t
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Planning and Optimal Control 2. State Space Models

Initial State Distribution v

All models need to be complemented by an initial state distribution:

p(zl) = N(Zl | /J“Zl?zzl)
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3. Inference I: Kalman Filtering
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Planning and Optimal Control 3. Inference I: Kalman Filtering

Infering Posterior State Distributions p(z; | xi¢)

Posterior hidden states can be computed sequentially:
p(ze | x:e) = N(ze | pff, 2F)

with X% := ((Ax¢ ;AT 1+ BTy 1B)!
pe =T (AT AT) AU + BT R )

and XI§:= (I '+B'xr;'B)!
pe =T (5 e + BTE M)
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Planning and Optimal Control 3. Inference I: Kalman Filtering

Infering p(z; | x1.¢) / Proof

» for t =1:
p(xt | z¢) :N(Xt | Bz;, Xx)
p(zl) = N(Zt | Kz s z21)
PR bz | x) = Nz | 1g,E9)
with ¥f:=%,, = (' +B7='B)™!
M% = /"L21|X1 = Z?(Zz_llﬂzl + BTZ;lxl)
» for t > 1:

p(xe | zt) = N(Xt | Bz, 2x)
p(ze | xu:e-1) = Nz | Apg_y, AZS 1 AT)
B rul
YO plz [ x) = N(ze | p,TF)
with  ¥§ =Y, = (AT¢,AT) ! + BT51B) !

HE = o, = Te((AZE L AT) AR + BT S Mxe)
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Planning and Optimal Control 3. Inference I: Kalman Filtering

Precomputing Posterior Variances

» 2 does not depend on the observations xi.¢
» thus can be precomputed

» > ¢ depends on t only through the time since the initial state
» if we assume states long after the initial state, use

¥* = lim ¢

t—o0

for all t.

» Y% can be computed via fixpoint iterations
(ZNO = (' +BTL'B)!
(za)(t) — ((A(za)(tfl)AT)fl + BTZ;lB)71
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Planning and Optimal Control 3. Inference I: Kalman Filtering

Computing Variances with a Single Matrix Inversion

» in its previous form, computing variances X requires two matrix

inversions:
¢ = ((AT9 A7) 4 BTE1B) !
» more efficient computation with a single matrix inversion:
Tieo1 = ATE AT
= (1 = Zye1BT(Ex + BEye-1BT) ' B)E 1

:ZKt

= (I - KtB)Zt|t—l

Proof: apply the matrix inversion lemma

(A-BD'C)t=(+A'B(D-CA'B)TC)A™?

to (£,

t|t—1

+BTy'B)!
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Planning and Optimal Control 3. Inference I: Kalman Filtering
Computing Means without Additional Matrix Inversion
» also the original mean formula contains a matrix inversion
) Ty-1 -1
T =Y¥B I x + Zt“_lAu?,l)
» can be simplified, reusing the matrix inversion from the variance

Btjt—1 = Apg_q
P = peje—1 + Ke(xe — Biigje—1)

proof:
left term: using 2nd matrix inversion fomula
Z?BTZ;l = Z1&|1:—1BT(Z>< + Bzﬂt—lBT)_1 Kt

(A-BD1C)'BD™ ' = A"1B(D - CA"1B)!

right term:
= (I — K:B)

Tor ol = (= KeB)Tqea T,

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 3. Inference I: Kalman Filtering

Kalman Filtering (Single Inversion)

» prediction step:
Yipo1 = AZ?—lAT
Ktjt—1 -= Apg_q
> measurement step:
Ke = Sye-1BT (Tx+ BLye1BT)

py = pieje—1 + Ke(xe — Bpigje—1)
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Planning and Optimal Control 3. Inference I: Kalman Filtering

Kalman Filtering / Algorithm

1 infer-filtering-kalman(x, A, X, B, %4, f17, X2 ):
> T :=|x]|

G M (Zfl +BTy1B)!

u§ = TR(BTE x4+ 5l

5 for t=2,...,T:

6 T = AZt;lAT

7 Hijt—1 = Apgq

8 K: = ):t|t,1BT():X + BZt|t,1BT)_1
9 pe = Peje—1 + Ki(xe — Bﬂt\t—l)

10 Y= (- KiB)Xye—1

11 return pfio, X4

where

» x € (RM)* observed sequence
» A Y, B, Y, iz, %, linear-Gaussian state space model

yields p(z; | x1:¢) = N(z¢ | p$, £¢),t = 1: T PDFs of filtered latent states
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4. Inference Il: Kalman Smoothing
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Planning and Optimal Control 4. Inference Il: Kalman Smoothing

Infering Posterior State Distributions p(z; | xi.7)

p(ze | x1.1) = N(z | pi, X)
pd = pg+ Jt(/i’terl - Nt+1\t)
Y =20+ Jt(z’tYJrl - zt+1|t)J1:T
Jy = Z?ATZHW backwards Kalman gain matrix
with
p(zt41 | x1:t) = N(z: | Hiq1|t Zt-|—1|t) prediction
M1t = Apg
ZH—l\t = AZ?AT +3x

initialized by p(zr | x1.7), i.e.,
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Planning and Optimal Control 4. Inference Il: Kalman Smoothing

Infering Posterior State Distr. p(z; | xi.7) / Proof

P(Zt ! X1:T) = / P(Zt+1 \ Xl:T)P(Zt \ X1ty Xe47T Zt+1)dzt+1
Zt+1

. Zt Ity 2y Z?AT
Pzt ze11 | x1:t) —N(< Zei1 ) | ( Hepile )( AT T )

filtered two-slice posteriors

Gaussian conditioning yields

p(ze | X1t Ze41) = N(Zt | ug + Je(zer1 — Mt-l—l\t)? Y- Jtzt+1|tJtT)
and finally
= E(E(z | zt41, x1:7) | x1:7)
(E(ze | ze41, x1:t) | x1:7)
(u + Je(zer1 — Hegape) | x0T)
= pf + Jt(u’ty+1 - Mt+1\t)

E
E

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
28 / 30



Planning and Optimal Control 4. Inference Il: Kalman Smoothing

Infering Posterior State Distr. p(z; | xi.7) / Proof

Y =V(E(zt | ze41,%:7) | x1:7) + E(V(zt | ze1, x1.7) | x1.7)

=3¢+ (T, - zt+1|t)JtT
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Planning and Optimal Control 5. Learning via EM
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5. Learning via EM
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Planning and Optimal Control 6. Approximate Inference: Unscented Kalman Filter
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6. Approximate Inference: Unscented Kalman Filter
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Planning and Optimal Control 6. Approximate Inference: Unscented Kalman Filter

Summary

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
30 / 30



Planning and Optimal Control

Further Readings

» Inference in jointly Gaussian distributions:
» lecture Machine Learning 2, ch. A.2 Gaussian Processes

» Murphy 2012, chapter 4.3.

» Linear Gaussian Systems:
Murphy 2012, chapter 4.4.

» State Space Models:
Murphy 2012, chapter 18.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

31 /30



Planning and Optimal Control

References

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
32 /30



	1. Linear Gaussian Systems
	2. State Space Models
	3. Inference I: Kalman Filtering
	4. Inference II: Kalman Smoothing
	5. Learning via EM
	6. Approximate Inference: Unscented Kalman Filter
	Appendix

