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Planning and Optimal Control

Syllabus

A. Models for Sequential Data
Tue. 22.10. (1) 1. Markov Models
Tue. 29.10. (2) 2. Hidden Markov Models
Tue. 5.11. (3) 3. State Space Models
Tue. 12.11. (4) 3b. (ctd.)

B. Models for Sequential Decisions
Tue. 19.11. (5) 1. Markov Decision Processes
Tue. 26.11. (6) 1b. (ctd.)
Tue. 3.12. (7) 2. Introduction to Reinforcement Learning
Tue. 10.12. (8) 3. Monte Carlo and Temporal Difference Methods
Tue. 17.12. (9) 4. Q Learning
Tue. 24.12. — — Christmas Break —
Tue. 7.1. (10) 5. Policy Gradient Methods
Tue. 14.1. (11) tba
Tue. 21.1. (12) tba
Tue. 28.1. (13) 8. Reinforcement Learning for Games
Tue. 4.2. (14) Q&A
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Planning and Optimal Control 1. Markov Random Fields

Motivation

I models for sequential data often naturally can be written using
conditional density / probability functions conditioning on the past

I e.g., Markov models of type p(xt | xt−1) or the latent state transition
model p(zt | zt−1)

I for other types of structured data there usually is no such marked
direction

I e.g., for images

I directed graphical models / Bayesian networks such as Markov
Models and HMMs can be generalized to multidimensional data

I multidimensional HMMs

I require a direction to be marked, e.g., from top left to bottom right.

I but it “feels” somewhat artificial

 use undirected graphical models / Markov random fields
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Planning and Optimal Control 1. Markov Random Fields

Stochastic Processes & Random Fields

Stochastic process / random process / random function:

I a collection of random variables Xi indexed by some index set I

{Xi | i ∈ I}

I discrete-time: I = {a, a + 1, a + 2, . . . , b}, a ∈ Z ∪ {−∞}, b ∈ Z ∪ {∞}

I continuous-time: I = [a, b], a ∈ R ∪ {−∞}, b ∈ R ∪ {∞}

I Random field: I ⊆ RK or a grid (spatial) or a graph.

I = a density for structured data, on X I

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 39



Planning and Optimal Control 1. Markov Random Fields

Markov Random Fields

A random field p on an undirected graph I is called Markov if

I each variable is independent from all others given its neighbors

Xi ⊥ {Xi | i ∈ I} \ Ni \ {Xi} | Ni

Ni := {Xj | j ∈ I , j is a neighbor of i in I}
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Planning and Optimal Control 1. Markov Random Fields

Hammersley-Clifford Theorem

A random field p on I is Markov iff

I p factorizes into non-negative functions over maximal cliques in I :

∃(qc)c∈C : p(x) =
∏

c∈C
qc(xc)

C :={c ⊆ I | c is a maximal clique}
I qc are called potentials.
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Note: A set c of vertices is called a clique if all its nodes are linked in I .
A clique c is called maximal, if there is no clique d : d ) c.



Planning and Optimal Control 1. Markov Random Fields

Pairwise MRF

I potentials can be defined on any subsets of maximal cliques
I but not on supersets

I most simple non-trivial potentials: on every edge

p(x) =
∏

i ,j∈I linked

qi ,j(xi , xj)

I pairwise MRF
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Planning and Optimal Control 1. Markov Random Fields

Parametrizing Potentials I: Tables / Arrays

I potential functions q are parametrized
I so that parameters θ can be learnt to fit the model to data

I if all variables in a potential q are discrete,
the simplest parametrization is a table / a multidimensional array:

q(x1, . . . , xK ) = θx1,...,xK , θ ∈ (R+
0 )X 1×X 2×··· XK

I example:

θ =
x2 \ x1 red green blue
square 0.2 0.7 2.3
circle 0.5 0.0 0.2

I potentials are not normalized (generally do not sum to 1).
I for a general graph, there would be no guarantee that the product of

however normalized potentials again is normalized.
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Planning and Optimal Control 1. Markov Random Fields

Example: Image Segmentation
I let I = {1, . . . ,N} × {1, . . . ,M} be the coordinates of the pixels of an

N ×M image

I let’s define the graph on I to have an edge for neighboring pixels, i.e.,

(i , j) :∼ (i − 1, j), (i + 1, j), (i , j − 1), (i , j + 1)

I the state space X := {road, offroad, obstacle} are labels of the pixels
denoting the type of object they belong to.

I here, the maximal cliques are just single edges

I an MRF could define its pairwise potentials via a table:

q1,2(x1, x2) =

x1 \ x2 road offroad obstacle

road 0.9 0.1 0.2
offroad 0.1 0.9 0.01
obstacle 0.2 0.01 0.9
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Planning and Optimal Control 1. Markov Random Fields

The Partition Function

I potentials usually are not normalized / sum to 1.
I even if they would, for general graphs it would not guarantee that

their product is normalized.

I an MRF with parametrized potentials therefore is represented via

p(x | θ) =
1

Z (θ)

∏

c∈C
qc(xc | θc)

I Z (θ) is called partition function

Z (θ) :=
∑

x∈X

∏

c∈C
qc(xc | θc)

I Z makes the MRF p a proper probability function / sum to 1.

I Z in general depends on all parameters.

I . . . but on none of the xi .
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Planning and Optimal Control 1. Markov Random Fields

Parametrizing Potentials II: Features & Log-linear Models

I often array potentials do not work
I e.g., because they have too many parameters

if cliques are large or include nominal variables with many levels

I cliques contain continuous variables

I alternative approach:

1. define features φ(x1, . . . , xK ) for the variables of a potential q
2. define the potential as a log-linear model in the features:

q(x1, . . . , xK | θ) := eθ
Tφ(x1,...,xK )

= e
∑L

`=1 θ`φ`(x1,...,xK )

I aka maximum entropy model, maxent model

log p(x | θ) =
∑
c

θTc φc(xc)− logZ(θ)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 39



Planning and Optimal Control 1. Markov Random Fields

Example: Image Segmentation (ctd.)
I let’s define the graph on I to have an edge for pixels up to

L1-distance 2, i.e.,

(i, j) :∼

(i, j − 2)
(i − 1, j − 1) (i, j − 1) (i + 1, j − 1)

(i − 2, j) (i − 1, j) (i + 1, j) (i + 2, j)
(i − 1, j + 1) (i, j + 1) (i + 1, j + 1)

(i, j + 2)

I now maximal cliques are a pixel (i , j) and its four distance 1 neighbors

I instead we could define features, e.g.,
the frequency of each label in the neighborhood:

φ(xc)1 := frequency of road in xc

φ(xc)2 := frequency of offroad in xc

φ(xc)3 := frequency of obstacle in xc

I and potentials as log-linear model in these features:

qc(xc | θ) := eθ1φ(xc )1+θ2φ(xc )2+θ3φ(xc )3

q1,2(x1, x2) =

x1 \ x2 road offroad obstacle

road 0.9 0.1 0.2
offroad 0.1 0.9 0.01
obstacle 0.2 0.01 0.9
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Planning and Optimal Control 1. Markov Random Fields

Tables as Special Case of Log-Linear Models

I if we define a binary indicator feature for each joint variable value:

φ(x1, . . . , xK ) = (I((x1, . . . , xK ) = (x ′1, . . . , x
′
K )))(x ′1,...,x

′
K )∈XK

then the log-linear model is just the array potential.
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Planning and Optimal Control 1. Markov Random Fields

Parametrizing Potentials III: Parameter Sharing

I often different potentials describe the same relation,
just between different sets of variables

I e.g., q1,2 and q5,17 describe the relation between a pixel and its
neighbors, but for different image patches

I one centered at (1,2), the other at (5,17)

I such potentials (and their parameters) often can be shared

qc(xc | θc) = q(xc | θ)

I example: image segmentation
I usually potentials will not depend on the reference pixel,

but all be shared.

I parameter sharing allows to roll-out a MRF to graphs of different sizes
I e.g., images of different width and height

I MRF with shared parameters define MRF templates
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Planning and Optimal Control 2. Inference in MRFs

MRF Inference

Inference in MRF (and generally graphical models) requires work:
I exact inference:

I join tree algorithm

I simpler (less efficient) algorithm:
I variable elimination / bucket elimination

I approximate inference:
I variational inference

I inference via sampling / Monte Carlo inference
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Planning and Optimal Control 2. Inference in MRFs

Inference I: Margin Query

I MRF:

p(X ) =
∏

c∈C
qc(Xc), C ⊆ P(I )

where I indices of variables,
X i domain of variable Xi for i ∈ I ,
Xc = (Xi )i∈c , xc = (xi )i∈c , X c =

∏
i∈c X i for i ∈ I ,

C set of cliques c ⊆ I ,
qc : X c → R+

0 clique potential of c ∈ C

I margin query:
I target variables T ⊆ I

p(XT ) =
∑

xR∈XR

p(XT ,XR = xR), R := I \ T
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Planning and Optimal Control 2. Inference in MRFs

Variable eliminiation

I idea:
I marginalize out one non-target variable Xi at a time

I collect all potentials containing this variable

I . . . and replace them by their product
I summing over all possible values for Xi

I materializing the product as array
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Planning and Optimal Control 2. Inference in MRFs

Variable eliminiation / Algorithm
1 infer-mrf-varelim(T , (qc)c∈C ) :
2 while

⋃
c∈C c \ T 6= ∅:

3 choose i ∈ ⋃c∈C c \ T arbitrarily
4 (C , q) := eliminate-variable(i ,C , q)
5 p :=

∏
c∈C qc

6 p := normalize(p)
7 return p
8 eliminate-variable(i ,C , (qc)c∈C ) :
9 D := {c ∈ C | i ∈ c}

10 c ′ :=
⋃

c∈D c \ {i}
11 qc′ :=

(∑
xi∈X i

∏
c∈D qc(xi , (xc′)c∩c′)

)
xc′∈X c′

12 C ′ := C \ D ∪ {c ′}
13 return C ′, (qc)c∈C ′

where

I T ⊆ I target variables to infer marginal of
I (qc)c∈C MRF defined by a set of potentials on c ⊆ I

yields (pxT )xT∈XT marginal of variables T
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Planning and Optimal Control 2. Inference in MRFs

Inference / Variable eliminiation / Example
I I := {A,B,C ,D,E ,F}
I C := {{A}, {A,B}, {A,C}, {B,D}, {B,C ,E}, {C ,F}, {F}}
I T := {D}

I elimination sequence: F ,E ,C ,A,B

I compute: q(C ) :=
∑

F

q(C ,F ) q(F )

q(B,C ) :=
∑

E

q(B,C ,E ) q(C )

q(A,B) :=
∑

C

q(B,C ,E ) q(C ) q(A,B) q(A)

q(B,D) :=
∑

A

q(A,B) q(B,D)

q(D) :=
∑

B

q(B,D)
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Planning and Optimal Control 2. Inference in MRFs

Inference II: Conditional Probabilities p(A | B = b)

I in general, A and B could denote sets/vectors of variables:
p(Xi1 ,Xi2 , . . . ,XiN | Xj1 = b1,Xj2 = b2, . . . ,XjM = bM}

A = (Xi1 ,Xi2 , . . . ,XiN )

B = (Xj1 ,Xj2 , . . . ,XjM )

b = (b1, . . . , bM)

I for each conditioning variable / value pair (Bm, bm) = (Xjm , bm)
add an evidence potential epdjm,bm :

epdi ,b : X i → R+
0

x 7→ I(x = b)

I infer marginal of A for the potentials
p′ := p ∪ {epdi ,b | (i , b) ∈ zip(B, b)}
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Note: zip(A,B) := {(Ai ,Bi ) | i = 1, . . . , |A|} for two sequences A ∈ X ∗,B ∈ Y∗ of equal
length.



Planning and Optimal Control 2. Inference in MRFs

Infering Conditional Probabilities / Example
I let us model the following rules:

I if there is precipitation, roads are three times more likely to be slippery.

I if there is frost, roads are two times more likely to be slippery.

I A: There is heavy precipitation.
B: There is frost.
C : Roads are slippery.

q(A,C ) =

(
0.5 0.5

0.25 0.75

)
, q(B,C ) =

(
0.5 0.5
0.3 0.7

)

I What are the chances of the road to be slippery if there is
precipitation, but no frost?

p(C | A = 1,B = 0)
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Planning and Optimal Control 2. Inference in MRFs

Infering Conditional Probabilities / Example
I initial potentials:

q(A,C ) =

(
0.5 0.5

0.25 0.75

)
, q(B,C ) =

(
0.5 0.5
0.3 0.7

)
,

q(A) = epdA,1(A) =
(

0 1
)
, q(B) = epdB,0(B) =

(
1 0

)

I eliminate A:

q(C ) =
∑

A

q(A,C )q(A) =
(

0.25 0.75
)

I eliminate B:

q′(C ) =
∑

B

q(B,C )q(B) =
(

0.5 0.5
)

I collect: q′′(C ) = q(C )� q′(C ) =
(

0.25 0.75
)
�
(

0.5 0.5
)

=
(

0.125 0.375
)

normalization(q′′)(C ) =
(

0.25 0.75
)
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Planning and Optimal Control 2. Inference in MRFs

Inference III: Expectations E(f (XT ))

for a general function

f : XT → R, T ⊆ I

I infer marginal p(XT )

I compute array (f (XT ))xT∈XT
elementwise

I sum all cells of the elementwise tensor product p(XT ) f (XT )

E(f (xT )) =
∑

xT∈XT

p(xT ) f (xT )
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Planning and Optimal Control 3. Learning MRFs

Learning Maxent Models via Gradient Descent

I gradients for maxent models are straight-forward to derive:

`(θ; x) := log p(x | θ) =
∑

c

θTc φc(xc)− log Z (θ)

∇θc `(θ; x) = φc(xc)−∇θc log Z (θ)

Z (θ) :=
∑

x∈X

∏

c∈C
eθ

T
c φc (xc )

∇θc log Z (θ) =
1

Z (θ)

∑

x∈X

∏

c∈C
eθ

T
c φc (xc ) φc(xc)

=
∑

x∈X
p(x | θ)φc(xc) = E(φc(Xc))

 ∇θc `(θ; x) = φc(xc)− E(φc(Xc))

I but it requires inference in the model to compute E(φc(Xc)) !
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Planning and Optimal Control 3. Learning MRFs

Learning Maxent Models via Gradient Descent

1 learn-mrf-gd(x , (qc)c∈C , η,K , ε):
2 for c ∈ C : θc := 1Θc

3 for k := 1 : K :
4 for c ∈ C : fc := 0
5 for n = 1 : N:
6 for c ∈ C :
7 fc += φ(xn,c)/N
8 for c ∈ C :
9 pc := infer-mrf(c , (qc(θc))c∈C )

10 gc := 0

11 for v ∈ X C :
12 gc += pc(v) · φ(v)
13 ∆θc := fc − gc

14 if
∑

c ||∆θc ||2 < ε:
15 return (θc)c∈C
16 for c ∈ C :
17 θc := θc − η∆θc
18 return ‘‘ non converged in K steps’’

where

I x ∈ (X I )∗ data

I (qc)c∈C potentials of cliques,
having parameters θc ∈ Θc

I C ⊆ 2I variables of the
potentials / maximal cliques of
graph I

I η steplength

I K maximal number of iterations

I ε minimum gradient norm

yields (θc)c∈C parameters of the
potentials
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Planning and Optimal Control 3. Learning MRFs

Optimality Criterion: Matching Moments

`(θ; x1:N) :=
1

N

N∑

n=1

log p(xn | θ)

∇θc `(θ; x) =
1

N

N∑

n=1

φc(xn,c)−∇θc log Z (θ)

= Epemp(φc(xc))− Ep(φc(xc))

thus at ∇θc `(θ; x) = 0:

Epemp(φc(xc)) = Ep(φc(xc))

I moment matching
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Planning and Optimal Control 3. Learning MRFs

Learning Maxent Models via Iterative Proportional Fitting

I for array potentials

Ep(φc(xc)) = Ep(I(xc = x ′))x ′∈X c = p(xc | θ) ∝ θc,xc

Epemp(φc(xc)) = Epemp(I(xc = x ′))x ′∈X c = pemp(xc) =
1

N

N∑

n=1

I(xn,c = xc)

I fixpoint iteration:

θ
(t+1)
c,xc = θ

(t)
c,xc

p(xc | θ(t))

pemp(xc)
, xc ∈ X c

I approximate inference
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Planning and Optimal Control 3. Learning MRFs

Learning Maxent Models via Iterative Proportional Fitting

1 learn-mrf-ipf(x , (qc)c∈C ):
2 for c ∈ C :
3 θc := 1Θc

4 pemp,c := ( 1
N

∑N
n=1 I(xn,c = x ′c))x′

c∈X c

5 repeat
6 for c ∈ C :
7 p := infer-mrf(c , (qc(θc))c∈C )
8 for xc ∈ X c :
9 θc,xc := θc,xc

pxc
(pemp,c )xc

10 until convergence
11 return (θc)c∈C

where

I x ∈ (X I )∗ data

I (qc)c∈C potentials of cliques,
having parameters θc ∈ Θc

I C ⊆ 2I variables of the
potentials / maximal cliques of
graph I

yields (θc)c∈C parameters of the
potentials
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Planning and Optimal Control 4. Partially Observed Markov Random Fields

Learning via EM Algorithm

Learning from complete data we just discussed in the last section.

For incomplete data use EM:
I E-step: complete the data using inference

I inference for every instance individually

I joint marginals for variables cooccurring in the same clique/potential

I every instance is split into possible completions
I the probability of the completion figures as caseweight for the M-step

I possibly different splittings for every clique

I M-step: update parameters θ using a method for learning from
complete data.

I e.g., gradient descent
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Planning and Optimal Control 4. Partially Observed Markov Random Fields

Case weight for joint completions X c∩Z of instance x :

wc,x := p(c ∩ Z | X = xc), c ∈ C , x ∈ X
where

X := (X1, . . . ,XM) observed variables

Z := (Z1, . . . ,ZK ) latent variables

∇θc `(θ; x) = φc(xc)− E(φc(Xc))

 ∇θc `(θ; x , z) =
∑

zc∈X c∩Z

wc,x (φc(xc , zc)− E(φc(Xc , zc)))

=


 ∑

zc∈X c∩Z

wc,xφc(xc , zc)


− E(φc(Xc))
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Planning and Optimal Control 5. Conditional Random Fields

The Sequence Labeling Problem

Given data Dtrain of N pairs (xn, yn) of sequences xn ∈ X ∗, yn ∈ Y∗ of
same length,

I xn called predictor sequence,
I yn called target sequence

and a loss function ` : Y∗×Y∗ → R, learn the parameters θ of a model

p(y | x , θ)

s.t. for yet unseen data Dtest the loss

`(ŷ ;Dtest) =
1

|Dtest|
∑

(x ,y)∈Dtest

`(y , ŷ(x))

is minimal.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 39



Planning and Optimal Control 5. Conditional Random Fields

The Sequence Labeling Problem / Example

Part of speech tagging:
I predictor sequence x : words of a sentence.

I e.g., At the banks Jim is catching a big fish.

I target sequence y : part of speech classes of each word.
I e.g., pre art N N V V art adj N

I a label for each element of the sequence:

At the banks Jim is catching a big fish.
| | | | | | | | |

pre art N N V V art adj N

I usually 9 different POS classes/tags/labels for English:

noun: car pronoun: she adjective: yellow
verb: to drive adverb: gracefully preposition: under

conjunction: and interjection: hurray article: the
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Label Sequencing Models 1: HMMs

I model targets yt by hidden states zt ,
predictors xt by observations xt .

p(x1:T , y1:T | θ) = p(y1 | θ)
T∏

t=2

p(yt | yt−1, θ)
T∏

t=1

p(xt | yt , θ)

I learning:
I simple, from fully observed data.

I prediction:
I compute MAP p(z1:T | x1:T ) (decoding)

I but HMMs are generative models
I spend data to learn generative models of the predictors xt

I like Linear Discriminant Analysis vs. Logistic Regression
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Label Sequencing Models 2: MEMMs

I Maximum entropy markov model (MEMM)

p(y1:T | x1:T , θ) = p(y1 | x1, θ)
T∏

t=2

p(yt | yt−1, xt , θ)

I = Markov chain with state transition conditionend on concurrent
predictor

I but yt does not depend on future predictors xt+1:T

I yt and xt+1 are d-separated by v-connection at yt+1.

I in the POS example, x9 =fish would not allow to recognize x3 =banks
as noun (riverbank) instead of as verb (to bank in the financial sense).

I called “label bias problem”
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Label Sequencing Models 3: CRFs

I Conditional Random Fields (CRFs)

p(y1:T | x1:T , θ) =
1

Z (x1:T , θ)

T∏

t=1

q(yt | xt , θ)
T∏

t=2

q(yt , yt−1 | xt , xt−1, θ)

often with log-linear potentials

q(yt | xr , θ) = e
θT

(t)
φ(xt ,yt ,yt−1)

q(yt , yt−1 | xt , xt−1, θ) = e
θT

(t,t−1)
φ(xt ,xt−1,yt ,yt−1)

I = MRF with potentials depending on all predictors

I in CRFs, yt does depend on xt+1:T (through yt+1)
I because q(yt+1, yt) is not conditioned on yt as p(yt+1 | yt) is.
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Example: Handwriting Recognition
686 Chapter 19. Undirected graphical models (Markov random fields)

(a) (b) (c) (d) (e)

Figure 19.15 Example of handwritten letter recognition. In the word ’brace’, the ’r’ and the ’c’ look very
similar, but can be disambiguated using context. Source: (Taskar et al. 2003) . Used with kind permission
of Ben Taskar.

suppose that later in the sentence, we see the word “fishing”; this gives us enough context to
infer that the sense of “banks” is “river banks”. However, in an MEMM (unlike in an HMM and
CRF), the “fishing” evidence will not flow backwards, so we will not be able to disambiguate
“banks”.

Now consider a chain-structured CRF. This model has the form

p(y|x,w) = 1

Z(x,w)

T∏

t=1

ψ(yt|x,w)
T−1∏

t=1

ψ(yt, yt+1|x,w) (19.67)

From the graph in Figure 19.14(c), we see that the label bias problem no longer exists, since yt
does not block the information from xt from reaching other yt′ nodes.

The label bias problem in MEMMs occurs because directed models are locally normalized,
meaning each CPD sums to 1. By contrast, MRFs and CRFs are globally normalized, which
means that local factors do not need to sum to 1, since the partition function Z , which sums over
all joint configurations, will ensure the model defines a valid distribution. However, this solution
comes at a price: we do not get a valid probability distribution over y until we have seen
the whole sentence, since only then can we normalize over all configurations. Consequently,
CRFs are not as useful as DGMs (whether discriminative or generative) for online or real-time
inference. Furthermore, the fact that Z depends on all the nodes, and hence all their parameters,
makes CRFs much slower to train than DGMs, as we will see in Section 19.6.3.

19.6.2 Applications of CRFs

CRFs have been applied to many interesting problems; we give a representative sample below.
These applications illustrate several useful modeling tricks, and will also provide motivation for
some of the inference techniques we will discuss in Chapter 20.

19.6.2.1 Handwriting recognition

A natural application of CRFs is to classify hand-written digit strings, as illustrated in Figure 19.15.
The key observation is that locally a letter may be ambiguous, but by depending on the (un-
known) labels of one’s neighbors, it is possible to use context to reduce the error rate. Note
that the node potential, ψt(yt|xt), is often taken to be a probabilistic discriminative classifier,

[source: Murphy 2012, p.686]

I recognize handwritten texts

q(yt | x1:T , θ) := q(yt | xt , θ1) := deep neural network for letters

q(yt , yt−1 | x1:T , θ) := q(yt , yt−1 | θ2) := language bigram model
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Conditional Random Fields

I many CRFs are chain-structured as the ones discussed

I CRFs can be defined more generally on arbitrary targets y structured
by a graph I :

p((yi )i∈I | x , θ) =
1

Z (x , θ)

∏

c∈C
q(yc | x , θ)

often with log-linear potentials

q(yc | x , θ) = eθ
T
c φ(x ,yc )

I = MRF with potentials depending on all predictors
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Learning CRFs via Gradient Descent

I gradients for CRFs are straight-forward to derive:

`(θ; y , x) := log p(y | x , θ) =
∑

c

θTc φc(yc , x)− log Z (x , θ)

∇θc `(θ; y , x) = φc(yc , x)−∇θc log Z (x , θ)

Z (x , θ) :=
∑

y∈Y

∏

c∈C
eθ

T
c φc (yc ,x)

∇θc log Z (x , θ) =
1

Z (θ

∑

y∈Y

∏

c∈C
eθ

T
c φc (yc ,x) φc(yc , x)

=
∑

y∈Y
p(y | x , θ)φc(yc , x) = E(φc(yc , x))

 ∇θc `(θ; y , x) = φc(yc , x)− E(φc(yc , x))

I requires N inferences in the model to compute E(φc(yn,c , xn)) !
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Summary (1/3)
I Random fields / stochastic processes are densities for structured

data
I represented by a set of random variables indexed by a (undirected)

graph.

I Markov random fields
I each variable is independent from all others given its neighbors

or equivalently
I decompose in a product over the maximal cliques.

I clique factors are called potentials.

I Potentials usually are parametrized:
I parametrized as arrays:

I an array with a value for every combination of values of the variables.
I parametrized by features and a log-linear model:

q(x1:K | θ) = eθ
Tφ(x1:K )

I parameter sharing for potentials describing the same relation between
different instances / sets of variables

I see also Markov Logic networks
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Summary (2/3)

I The partition function enforces the marginal of the product of
potentials to be 1.

I depending on all parameters

I it usually is given only implicitly as sum over all possible instances
and thus cannot be computed but for very simple models.

I A simple method for inference in MRFs is variable eliminiation.
I marginalize out one non-target variable at a time

I multiplying all potentials containing this variable

I observed variables are represented by evidence potentials.

I MRFs can be learned by gradient descent.
I due to the partition function requires inference of the expected features

I one inference per gradient step (and clique/potential)
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Summary (3/3)

I Partially observed MRFs may contain latent variables.
I can be learned by EM.

I M-step: gradient descent as for fully observed MRFs.

I E-step: infer distribution of latent variables
I for each clique containing a latent variable

I joint distribution per clique

I requires N inferences per EM step (and affected clique/potential)

I Conditional random fields make potentials depend on the
predictors.

I to ensure that a target can depend on future observations
(for the sequence labeling problem; “label bias problem”).

I also can be learned by gradient descent as well.

I also require N inferences per gradient step (and clique/potential)
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Further Readings

I Markov random fields:
I Murphy 2012, chapter 19.
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