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Planning and Optimal Control

Syllabus

A. Models for Sequential Data
Tue. 22.10. (1) 1. Markov Models
Tue. 29.10. (2) 2. Hidden Markov Models
Tue. 5.11. (3) 3. State Space Models

B. Models for Sequential Decisions
Tue. 12.11. (4) 1. Markov Decision Processes
Tue. 19.11. (5) 1b. (ctd.)
Tue. 26.11. (6) 2. Introduction to Reinforcement Learning
Tue. 3.12. (7) 3. Monte Carlo and Temporal Difference Methods
Tue. 10.12. (8) 4. Q Learning
Tue. 17.12. (9) 5. Policy Gradient Methods
Tue. 24.12. — — Christmas Break —
Tue. 7.1. (10) tba
Tue. 14.1. (11) tba
Tue. 21.1. (12) tba
Tue. 28.1. (13) 8. Reinforcement Learning for Games
Tue. 4.2. (14) Q&A
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Planning and Optimal Control 1. Hidden Markov Models (HMMs)

HMMs

Markov models cannot easily represent long-range dependencies:

I state of a single observation is not rich enough to represent full prior
sequence

I state sequence of h last observations are rich enough (for h
sufficiently large),
but yield a huge state space (exponentially in h)

Idea:

I do not use observed states to represent the state of an instance,
but introduce artificial latent states z

I latent state represents full state of an instance:
I Markov model p(zt+1 | zt) of latent states (transition model)

I observation model p(xt | zt)
I observed states depend on current latent state only:
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Planning and Optimal Control 1. Hidden Markov Models (HMMs)

HMMs

x1 x2 x3 x4 x5 x6

z1 z2 z3 z4 z5 z6
A

B

p(zt+1 | zt) = A

p(xt | zt) = B
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Planning and Optimal Control 1. Hidden Markov Models (HMMs)

HMMs

I observation model:
I for discrete observations:

B := (p(xt = i | zt = h))h=1:H,i=1:I H × I observation matrix

I for continuous observations: Gaussian observation model

p(xt | zt = h) = N I (xt ;µh, σ
2
h)

I the number H of hidden states parametrizes model complexity

I joint distribution:

p(x , z) = p(z)p(x | z) = p(z1)
T∏

t=2

p(zt | zt−1)
T∏

t=1

p(xt | zt)
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Planning and Optimal Control 1. Hidden Markov Models (HMMs)

Discrete vs. Gaussian HMMs
Discrete HMM:

x1 x2 x3 x4 x5 x6

z1 z2 z3 z4 z5 z6
A

B

Gaussian HMM:

x1 x2 x3 x4 x5 x6

z1 z2 z3 z4 z5 z6
A

(µh,Σh)h=1:H

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 41



Planning and Optimal Control 1. Hidden Markov Models (HMMs)

HMM Applications
I Automatic speech recognition

I xt : (features extracted from) speech signal

I zt : word/phoneme being spoken

I observation model p(xt | zt): acoustic model

I transition model p(zt+1 | zt): language model

I Activity recognition
I xt : (features extracted from) video frame

I zt : activity person is involved in (running, walking etc.)

I Part of speech tagging:
I xt : word in a sentence

I zt : part-of-speech of the word (noun, verb, adjective, . . . )

I Gene finding:
I xt : DNA nucleotide (A,C,G,T)

I zt : inside a gene-coding region yes/no
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Planning and Optimal Control 2. Inference in HMMs

Types of Inferences for Temporal Models

I Filtering: p(zt | x1:t)
I estimate state based on past

I less noisy state estimation than p(zt | xt)
I can be done online

x1 x2 x3 x4 x5 x6

z1 z2 z3 z4 z5 z6
A

B
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Planning and Optimal Control 2. Inference in HMMs

Types of Inferences for Temporal Models

I Smoothing: p(zt | x1:T )
I estimate state based on past and future

I allows to explain sequence in hindsight

I offline, requires access to whole sequence

x1 x2 x3 x4 x5 x6

z1 z2 z3 z4 z5 z6
A

B
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Planning and Optimal Control 2. Inference in HMMs

Types of Inferences for Temporal Models

I Fixed Lag Smoothing: p(zt−` | x1:t), ` > 0 lag
I estimate state based on past and near future

I compromise between filtering (` = 0) and smoothing (` =∞)

I online with delay `

x1 x2 x3 x4 x5 x6

z1 z2 z3 z4 z5 z6
A

B
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Planning and Optimal Control 2. Inference in HMMs

Types of Inferences for Temporal Models

I Forecasting: p(xt+h | x1:t), h > 0 horizon

p(xt+h | x1:t) =
∑

zt+h

p(xt+h | zt+h)p(zt+h | x1:t)

=
∑

zt+h

p(xt+h | zt+h)
∑

z1:t+h−1

t+h−1∏

s=t

p(zs+1 | zs) p(zt | x1:t)

= BT (AT )hp(zt | x1:t)

x1 x2 x3 x4 x5 x6

z1 z2 z3 z4 z5 z6
A

B
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Planning and Optimal Control 2. Inference in HMMs

Types of Inferences for Temporal Models

I MAP estimation: arg maxz1:t p(z1:T | x1:T )
I most probable state sequence to generate observation sequence

I Viterbi decoding

I Posterior samples: z1:T ∼ p(z1:T | x1:T )
I richer information than smoothing

x1 x2 x3 x4 x5 x6

z1 z2 z3 z4 z5 z6
A

B
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Planning and Optimal Control 2. Inference in HMMs

Types of Inferences for Temporal Models

I Probability of the evidence: p(x1:T ) =
∑

z1:T
p(z1:T , x1:T )

I useful as density estimator
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Planning and Optimal Control 2. Inference in HMMs

Example: Occasionally Dishonest Casino HMM17.4. Inference in HMMs 607

Figure 17.9 An HMM for the occasionally dishonest casino. The blue arrows visualize the state transition
diagram A. Based on (Durbin et al. 1998, p54).
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Figure 17.10 Inference in the dishonest casino. Vertical gray bars denote the samples that we generated
using a loaded die. (a) Filtered estimate of probability of using a loaded dice. (b) Smoothed estimates. (c)
MAP trajectory. Figure generated by casinoDemo.

distribution changes abruptly every now and then. In a typical application, we just see the rolls
and want to infer which dice is being used. But there are different kinds of inference, which we
summarize below.

• Filtering means to compute the belief state p(zt|x1:t) online, or recursively, as the data
streams in. This is called “filtering” because it reduces the noise more than simply estimating
the hidden state using just the current estimate, p(zt|xt). We will see below that we can
perform filtering by simply applying Bayes rule in a sequential fashion. See Figure 17.10(a) for
an example.

• Smoothing means to compute p(zt|x1:T ) offline, given all the evidence. See Figure 17.10(b)
for an example. By conditioning on past and future data, our uncertainty will be significantly
reduced. To understand this intuitively, consider a detective trying to figure out who com-
mitted a crime. As he moves through the crime scene, his uncertainty is high until he finds
the key clue; then he has an “aha” moment, his uncertainty is reduced, and all the previously
confusing observations are, in hindsight, easy to explain.

[source: Murphy 2012, p.607]I occasionally dishonest casino:
I xt ∈ {1, 2, 3, 4, 5, 6} dice
I zt ∈ {1, 2} dice being used
I p(xt | zt = 1) = ( 1

6 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ) fair dice,

p(xt | zt = 2) = ( 1
10 ,

1
10 ,

1
10 ,

1
10 ,

1
10 ,

5
10 ) loaded dice

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 41



Planning and Optimal Control 2. Inference in HMMs

a) Filtering

p(zt | x1:t)

b) Smoothing

p(zt | x1:T )

17.4. Inference in HMMs 607

Figure 17.9 An HMM for the occasionally dishonest casino. The blue arrows visualize the state transition
diagram A. Based on (Durbin et al. 1998, p54).
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distribution changes abruptly every now and then. In a typical application, we just see the rolls
and want to infer which dice is being used. But there are different kinds of inference, which we
summarize below.

• Filtering means to compute the belief state p(zt|x1:t) online, or recursively, as the data
streams in. This is called “filtering” because it reduces the noise more than simply estimating
the hidden state using just the current estimate, p(zt|xt). We will see below that we can
perform filtering by simply applying Bayes rule in a sequential fashion. See Figure 17.10(a) for
an example.

• Smoothing means to compute p(zt|x1:T ) offline, given all the evidence. See Figure 17.10(b)
for an example. By conditioning on past and future data, our uncertainty will be significantly
reduced. To understand this intuitively, consider a detective trying to figure out who com-
mitted a crime. As he moves through the crime scene, his uncertainty is high until he finds
the key clue; then he has an “aha” moment, his uncertainty is reduced, and all the previously
confusing observations are, in hindsight, easy to explain.

[source: Murphy 2012, p.607]

gray: ground truth I(zt = 2), i.e., loaded
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Planning and Optimal Control 2. Inference in HMMs

b) Smoothing

p(zt | x1:T )

b) MAP

arg max z1:Tp(z1:T | x1:T )

17.4. Inference in HMMs 607

Figure 17.9 An HMM for the occasionally dishonest casino. The blue arrows visualize the state transition
diagram A. Based on (Durbin et al. 1998, p54).
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distribution changes abruptly every now and then. In a typical application, we just see the rolls
and want to infer which dice is being used. But there are different kinds of inference, which we
summarize below.

• Filtering means to compute the belief state p(zt|x1:t) online, or recursively, as the data
streams in. This is called “filtering” because it reduces the noise more than simply estimating
the hidden state using just the current estimate, p(zt|xt). We will see below that we can
perform filtering by simply applying Bayes rule in a sequential fashion. See Figure 17.10(a) for
an example.

• Smoothing means to compute p(zt|x1:T ) offline, given all the evidence. See Figure 17.10(b)
for an example. By conditioning on past and future data, our uncertainty will be significantly
reduced. To understand this intuitively, consider a detective trying to figure out who com-
mitted a crime. As he moves through the crime scene, his uncertainty is high until he finds
the key clue; then he has an “aha” moment, his uncertainty is reduced, and all the previously
confusing observations are, in hindsight, easy to explain.

[source: Murphy 2012, p.607]
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Planning and Optimal Control 2. Inference in HMMs

Filtering

The filtered latent state

αt := p(zt | x1:t)

can be computed recursively:

α1 = p(z1 | x1) = normalize(B.,x1 � π)

αt = p(zt | x1:t) = normalize(B.,xt � ATαt−1)

proof:

p(z1 | x1) =
p(z1, x1)∑
z ′1
p(z ′1, x1)

= normalize(p(z1, x1))

= normalize(p(x1 | z1)p(z1)) = normalize(B.,x1 � π)
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Note: x � y := (xnyn)n=1:N elementwise product of x , y ∈ RN ,

normalize(x) = x/
∑N

n=1 xn normalization to sum 1 of x ∈ RN .



Planning and Optimal Control 2. Inference in HMMs

Filtering

proof (ctd.):

p(zt | x1:t) = normalize(p(zt , x1:t))

= normalize(
∑

zt−1

p(xt | zt)p(zt | zt−1)p(zt−1 | x1:t−1))

= normalize(
∑

zt−1

p(xt | zt)ATαt−1)

= normalize(
∑

zt−1

B.,xt � ATαt−1)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 41



Planning and Optimal Control 2. Inference in HMMs

Filtering / Forwards Algorithm

1 infer-filtering-forwards(x ,A,B, π):
2 T := |x |
3 α1 := normalize(B.,x1 � π)
4 for t = 2, . . . ,T :

5 αt := normalize(B.,xt � ATαt−1)
6 return α1:T

where

I x ∈ {1, 2, . . . , L}∗ observed sequence
I A ∈ [0, 1]H×H latent state transition matrix
I B ∈ [0, 1]H×L observation matrix
I π ∈ [0, 1]H latent state start vector

yields α1:T = (p(zt | x1:t))t=1:T filtered latent state
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Planning and Optimal Control 2. Inference in HMMs

Smoothing

The smoothed latent state

γt := p(zt | x1:T )

can be computed as

γt = normalize(αt � βt)
from

αt := p(zt | x1:t)
βt := p(xt+1:T | zt)

proof:

p(zt | x1:T ) ∝ p(zt , xt+1:T | x1:t) = p(zt | x1:t)p(xt+1:T | zt ,��x1:t ) = αt · βt
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Planning and Optimal Control 2. Inference in HMMs

Smoothing / Computing β
β1:T := p(xt+1:T | zt) can be computed recursively as

βT = (1, 1, . . . , 1)

βt = A(B.,xt+1 � βt+1)

proof:

βt = p(xt+1:T | zt)
=
∑

zt+1

p(xt+1:T | zt+1)p(zt+1 | zt)

=
∑

zt+1

p(xt+2:T | zt+1,���xt+1 )p(xt+1 | zt+1)p(zt+1 | zt)

= A(B.,xt+1 � βt+1)

βT−1 = p(xT | zT−1) =
∑

zT

p(xT | zT )p(zT | zT−1)

= AB.,xT = A(B.,xT � βT ) for βT := (1, 1, . . . , 1)
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Planning and Optimal Control 2. Inference in HMMs

Smoothing / Forwards-Backwards Algorithm

1 backwards(x ,A,B):
2 T := |x |
3 βT := (1, 1, . . . , 1)
4 for t = T − 1, . . . , 1 backwards:
5 βt := A(B.,xt+1 � βt+1)
6 return β1:T−1
7

8 infer-smoothing-forwards-backwards(x ,A,B, π):
9 α := infer-filtering-forwards(x ,A,B, π)

10 β := backwards(x ,A,B)
11 γ := normalize(α� β)
12 return γ

where

I x ,A,B, π as for forwards algorithm

yields γ1:T = (p(zt | x1:T ))t=1:T smoothed latent state
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Planning and Optimal Control 3. Inference in HMMs II: MAP
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Planning and Optimal Control 3. Inference in HMMs II: MAP

MAP vs MPM
I Maximum Aposteriori estimation (MAP):

arg max
z1:T

p(z1:T | x1:T )

I (jointly) most probable state sequence to generate observation
sequence

I Maximum Posterior Marginals (MPM):

arg max
z1:T

T∏

t=1

p(zt | x1:T ) = (arg max
zt

p(zt | x1:T ))t∈1:T

I sequence of most probable states at each time

I Example: p(z1:2 | x1:2): Z1 = 0 Z1 = 1
Z2 = 0 0.04 0.3 0.34
Z2 = 1 0.36 0.3 0.66

0.4 0.6

MAP = (0, 1),

MPM = (1, 1)
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Planning and Optimal Control 3. Inference in HMMs II: MAP

MAP

The probabilities for aposteriori latent states

δt(zt) ∝ max
z1:t−1

p(z1:t | x1:t)

can be computed recursively:

δ1 = p(z1 | x1) = B.,x1 � π
δt = max

z1:t−1

p(z1:t | x1:t) = B.,xt � rowmax(ATdiag(δt−1))

proof:

p(z1 | x1) ∝ p(x1 | z1)p(z1) = B.,x1 � π
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Note: rowmax(A) := (maxm=1:M An,m)n=1:N rowwise maxima of a matrix A ∈ RN×M .



Planning and Optimal Control 3. Inference in HMMs II: MAP

MAP

proof (ctd.):

max
z1:t−1

p(z1:t | x1:t)

∝ max
z1:t−1

p(z1:t , xt | x1:t−1)

= max
z1:t−1

p(xt | zt ,���x1:t−1 ,���z1:t−1 ) p(zt | zt−1,���x1:t−1 ,���z1:t−2 ) p(z1:t−1 | x1:t−1)

= max
zt−1

p(xt | zt)p(zt | zt−1) max
z1:t−2

p(z1:t−1 | x1:t−1)

= B.,xt � (max
zt−1

Azt−1,zt (δt−1)zt−1)zt

= B.,xt � rowmax(ATdiag(δt−1))
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Planning and Optimal Control 3. Inference in HMMs II: MAP

MAP / Traceback

The MAP latent states

z1:T := arg max
z1:T

p(z1:T | x1:T )

can be computed recursively:

zT = arg max
zT

(δT )zT

zt−1 = arg max
zt−1

(A.,zt � δt−1)zt−1
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Planning and Optimal Control 3. Inference in HMMs II: MAP

MAP / Viterbi Algorithm [1967]

1 infer-MAP-viterbi(x ,A,B, π):
2 T := |x |
3 δ1 := B.,x1 � π
4 for t = 2, . . . ,T :

5 δt := B.,xt � rowmax(ATdiag(δt−1))
6

7 zT := arg maxzT (δT )zT
8 for t = T , . . . , 2:
9 zt−1 := arg maxzt−1

(A.,zt � δt−1)zt−1

10 return z1:T

where
I x ∈ {1, 2, . . . , L}∗ observed sequence
I A ∈ [0, 1]H×H latent state transition matrix
I B ∈ [0, 1]H×L observation matrix
I π ∈ [0, 1]H latent state start vector

yields z1:T = arg maxz1:T p(z1:T | x1:T ) MAP latent state
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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MAP / Example

π = (1, 0, 0)

x = (C1,C3,C4,C6)
17.4. Inference in HMMs 615

(a) (b)

Figure 17.13 Illustration of Viterbi decoding in a simple HMM for speech recognition. (a) A 3-state HMM
for a single phone. We are visualizing the state transition diagram. We assume the observations have been
vector quantized into 7 possible symbols, C1, . . . , C7. Each state z1, z2, z3 has a different distribution over
these symbols. Based on Figure 15.20 of (Russell and Norvig 2002). (b) Illustration of the Viterbi algorithm
applied to this model, with data sequence C1, C3, C4, C6. The columns represent time, and the rows
represent states. An arrow from state i at t − 1 to state j at t is annotated with two numbers: the first
is the probability of the i → j transition, and the second is the probability of generating observation xt
from state j. The bold lines/ circles represent the most probable sequence of states. Based on Figure 24.27
of (Russell and Norvig 1995).

we can also easily work in the log domain. The key difference is that logmax = max log,
whereas log

∑ �= ∑
log. Hence we can use

log δt(j) � max
z1:t−1

log p(z1:t−1, zt = j|x1:t) (17.79)

= max
i
log δt−1(i) + logψ(i, j) + log φt(j) (17.80)

In the case of Gaussian observation models, this can result in a significant (constant factor)
speedup, since computing log p(xt|zt) can be much faster than computing p(xt|zt) for a high-
dimensional Gaussian. This is one reason why the Viterbi algorithm is widely used in the E step
of EM (Section 17.5.2) when training large speech recognition systems based on HMMs.

17.4.4.3 Example

Figure 17.13 gives a worked example of the Viterbi algorithm, based on (Russell et al. 1995).
Suppose we observe the discrete sequence of observations x1:4 = (C1, C3, C4, C6), representing
codebook entries in a vector-quantized version of a speech signal. The model starts in state
z1. The probability of generating C1 in z1 is 0.5, so we have δ1(1) = 0.5, and δ1(i) = 0 for
all other states. Next we can self-transition to z1 with probability 0.3, or transition to z2 with
proabability 0.7. If we end up in z1, the probability of generating C3 is 0.3; if we end up in z2,

[source: Murphy 2012, p.615]Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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= 0.2,BS1,C3

= 0.3.
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Posterior Samples

I MAP describes only the most likely posterior hidden state sequence.

I Often one is interested in more fine-grained information,
also about other likely hidden state sequences.

I The Viterbi algorithm can be extended to deliver the top-K most
likely hidden state sequences.

I but they often turn out to be very similar to each other.

I better way: draw samples from the posterior:

z1:T ∼ p(z1:T | x1:T )

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Posterior Samples

z1:T ∼ p(z1:T | x1:T )

I forwards inference – backwards sampling:

zT ∼ p(zT | x1:T ) = αT

zt−1 | zt:T ∼ p(zt−1 | zt:T , x1:T )

∝ p(zt−1 | zt ,����zt+1:T , x1:t−1,���xt:T )

∝ p(zt | zt−1,���x1:t−1 ) p(zt−1 | x1:t−1)

= A.,zt � αt−1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Posterior Samples / Forward-Inference—Backwards-Sample

1 sample-posterior(x ,A,B, π,S):
2 T := |x |
3 α := infer-filtering-forwards(x ,A,B, π)
4 S := ∅
5 for s := 1 : S :
6 zT ∼ αT

7 for t := T : 2:
8 zt−1 ∼ normalize(A.,zt � αt−1)
9 S := S ∪ {z1:T}

10 return S

where

I x ,A,B, π as before,
I S ∈ N number of samples

yields S ⊆ {1, . . . ,H}T set of posterior latent state samples

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Inference in Gaussian HMMs
I continuous (possibly multivariate) observations:

xt ∈ {1 : I} xt ∈ RM

I Gaussian observation model:

p(xt | zt) := N (xt | µzt ,Σzt ), µh ∈ RM ,Σh ∈ RM×M for h ∈ 1 : H

I as

B.,xt
discrete

= p(xt | zt) Gaussian
= N (xt | µzt ,Σzt )

replace

B.,xt by N (xt | µzt ,Σzt )

in
I infer-filtering-forwards (lines 3&5)
I backwards (line 5),
I infer-MAP-viterbi (lines 3&5)
I sample-posterior (no change, already in infer-filtering-forwards)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Outline

1. Hidden Markov Models (HMMs)

2. Inference in HMMs

3. Inference in HMMs II: MAP

4. Learning HMMs
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Learning HMMs

Learning an HMM means to estimate its parameters Θ := (π,A,B) from
observation data D ⊂ X ∗

π := (p(z1 = h))h=1:H hidden state start vector

A := (p(zt+1 = h | zt = g))g=1:H,h=1:H hidden state transition matrix

B := (p(xt = i | zt = h))h=1:H,i=1:I observation matrix (discrete)

or

B := (µh,Σh)h=1:H observation means/var (Gaussian)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Learning HMMs from Complete Data
When data is completely observed, i.e., also “hidden” states are observed:

D ⊂ (X × {1, 2, . . . ,H})∗

I learning is straight-forward

I estimate π,A as for Markov models

I estimate Bh from the state-specific data subset

D|h := {x | (x , h′) ∈ D, h′ = h}

I e.g., for discrete observation models:

Bh,i :=
Nh,i

Nh

Nh,i :=
N∑

n=1

Tn∑

t=1

I(hn,t = h, xn,t = i), Nh :=
N∑

n=1

Tn∑

t=1

I(hn,t = h)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Learning HMMs from Complete Data

I estimate Bh from the state-specific subset D|h
I e.g., for Gaussian observation models:

µh := xh/Nh, Σh := (xxh − Nhµhµ
T
h )/Nh

xh :=
N∑

n=1

Tn∑

t=1

I(hn,t = h)xn,t

xxh :=
N∑

n=1

Tn∑

t=1

I(hn,t = h)xn,tx
T
n,t

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Learning HMMs via EM / Naive

Complete loglikelihood:

`(π,A,B; z1:N ; x1:N) =
N∑

n=1

log πzn,1 +
Tn−1∑

t=1

logAzn,t ,zn,t+1 +
Tn∑

t=1

logBzn,t ,xn,t

block coordinate descent / EM:
I maximize w.r.t. π,A,B (maximize, M-step):

I as learning HMMs from complete data

I maximize w.r.t. z (estimate, E-step):

zn := arg max
z1:T

p(z1:T | xn,1:Tn)

I MAP / Viterbi algorithm

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Learning HMMs via EM (Baum-Welch)
I naive version is inefficient and brittle

I as only a single completion z1:T per instance is used

I assume we would have access to the distribution p(z1:T | x1:T ) of
completions

I we only would need
I p(z1 | x1:T ) = γ1 to estimate π and

I p(zt | x1:T ) = γt to estimate B and

I p(zt , zt+1 | x1:T ) =: ξt to estimate A.

ξt := p(zt , zt+1 | x1:T ) two-slice smoothed marginals

= p(zt | x1:t)p(zt+1 | zt , xt+1:T )

∝ p(zt | x1:t)p(zt+1, xt+1:T | zt)
= p(zt | x1:t)p(zt+1 | zt)p(xt+1 | zt+1,��zt )p(xt+2:T | zt+1,��zt ,���xt+1 )

= (αt(B.,xt+1 � βt+1)T )� A

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Smoothing / Forwards-Backwards Algorithm
with two-sliced smoothed marginals

1 infer-smoothing-forwards-backwards(x ,A,B, π):
2 α := filtering-forwards(x ,A,B, π)
3 β := backwards(x ,A,B)
4 γ := normalize(α� β)
5 for t = 1 : T − 1:

6 ξt := normalize((αt(B.,xt+1 � βt+1)T )� A)
7 return γ, ξ1:T

where

I x ,A,B, π as for forwards algorithm

yields γ1:T = (p(zt | x1:T ))t=1:T smoothed latent state
and ξ1:T = (p(zt , zt+1 | x1:T ))t=1:T two-slice smoothed marginals

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Learning HMMs via EM
block coordinate descent / EM:

I maximize w.r.t. π,A,B (maximize, M-step):

π := normalize(
N∑

n=1

γn,1)

A := normalize-rows(
N∑

n=1

Tn−1∑

t=1

ξn,t)

B̃.,i :=
N∑

n=1

T∑

t=1

γn,tI(xn,t = i), i = 1, . . . , I

B := normalize-rows(B̃)

I maximize w.r.t. γ, ξ (estimate, E-step):
I estimate γn, ξn using forwards-backwards algorithm for xn, n = 1 : N

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Learning HMMs via EM

1 learn−HMM−EM(x1:N):
2 initialize π,A,B
3 do until convergence:
4 for n = 1 : N:
5 γn, ξn := smoothing-forwards-backwards(xn, π,A,B)

6 π := normalize(
∑N

n=1 γn,1)

7 A := normalize-rows(
∑N

n=1

∑Tn−1
t=1 ξn,t)

8 for i = 1 : I :

9 B̃.,i :=
∑N

n=1

∑T
t=1 γn,tI(xn,t = i)

10 B := normalize-rows(B̃)
11 return π,A,B

where

I x1:N with xn ∈ {1, 2, . . . , L}∗ observed sequences

yields π,A,B HMM parameters

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Learning HMMs via EM

I γn,t,h is the case weight for case (h, xn,t)
for the observation model

I ξn,t,g ,h is the case weight for case (g , h) (for instance n, at time t)
for the transition model

I this way EM generalizes to any observation and transition model
by just replacing the M-step

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Summary

I Hidden Markov Models (HMMs) model sequences via
I a Markov Model on hidden states: transition model p(zt+1 | zt) and

I a model for observations per hidden state: observation model
p(xt | zt).

I The number of hidden states describes the complexity of a HMM.

I The probability p(zt | x1:t) of the current hidden state based on past
observations can be inferred online (filtering; forwards algorithm).

I The probability p(zt | x1:T ) of a hidden state based on past and
future observations can be inferred by a two-pass algorithm
(smoothing; forwards-backwards algorithm).

I The jointly most-probable hidden state sequence can be inferred using
a two-pass algorithm (MAP; Viterbi algorithm).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Summary (2/2)

I If “hidden” states are observed, HMMs are just Markov models and
parameters can be learnt from observations by counting.

I For truely hidden states, HMMs can be learnt by an EM algorithm
(Baum-Welch algorithm)

I forwards-backwards algorithm is used for the E-step.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Further Readings

I Hidden Markov Models:
Murphy 2012, chapter 17.
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