

#### Planning and Optimal Control 2. Hidden Markov Models

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

### Syllabus



#### A. Models for Sequential Data

| Tue. | 22.10. | (1)   | 1. Markov Models                               |
|------|--------|-------|------------------------------------------------|
| Tue. | 29.10. | (2)   | 2. Hidden Markov Models                        |
| Tue. | 5.11.  | (3)   | 3. State Space Models                          |
|      |        | B. Mo | odels for Sequential Decisions                 |
| Tue. | 12.11. | (4)   | 1. Markov Decision Processes                   |
| Tue. | 19.11. | (5)   | 1b. (ctd.)                                     |
| Tue. | 26.11. | (6)   | 2. Introduction to Reinforcement Learning      |
| Tue. | 3.12.  | (7)   | 3. Monte Carlo and Temporal Difference Methods |
| Tue. | 10.12. | (8)   | 4. Q Learning                                  |
| Tue. | 17.12. | (9)   | 5. Policy Gradient Methods                     |
| Tue. | 24.12. | _     | — Christmas Break —                            |
| Tue. | 7.1.   | (10)  | tba                                            |
| Tue. | 14.1.  | (11)  | tba                                            |
| Tue. | 21.1.  | (12)  | tba                                            |
| Tue. | 28.1.  | (13)  | 8. Reinforcement Learning for Games            |
| Tue. | 4.2.   | (14)  | Q&A                                            |

#### Outline



- 1. Hidden Markov Models (HMMs)
- 2. Inference in HMMs
- 3. Inference in HMMs II: MAP
- 4. Learning HMMs

#### Outline



#### 1. Hidden Markov Models (HMMs)

- 2. Inference in HMMs
- 3. Inference in HMMs II: MAP
- 4. Learning HMMs



Markov models cannot easily represent long-range dependencies:

- state of a single observation is not rich enough to represent full prior sequence
- state sequence of h last observations are rich enough (for h sufficiently large),
   but yield a huge state space (exponentially in h)

Idea:

- do not use observed states to represent the state of an instance, but introduce artificial latent states z
- ► latent state represents full state of an instance:
  - Markov model  $p(z_{t+1} | z_t)$  of latent states (transition model)
  - observation model  $p(x_t \mid z_t)$ 
    - observed states depend on current latent state only:



#### *x*<sub>1</sub> *x*<sub>2</sub> *x*<sub>3</sub> *x*<sub>4</sub> *x*<sub>5</sub> *x*<sub>6</sub>











- observation model:
  - for discrete observations:

 $B := (p(x_t = i \mid z_t = h))_{h=1:H, i=1:I}$   $H \times I$  observation matrix

▶ for continuous observations: Gaussian observation model

$$p(x_t \mid z_t = h) = \mathcal{N}_I(x_t; \mu_h, \sigma_h^2)$$

- $\blacktriangleright$  the number H of hidden states parametrizes model complexity
- ► joint distribution:

$$p(x,z) = p(z)p(x \mid z) = p(z_1) \prod_{t=2}^{T} p(z_t \mid z_{t-1}) \prod_{t=1}^{T} p(x_t \mid z_t)$$

Planning and Optimal Control 1. Hidden Markov Models (HMMs)



#### Discrete vs. Gaussian HMMs Discrete HMM:



Gaussian HMM:



### HMM Applications

- Automatic speech recognition
  - ► x<sub>t</sub>: (features extracted from) speech signal
  - ► z<sub>t</sub>: word/phoneme being spoken
  - observation model  $p(x_t \mid z_t)$ : acoustic model
  - ▶ transition model  $p(z_{t+1} | z_t)$ : language model
- Activity recognition
  - ► x<sub>t</sub>: (features extracted from) video frame
  - $z_t$ : activity person is involved in (running, walking etc.)
- Part of speech tagging:
  - ► x<sub>t</sub>: word in a sentence
  - ▶  $z_t$ : part-of-speech of the word (noun, verb, adjective, ...)
- ► Gene finding:
  - ► x<sub>t</sub>: DNA nucleotide (A,C,G,T)
  - ► *z<sub>t</sub>*: inside a gene-coding region yes/no



#### Outline



1. Hidden Markov Models (HMMs)

#### 2. Inference in HMMs

- 3. Inference in HMMs II: MAP
- 4. Learning HMMs

#### Shiversia . . . . . . . . . . . . .

#### Types of Inferences for Temporal Models

- Filtering:  $p(z_t | x_{1:t})$ 
  - estimate state based on past
  - less noisy state estimation than  $p(z_t \mid x_t)$
  - ► can be done online



- Smoothing:  $p(z_t | x_{1:T})$ 
  - estimate state based on past and future
  - allows to explain sequence in hindsight
  - ► offline, requires access to whole sequence







• Fixed Lag Smoothing:  $p(z_{t-\ell} \mid x_{1:t}), \ell > 0$  lag

- estimate state based on past and near future
- ▶ compromise between filtering ( $\ell = 0$ ) and smoothing ( $\ell = \infty$ )
- online with delay  $\ell$







• Forecasting:  $p(x_{t+h} | x_{1:t}), h > 0$  horizon



• Forecasting:  $p(x_{t+h} | x_{1:t}), h > 0$  horizon

$$p(x_{t+h} \mid x_{1:t}) = \sum_{z_{t+h}} p(x_{t+h} \mid z_{t+h}) p(z_{t+h} \mid x_{1:t})$$

$$= \sum_{z_{t+h}} p(x_{t+h} \mid z_{t+h}) \sum_{z_{1:t+h-1}} \prod_{s=t}^{t+h-1} p(z_{s+1} \mid z_s) p(z_t \mid x_{1:t})$$

$$= B^T (A^T)^h p(z_t \mid x_{1:t})$$

$$x_1 \qquad x_2 \qquad x_3 \qquad x_4 \qquad x_5 \qquad x_6$$

$$a_1 \qquad a_2 \qquad a_3 \qquad a_4 \qquad a_5 \qquad a_5 \qquad a_6$$

Planning and Optimal Control 2. Inference in HMMs

#### Types of Inferences for Temporal Models



- most probable state sequence to generate observation sequence
- Viterbi decoding
- Posterior samples:  $z_{1:T} \sim p(z_{1:T} \mid x_{1:T})$ 
  - richer information than smoothing





Planning and Optimal Control 2. Inference in HMMs

#### Types of Inferences for Temporal Models



#### • Probability of the evidence: $p(x_{1:T}) = \sum_{z_{1:T}} p(z_{1:T}, x_{1:T})$

useful as density estimator

#### Universite Hildesheif

#### Example: Occasionally Dishonest Casino HMM



occasionally dishonest casino:

[source: Murphy 2012, p.607]

- $x_t \in \{1, 2, 3, 4, 5, 6\}$  dice
- $z_t \in \{1, 2\}$  dice being used

► 
$$p(x_t | z_t = 1) = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6})$$
 fair dice,  
 $p(x_t | z_t = 2) = (\frac{1}{10}, \frac{1}{10}, \frac{1}{10}, \frac{1}{10}, \frac{1}{10}, \frac{1}{10}, \frac{5}{10})$  loaded dice

Planning and Optimal Control 2. Inference in HMMs

a) Filtering

#### $p(z_t \mid x_{1:t})$





#### gray: ground truth $\mathbb{I}(z_t = 2)$ , i.e., loaded

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



b) Smoothing

 $p(z_t \mid x_{1:T})$ 

Planning and Optimal Control 2. Inference in HMMs

b) Smoothing

#### $p(z_t \mid x_{1:T})$



b) MAP

 $\arg \max z_{1:T} p(z_{1:T} | x_{1:T})$ 

[source: Murphy 2012, p.607]

Filtering

The filtered latent state

$$\alpha_t := p(z_t \mid x_{1:t})$$

can be computed recursively:

$$\alpha_1 = p(z_1 \mid x_1) = \text{normalize}(B_{.,x_1} \odot \pi)$$
  
$$\alpha_t = p(z_t \mid x_{1:t}) = \text{normalize}(B_{.,x_t} \odot A^T \alpha_{t-1})$$

proof:

$$p(z_1 \mid x_1) = \frac{p(z_1, x_1)}{\sum_{z'_1} p(z'_1, x_1)} = \text{normalize}(p(z_1, x_1))$$
  
= normalize( $p(x_1 \mid z_1)p(z_1)$ ) = normalize( $B_{.,x_1} \odot \pi$ )

Note:  $x \odot y := (x_n y_n)_{n=1:N}$  elementwise product of  $x, y \in \mathbb{R}^N$ , normalize $(x) = x / \sum_{n=1}^N x_n$  normalization to sum 1 of  $x \in \mathbb{R}^N$ . Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



#### Filtering



proof (ctd.):

р

$$(z_t \mid x_{1:t}) = \operatorname{normalize}(p(z_t, x_{1:t}))$$
  
= normalize( $\sum_{z_{t-1}} p(x_t \mid z_t) p(z_t \mid z_{t-1}) p(z_{t-1} \mid x_{1:t-1})$ )  
= normalize( $\sum_{z_{t-1}} p(x_t \mid z_t) A^T \alpha_{t-1}$ )  
= normalize( $\sum_{z_{t-1}} B_{.,x_t} \odot A^T \alpha_{t-1}$ )

### Filtering / Forwards Algorithm

#### <sup>1</sup> infer-filtering-forwards( $x, A, B, \pi$ ):

$$_{2} \quad T := |x|$$

- $\alpha_1 := \mathsf{normalize}(B_{.,x_1} \odot \pi)$
- 4 for t = 2, ..., T:
- 5  $\alpha_t := \operatorname{normalize}(B_{.,x_t} \odot A^T \alpha_{t-1})$
- 6 return  $\alpha_{1:T}$

#### where

- $x \in \{1, 2, \dots, L\}^*$  observed sequence
- ▶  $A \in [0, 1]^{H \times H}$  latent state transition matrix
- $B \in [0,1]^{H \times L}$  observation matrix
- $\pi \in [0,1]^H$  latent state start vector

yields  $\alpha_{1:T} = (p(z_t \mid x_{1:t}))_{t=1:T}$  filtered latent state



Smoothing

The smoothed latent state

$$\gamma_t := p(z_t \mid x_{1:T})$$

can be computed as

$$\gamma_t = \operatorname{normalize}(\alpha_t \odot \beta_t)$$

from

$$\alpha_t := p(z_t \mid x_{1:t})$$
  
$$\beta_t := p(x_{t+1:T} \mid z_t)$$

proof:

$$p(z_t \mid x_{1:T}) \propto p(z_t, x_{t+1:T} \mid x_{1:t}) = p(z_t \mid x_{1:t})p(x_{t+1:T} \mid z_t, x_{t:t}) = \alpha_t \cdot \beta_t$$



Smoothing / Computing  $\beta$   $\beta_{1:T} := p(x_{t+1:T} \mid z_t)$  can be computed recursively as  $\beta_T = (1, 1, \dots, 1)$  $\beta_t = A(B_{.,x_{t+1}} \odot \beta_{t+1})$ 

proof:

$$\beta_{t} = p(x_{t+1:T} \mid z_{t})$$

$$= \sum_{z_{t+1}} p(x_{t+1:T} \mid z_{t+1}) p(z_{t+1} \mid z_{t})$$

$$= \sum_{z_{t+1}} p(x_{t+2:T} \mid z_{t+1}, x_{t+T}) p(x_{t+1} \mid z_{t+1}) p(z_{t+1} \mid z_{t})$$

$$= A(B_{.,x_{t+1}} \odot \beta_{t+1})$$

$$\beta_{T-1} = p(x_{T} \mid z_{T-1}) = \sum_{z_{T}} p(x_{T} \mid z_{T}) p(z_{T} \mid z_{T-1})$$

$$= AB_{.,x_{T}} = A(B_{.,x_{T}} \odot \beta_{T}) \text{ for } \beta_{T} := (1, 1, \dots, 1)$$



#### Universiter Fildesheim

### Smoothing / Forwards-Backwards Algorithm

```
1 backwards(x, A, B):
2 T := |x|
\beta_T := (1, 1, \dots, 1)
4 for t = T - 1, \dots, 1 backwards:
  \beta_t := A(B_{x_{t+1}} \odot \beta_{t+1})
5
    return \beta_{1,\tau-1}
6
7
<sup>8</sup> infer-smoothing-forwards-backwards(x, A, B, \pi):
     \alpha := infer-filtering-forwards(x, A, B, \pi)
9
   \beta := backwards(x, A, B)
10
11 \gamma := \text{normalize}(\alpha \odot \beta)
12
    return \gamma
```

#### where

•  $x, A, B, \pi$  as for forwards algorithm

yields  $\gamma_{1:T} = (p(z_t \mid x_{1:T}))_{t=1:T}$  smoothed latent state

#### Outline



- 1. Hidden Markov Models (HMMs)
- 2. Inference in HMMs
- 3. Inference in HMMs II: MAP
- 4. Learning HMMs

#### MAP vs MPM

• Maximum Aposteriori estimation (MAP):

 $\operatorname*{arg\,max}_{z_{1:T}} p(z_{1:T} \mid x_{1:T})$ 

- (jointly) most probable state sequence to generate observation sequence
- Maximum Posterior Marginals (MPM):

$$\underset{z_{1:T}}{\operatorname{arg\,max}} \prod_{t=1}^{T} p(z_t \mid x_{1:T}) = (\underset{z_t}{\operatorname{arg\,max}} p(z_t \mid x_{1:T}))_{t \in 1:T}$$

sequence of most probable states at each time

| • Example: $p(z_{1:2} \mid x)$ | 1:2):     | $Z_1 = 0$ | $Z_1 = 1$ |      |
|--------------------------------|-----------|-----------|-----------|------|
|                                | $Z_2 = 0$ | 0.04      | 0.3       | 0.34 |
|                                | $Z_2 = 1$ | 0.36      | 0.3       | 0.66 |
|                                |           | 0.4       | 0.6       |      |



#### MAP vs MPM

• Maximum Aposteriori estimation (MAP):

 $\operatorname*{arg\,max}_{z_{1:T}} p(z_{1:T} \mid x_{1:T})$ 

- (jointly) most probable state sequence to generate observation sequence
- Maximum Posterior Marginals (MPM):

$$\underset{z_{1:T}}{\operatorname{arg\,max}} \prod_{t=1}^{T} p(z_t \mid x_{1:T}) = (\underset{z_t}{\operatorname{arg\,max}} p(z_t \mid x_{1:T}))_{t \in 1:T}$$

sequence of most probable states at each time

| • Example: $p(z_{1:2}   x)$ | <sub>1:2</sub> ): | $Z_1 = 0$ | $Z_1 = 1$ |      |
|-----------------------------|-------------------|-----------|-----------|------|
|                             | $Z_2 = 0$         | 0.04      | 0.3       | 0.34 |
| MAP = (0, 1),               | $Z_2 = 1$         | 0.36      | 0.3       | 0.66 |
| MPM = (1,1)                 |                   | 0.4       | 0.6       |      |



MAP



$$\delta_t(z_t) \propto \max_{z_{1:t-1}} p(z_{1:t} \mid x_{1:t})$$

can be computed recursively:

$$\delta_1 = p(z_1 \mid x_1) = B_{.,x_1} \odot \pi$$
$$\delta_t = \max_{z_{1:t-1}} p(z_{1:t} \mid x_{1:t}) = B_{.,x_t} \odot \operatorname{rowmax}(A^T \operatorname{diag}(\delta_{t-1}))$$

proof:

$$p(z_1 \mid x_1) \propto p(x_1 \mid z_1)p(z_1) = B_{.,x_1} \odot \pi$$

Note:  $\operatorname{rowmax}(A) := (\max_{m=1:M} A_{n,m})_{n=1:N}$  rowwise maxima of a matrix  $A \in \mathbb{R}^{N \times M}$ .



#### MAP





### $\mathsf{MAP}\ /\ \mathsf{Traceback}$



The MAP latent states

$$z_{1:T} := \operatorname*{arg\,max}_{z_{1:T}} p(z_{1:T} \mid x_{1:T})$$

can be computed recursively:

$$\begin{aligned} z_{\mathcal{T}} &= \arg\max_{z_{\mathcal{T}}} \ (\delta_{\mathcal{T}})_{z_{\mathcal{T}}} \\ z_{t-1} &= \arg\max_{z_{t-1}} \ (A_{.,z_t} \odot \delta_{t-1})_{z_{t-1}} \end{aligned}$$

#### MAP / Viterbi Algorithm [1967] 1 infer-MAP-viterbi $(x, A, B, \pi)$ : 2 T := |x| $\delta_1 := B_{x_1} \odot \pi$ 3 4 for t = 2, ..., T: $\delta_t := B_{..x_t} \odot \operatorname{rowmax}(A^T \operatorname{diag}(\delta_{t-1}))$ 5 6 $z_T := \arg \max_{z_T} (\delta_T)_{z_T}$ 7 for $t = T \dots 2$ : 8 $z_{t-1} := \operatorname{arg\,max}_{z_{t-1}} (A_{.,z_t} \odot \delta_{t-1})_{z_{t-1}}$ 9 10 return $Z_{1:T}$

#### where

- ▶  $x \in \{1, 2, ..., L\}^*$  observed sequence
- ▶  $A \in [0, 1]^{H \times H}$  latent state transition matrix
- $B \in [0,1]^{H \times L}$  observation matrix
- $\pi \in [0,1]^H$  latent state start vector

yields  $z_{1:T} = \arg \max_{z_{1:T}} p(z_{1:T} \mid x_{1:T})$  MAP latent state





Andrea Giacomo Viterbi (\*1935)

#### MAP / Example





Note: Correct typo:  $B_{S_1,C_2} = 0.2, B_{S_1,C_3} = 0.3.$ 



#### Posterior Samples



- ► MAP describes only the most likely posterior hidden state sequence.
- Often one is interested in more fine-grained information, also about other likely hidden state sequences.
- ► The Viterbi algorithm can be extended to deliver the top-*K* most likely hidden state sequences.
  - ▶ but they often turn out to be very similar to each other.
- ► better way: draw samples from the posterior:

$$z_{1:T} \sim p(z_{1:T} \mid x_{1:T})$$

#### **Posterior Samples**



#### $z_{1:T} \sim p(z_{1:T} \mid x_{1:T})$

► forwards inference – backwards sampling:

$$z_{T} \sim p(z_{T} \mid x_{1:T}) = \alpha_{T}$$

$$z_{t-1} \mid z_{t:T} \sim p(z_{t-1} \mid z_{t:T}, x_{1:T})$$

$$\propto p(z_{t-1} \mid z_{t}, \underline{z_{t+1:T}}, x_{1:t-1}, \underline{x_{t:T}})$$

$$\propto p(z_{t} \mid z_{t-1}, \underline{x_{1:t-1}}) p(z_{t-1} \mid x_{1:t-1})$$

$$= A_{.,z_{t}} \odot \alpha_{t-1}$$

### Posterior Samples / Forward-Inference—Backwards-Sample

```
\begin{array}{ll} & \text{sample-posterior}(x, A, B, \pi, S):\\ & T := |x|\\ & a := \text{infer-filtering-forwards}(x, A, B, \pi)\\ & \mathcal{S} := \emptyset\\ & & \text{for } s := 1:S:\\ & & z_T \sim \alpha_T\\ & & \text{for } t := T:2:\\ & & & z_{t-1} \sim \text{normalize}(A_{.,z_t} \odot \alpha_{t-1})\\ & & \mathcal{S} := \mathcal{S} \cup \{z_{1:T}\}\\ & & \text{return } \mathcal{S} \end{array}
```

where

x, A, B, π as before,
S ∈ N number of samples
yields S ⊆ {1,..., H}<sup>T</sup> set of posterior latent state samples

### Inference in Gaussian HMMs

► continuous (possibly multivariate) observations:

$$x_t \in \{1:I\} \rightsquigarrow x_t \in \mathbb{R}^N$$

Gaussian observation model:

 $p(x_t \mid z_t) := \mathcal{N}(x_t \mid \mu_{z_t}, \Sigma_{z_t}), \quad \mu_h \in \mathbb{R}^M, \Sigma_h \in \mathbb{R}^{M \times M} \text{ for } h \in 1 : H$ as

$$B_{.,x_t} \stackrel{\text{discrete}}{=} p(x_t \mid z_t) \stackrel{\text{Gaussian}}{=} \mathcal{N}(x_t \mid \mu_{z_t}, \Sigma_{z_t})$$

replace

$$B_{.,x_t}$$
 by  $\mathcal{N}(x_t \mid \mu_{z_t}, \Sigma_{z_t})$ 

#### in

►

- infer-filtering-forwards (lines 3&5)
- backwards (line 5),
- infer-MAP-viterbi (lines 3&5)
- ► sample-posterior (no change, already in infer-filtering-forwards)



#### Outline



- 1. Hidden Markov Models (HMMs)
- 2. Inference in HMMs
- 3. Inference in HMMs II: MAP
- 4. Learning HMMs

#### Learning HMMs



Learning an HMM means to estimate its parameters  $\Theta := (\pi, A, B)$  from observation data  $\mathcal{D} \subset X^*$ 

 $\begin{aligned} \pi &:= (p(z_1 = h))_{h=1:H} & \text{hidden state start vector} \\ A &:= (p(z_{t+1} = h \mid z_t = g))_{g=1:H,h=1:H} & \text{hidden state transition matrix} \\ B &:= (p(x_t = i \mid z_t = h))_{h=1:H,i=1:I} & \text{observation matrix (discrete)} \\ \text{or} & \end{aligned}$ 

 $B := (\mu_h, \Sigma_h)_{h=1:H}$  observation means/var (Gaussian

#### Learning HMMs from Complete Data



When data is completely observed, i.e., also "hidden" states are observed:

$$\mathcal{D} \subset (X \times \{1, 2, \dots, H\})^*$$

- learning is straight-forward
- estimate  $\pi$ , A as for Markov models
- estimate  $B_h$  from the state-specific data subset

$$\mathcal{D}|_h := \{x \mid (x, h') \in \mathcal{D}, h' = h\}$$

• e.g., for discrete observation models:

$$B_{h,i} := \frac{N_{h,i}}{N_h}$$
$$N_{h,i} := \sum_{n=1}^{N} \sum_{t=1}^{T_n} \mathbb{I}(h_{n,t} = h, x_{n,t} = i), \quad N_h := \sum_{n=1}^{N} \sum_{t=1}^{T_n} \mathbb{I}(h_{n,t} = h)$$

#### Learning HMMs from Complete Data

• estimate  $B_h$  from the state-specific subset  $\mathcal{D}|_h$ 

• e.g., for Gaussian observation models:

$$\mu_h := \overline{x}_h / N_h, \quad \Sigma_h := (\overline{xx}_h - N_h \mu_h \mu_h^T) / N_h$$
$$\overline{x}_h := \sum_{n=1}^N \sum_{t=1}^{T_n} \mathbb{I}(h_{n,t} = h) x_{n,t}$$
$$\overline{xx}_h := \sum_{n=1}^N \sum_{t=1}^{T_n} \mathbb{I}(h_{n,t} = h) x_{n,t} x_{n,t}^T$$





#### Learning HMMs via EM / Naive

Complete loglikelihood:

$$\ell(\pi, A, B; z_{1:N}; x_{1:N}) = \sum_{n=1}^{N} \log \pi_{z_{n,1}} + \sum_{t=1}^{T_n - 1} \log A_{z_{n,t}, z_{n,t+1}} + \sum_{t=1}^{T_n} \log B_{z_{n,t}, x_{n,t}}$$

block coordinate descent / EM:

- maximize w.r.t.  $\pi$ , A, B (maximize, M-step):
  - as learning HMMs from complete data
- ▶ maximize w.r.t. *z* (estimate, E-step):

$$z_n := \underset{z_{1:T}}{\operatorname{arg\,max}} p(z_{1:T} \mid x_{n,1:T_n})$$

MAP / Viterbi algorithm

### Learning HMMs via EM (Baum-Welch)

- naive version is inefficient and brittle
  - ► as only a single completion z<sub>1:T</sub> per instance is used
- ► assume we would have access to the distribution p(z<sub>1:T</sub> | x<sub>1:T</sub>) of completions
  - we only would need
    - $p(z_1 \mid x_{1:T}) = \gamma_1$  to estimate  $\pi$  and
    - $p(z_t \mid x_{1:T}) = \gamma_t$  to estimate B and
    - $p(z_t, z_{t+1} | x_{1:T}) =: \xi_t$  to estimate A.

$$\begin{aligned} \xi_t &:= p(z_t, z_{t+1} \mid x_{1:T}) \quad \text{two-slice smoothed marginals} \\ &= p(z_t \mid x_{1:t}) p(z_{t+1} \mid z_t, x_{t+1:T}) \\ &\propto p(z_t \mid x_{1:t}) p(z_{t+1}, x_{t+1:T} \mid z_t) \\ &= p(z_t \mid x_{1:t}) p(z_{t+1} \mid z_t) p(x_{t+1} \mid z_{t+1}, \not z_t) p(x_{t+2:T} \mid z_{t+1}, \not z_t, x_{t+T}) \\ &= (\alpha_t (B_{., x_{t+1}} \odot \beta_{t+1})^T) \odot A \end{aligned}$$



Planning and Optimal Control 4. Learning HMMs



## Smoothing / Forwards-Backwards Algorithm with two-sliced smoothed marginals

- <sup>1</sup> infer-smoothing-forwards-backwards( $x, A, B, \pi$ ):
- <sup>2</sup>  $\alpha := filtering-forwards(x, A, B, \pi)$
- $\beta := \mathsf{backwards}(x, A, B)$
- 4  $\gamma := \operatorname{normalize}(\alpha \odot \beta)$
- 5 for t = 1 : T 1:
- 6  $\xi_t := \operatorname{normalize}((\alpha_t(B_{.,\mathsf{x}_{t+1}} \odot \beta_{t+1})^T) \odot A))$
- 7 return  $\gamma, \xi_{1:T}$

#### where

►  $x, A, B, \pi$  as for forwards algorithm yields  $\gamma_{1:T} = (p(z_t | x_{1:T}))_{t=1:T}$  smoothed latent state and  $\xi_{1:T} = (p(z_t, z_{t+1} | x_{1:T}))_{t=1:T}$  two-slice smoothed marginals

#### Learning HMMs via EM

block coordinate descent / EM:

• maximize w.r.t.  $\pi$ , A, B (maximize, M-step):



$$\tilde{B}_{.,i} := \sum_{n=1}^{N} \sum_{t=1}^{I} \gamma_{n,t} \mathbb{I}(x_{n,t} = i), \quad i = 1, \dots, I$$
$$B := \text{normalize-rows}(\tilde{B})$$

• maximize w.r.t.  $\gamma, \xi$  (estimate, E-step):

▶ estimate  $\gamma_n, \xi_n$  using forwards-backwards algorithm for  $x_n, n = 1 : N$ 



#### Learning HMMs via EM

1 learn 
$$-HMM-EM(x_{1:N})$$
:  
2 initialize  $\pi, A, B$   
3 do until convergence:  
4 for  $n = 1 : N$ :  
5  $\gamma_n, \xi_n :=$  smoothing-forwards-backwards $(x_n, \pi, A, B)$   
6  $\pi :=$  normalize $(\sum_{n=1}^{N} \gamma_{n,1})$   
7  $A :=$  normalize-rows $(\sum_{n=1}^{N} \sum_{t=1}^{T_n-1} \xi_{n,t})$   
8 for  $i = 1 : I$ :  
9  $\tilde{B}_{.,i} := \sum_{n=1}^{N} \sum_{t=1}^{T} \gamma_{n,t} \mathbb{I}(x_{n,t} = i)$   
10  $B :=$  normalize-rows $(\tilde{B})$   
11 return  $\pi, A, B$ 

where

# ► $x_{1:N}$ with $x_n \in \{1, 2, ..., L\}^*$ observed sequences yields $\pi, A, B$ HMM parameters



#### Learning HMMs via EM



- ► \$\xi\_{n,t,g,h}\$ is the case weight for case (g, h) (for instance n, at time t) for the transition model
- this way EM generalizes to any observation and transition model by just replacing the M-step

#### Summary



- Hidden Markov Models (HMMs) model sequences via
  - ▶ a Markov Model on hidden states: transition model  $p(z_{t+1} | z_t)$  and
  - a model for observations per hidden state: **observation model**  $p(x_t \mid z_t)$ .
- The number of hidden states describes the **complexity** of a HMM.
- ► The probability p(z<sub>t</sub> | x<sub>1:t</sub>) of the current hidden state based on past observations can be inferred online (filtering; forwards algorithm).
- ► The probability p(z<sub>t</sub> | x<sub>1:T</sub>) of a hidden state based on past and future observations can be inferred by a two-pass algorithm (smoothing; forwards-backwards algorithm).
- The jointly most-probable hidden state sequence can be inferred using a two-pass algorithm (MAP; Viterbi algorithm).

## Summary (2/2)



- If "hidden" states are observed, HMMs are just Markov models and parameters can be learnt from observations by counting.
- For truely hidden states, HMMs can be learnt by an EM algorithm (Baum-Welch algorithm)
  - ► forwards-backwards algorithm is used for the E-step.

#### Further Readings

 Hidden Markov Models: Murphy 2012, chapter 17.





#### References

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

