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Syllabus

A. Models for Sequential Data
Tue. 22.10. (1) 1. Markov Models
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Tue. 5.11. (3) 3. State Space Models
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B. Models for Sequential Decisions
Tue. 19.11. (5) 1. Markov Decision Processes
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Planning and Optimal Control 1. Introduction

Policy Inference vs. Policy Learning

I Markov Decision Problem:
I transition model p and reward model r are known.

I compute an optimal policy
(optimal policy inference).

I Reinforcement Learning:
I transition model p and reward model r are not known.

I learn an optimal policy from state/action/reward sequence data
(optimal policy learning).
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Planning and Optimal Control 1. Introduction

Problems & Sampling MDP Data

a. state/action/reward Markov process learning:
I learn the

I transition model Pπ of the state/action/reward Markov process or the
I value function V π

of an MDP under a fixed pre-existing policy π.
I called generating policy, explorative policy or sampling policy.
I π does not depend on past samples and current estimates.
I e.g., choose actions in each state uniformly at random

b. MDP learning:
I learn the transition model p and reward model r of an MDP.

I passive sampling: sample with a generating policy that
I does not depend on past samples and current estimates, but should

I guarantee to explore the whole state/action space.

I active sampling: use a generating policy that
I selects actions s.t. informative samples are created.

— e.g., uncertain transitions, uncertain rewards.
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Planning and Optimal Control 1. Introduction

Problems & Sampling MDP Data (2/2)

c. reinforcement learning:
I learn an optimal policy π∗,

without knowing the MDP (p, r).
I i.e., a policy with maximal value function.

I the generating policy has to balance
I exploration of actions with uncertain effects (on transitions and

rewards) and

I exploitation of actions with likely best value

to ensure focus on valuable actions.

d. joint process learning and control:
I create state/action/reward sequences with maximal value.

I i.e., learn and execute a policy that overall will lead to maximal value
at the same time.

I such a policy also needs to balance exploration and exploitation
to ensure it realizes a high value.
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Planning and Optimal Control 1. Introduction

Reinforcement Learning Approaches

1. model-based reinforcement learning:
I given state/action/reward sequences, learn the MDP model (p, r),

I afterwards use a policy optimization algorithm on the learnt model
to find an optimal policy.

2. direct reinforcement learning:
I given state/action/reward sequences, learn the

I optimal policy π∗ or even only the

I value function V ∗ or the

I action value function Q∗ of the optimal policy.
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Planning and Optimal Control 1. Introduction

Generating Policies

I uniform at random policy:

πuniform(s, a) :=
1

|A|
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Planning and Optimal Control 2. Monte Carlo Methods

Observed and Estimated Values

data: N state/action/reward sequences sampled from an MDP with
unknown transition/reward model under a policy π:

D := {((sn,t , an,t , rn,t)t=0:Tn−1, sTn ) | n = 1 : N} ⊆ (S × A× R)∗ × S

observed values:

Vn,t := value(rn,t:Tn−1), n = 1 : N, t = 0 : Tn − 1

e.g., for the discounted criterion:

:=
Tn−1∑
t′=t

γt′−t rn,t′

occurrences of state s ∈ S in data D:

Is := {(n, t) | n = 1 : N, t = 0 : Tn − 1, sn,t = s}
estimated value of state s ∈ S :

V̂s :=
1

|Is |
∑

(n,t)∈Is

Vn,t
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Planning and Optimal Control 2. Monte Carlo Methods

Observed Values?

I in general, values cannot be observed.
I as they may depend on infinitely many future rewards.

I to observe values, one needs to ensure/assume that all sequences
terminate in a state of true value zero:

Vn,Tn = 0 n = 1 : N

I e.g., if the state Markov chain has an absorbing state s with reward 0,

∀s ′∃t : p(st = s | s0 = s ′) = 1, p(s | s) = 1, ∀a : r(s, a) = 0

all sequences will be essentially finite (terminal state).
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Planning and Optimal Control 2. Monte Carlo Methods

Excursion: Online Update of the Mean
I given: streaming data xt ∈ R, t = 1, 2, 3, . . ..
I wanted: mean µT of values received so far (for any T ).

I method 1: store data
I store all data:

X0 := ()

XT := XT−1 ⊕ (xT )

I µT := 1
|XT |

∑|XT |
t=1 Xt

I method 2: maintain sum and length (online update)
I maintain sum and length:

s0 := 0, L0 := 0

sT := sT−1 + xT , LT := LT−1 + 1

I µT := sT

LT

I method 3: maintain mean and length (online update)
I maintain mean and length:

µ0 := 0, L0 := 0

µT := µT−1 +
1

LT−1 + 1
(xT − µT−1), LT := LT−1 + 1
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Planning and Optimal Control 2. Monte Carlo Methods

Recursive Estimation of Values

observed state values:

Vs,k := Vnk ,tk
for Is = {(n1, t1), (n2, t2), . . . , (nK , tK )}

estimated state values from first k occurrences:

V̂s,k :=
1

k

k∑
j=1

Vs,j

= V̂s,k−1 +
1

k
(Vs,k − V̂s,k−1)

V̂s,0 := 0

I does not have to store all values Vs,k for all k,
I but just two values: V̂s,k (for current k) and k itself.

(online update of the mean).
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Planning and Optimal Control 2. Monte Carlo Methods

Recursive Estimation of Values

for

V̂s,k = V̂s,k−1 +
1

k
(Vs,k − V̂s,k−1)

and even with

V̂s,k = V̂s,k−1 + αk (Vs,k − V̂s,k−1), αk > 0, αk → 0

we will get

lim
k→∞

V̂s,k = V π(s)
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Planning and Optimal Control 2. Monte Carlo Methods

Monte Carlo method update rule

Monte Carlo method update rule:

V̂st := V̂st + αk(st )(rt + γrt+1 + γ2rt+2 + · · ·+ γT−1−trT−1 − V̂st ),

t = 0 : T − 1

I update values of all visited states after completion of each sequence
s, a, r ,T := sn, an, rn,Tn.

I as it has to compute the observed value from all future rewards

I k(s) keeps track of the frequency of state s seen so far.
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Planning and Optimal Control 2. Monte Carlo Methods

Monte Carlo Value Function Learning Algorithm
1 learn-value-discounted-mc(S ,A, γ, sterm,N, π, v0, α):

2 V̂ := (v0)s∈S , k := (0)s∈S

3 for n := 1, . . . ,N:
4 (s, a, r ,T ) := generate-episode(S ,A, sterm, π)
5 for t := 0, . . . ,T − 1:

6 V̂st := V̂st + αk(st )((
∑T−1

t′=t γ
t′−trt′)− V̂st )

7 k(st) := k(st) + 1

8 return V̂
9

10 generate-episode(S ,A, sterm, π):
11 s := (), a := (), r := (),T := 0
12 s0 := new process()
13 while sT 6= sterm:
14 aT := π(sT )
15 (rT , sT +1) := execute action(sT , aT )
16 T := T + 1
17 return (s, a, r ,T )
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where

I sterm terminal state with zero reward.
I π generating policy
I v0 ∈ R initial value of all states.
I αk learning rate for update step k, e.g., αk := 1/k.
I new process() sets up a new process.
I execute action(s, a) executes action a in process in

state s.



Planning and Optimal Control 2. Monte Carlo Methods

Unbiased Estimation from First Visit only

I if a state if visited twice in a sequence,
two estimates of its value enter the overall mean (all visits).

I which are not independent and introduce a bias.

I fix: retain only the first occurrence (first visit)
I unbiased

I experimentally said to yield somewhat smaller squared error.
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Planning and Optimal Control 3. Learning the Value Function: TD(0)

Temporal Differences
Monte Carlo: update after completion of a sequence:

V̂st = V̂st + α(rt + γrt+1 + γ2rt+2 + · · ·+ γT−trT − V̂st ), t = 1 : T

Temporal differences:

V̂st = V̂st + α(rt + γrt+1 + γ2rt+2 + · · ·+ γT−trT − V̂st )

= V̂st + α( ( rt +γV̂st+1− V̂st )

+γ ( rt+1 +γV̂st+2− V̂st+1)

+γ2 ( rt+2 +γV̂st+3− V̂st+2)
...

+γT−t(rT−1+ γV̂sT
−V̂sT−1

))

= V̂st + α(δt + γδt+1 + γ2δt+2 + . . . γT−tδT−1)

δt := rt + γV̂st+1 − V̂st
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Note: Still assuming the sequence terminates in a value 0 state: V̂sT = VsT = 0.



Planning and Optimal Control 3. Learning the Value Function: TD(0)

Temporal Difference update rule TD(0):

V̂st = V̂st + α(rt + γV̂st+1 − V̂st )

I update values of a visited state immediately after action is taken,
reward is received and next state has been determined.

I TD(0) estimates only the value function.
I the value function of the generating policy.

I if the transition model is known,
one easily can estimate a policy from its value function, e.g.,

π∗(s) ∈ arg max
a∈A

(r(s, a) + γ
∑
s′∈S

p(s ′ | s, a)V ∗γ (s ′)), s ∈ S

I but without access to the transition model,
the value function alone does not allow to do so.
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Planning and Optimal Control 3. Learning the Value Function: TD(0)

TD(0) Value Function Learning Algorithm

1 learn-value-discounted-td0(S ,A, γ, sterm,N, π, v0, α):

2 V̂ := (v0)s∈S

3 for n := 1, . . . ,N:
4 s := (), a := (), r := (), t := 0
5 s0 := new process()
6 while st 6= sterm:
7 at := π(st)
8 (rt , st+1) := execute action(st , at)

9 V̂st := V̂st + α(rt + γV̂st+1 − V̂st )
10 t := t + 1

11 return V̂
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where

I sterm terminal state with zero reward.
I π generating policy
I v0 ∈ R initial value of all state pairs.
I αk learning rate for update step k, e.g., αk := 1/k.
I new process() sets up a new process.
I execute action(s, a) executes action a in process in

state s.
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Planning and Optimal Control 4. Learning the Action Value Function: SARSA

Action Value Function
Given

I an MDP (p, r),
I a value aggregation function value(r1, r2, . . .)

I e.g., for discounted criterion: value(r1, r2, . . .) := r1 + γr2 + γ2r3 + . . .)

I a policy π:

value function (review):

V π(s) := E(value(r0, r1, . . . , rt , . . .) | s0 = s, π), s ∈ S

action value function:

Qπ(s, a) := E(value(r0, r1, . . . , rt , . . .) | s0 = s, a0 = a, π)

I value when taking action a in state s
I regardless what policy π would do

I and afterwards following policy π.
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Planning and Optimal Control 4. Learning the Action Value Function: SARSA

Optimal Action Value Function

action value function:

Qπ(s, a) := E(value(r0, r1, . . . , rt , . . .) | s0 = s, a0 = a, π)

Bellman equation for optimal action value function:

Q∗(s, a) = r(s, a) + γ
∑

s′

p(s ′ | s, a) max
a′

Q∗(s ′, a′), s ∈ S , a ∈ A

Optimal value function from optimal action value function:

V ∗(s) = max
a

Q∗(s, a), s ∈ S

Optimal policy from optimal action value function:

π∗(s) = arg max
a

Q∗(s, a), s ∈ S
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Planning and Optimal Control 4. Learning the Action Value Function: SARSA

Monte Carlo for the Action Value Function

Monte Carlo method Action Value update rule:

Q̂st ,at := Q̂st ,at +αk(st ,at )(rt +γrt+1 +γ2rt+2 +· · ·+γT−1−trT−1−Q̂st ,at ),

t = 0 : T − 1

I update values of all visited state/action pairs after completion of
each sequence s, a, r ,T := sn, an, rn,Tn.

I as it has to compute the observed value from all future rewards

I k(s, a) keeps track of the frequency of the state/action pair (s, a)
seen so far.
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Planning and Optimal Control 4. Learning the Action Value Function: SARSA

Monte Carlo Action Value Function Learning Algorithm

1 learn-action-value-discounted-mc(S ,A, γ, sterm,N, π, q0, α):

2 Q̂ := (q0)s∈S,a∈A, k := (0)s∈S,a∈A

3 for n := 1, . . . ,N:
4 (s, a, r ,T ) := generate-episode(S ,A, sterm, π)
5 for t := 0, . . . ,T − 1:

6 Q̂st ,at := Q̂st ,at + αk(st ,at )((
∑T−1

t′=t γ
t′−trt′)− Q̂st ,at )

7 k(st , at) := k(st , at) + 1

8 return Q̂
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where

I sterm terminal state with zero reward.
I π generating policy
I q0 ∈ R initial value of all state/action pairs.
I αk learning rate for update step k, e.g., αk := 1/k.



Planning and Optimal Control 4. Learning the Action Value Function: SARSA

Generating Policies II

I uniform at random policy:

πuniform(s, a) :=
1

|A|
I maximally explores all actions.

I greedy policy:
πgreedy(s; Q̂) := arg max

a∈A
Q̂(s, a)

I maximally exploits current estimates; does not guarantee exploration.

I ε-greedy policy:

π(s, a; Q̂, ε) := (1− ε)πgreedy(s, a; Q̂) + ε πuniform(s, a), ε ∈ [0, 1]

I Boltzmann at random policy:

π(s, a; Q̂, τ) :=
eQ̂(s,a)/τ∑

a′∈A eQ̂(s,a′)/τ
, τ → 0
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Note: πgreedy(s, a; Q̂) := I(a = arg maxa′∈A Q̂(s, a′))
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How to Learn the Optimal Policy

I let the sampling policy π approach the greedy policy.
I e.g., ε-greedy with ε→ 0

I or Boltzmann at random with τ → 0.

I then Q̂π → Q∗

Monte Carlo Optimal Policy Learning Algorithm:

1 learn-opt-policy-discounted-mc(S ,A, γ, sterm,N, π, q0, α):

2 Q̂ := learn-action-value-discounted-mc(S ,A, γ, sterm,N, π, q0, α)
3 for s ∈ S :

4 π̂∗s := arg maxa∈A Q̂s,a

5 return Q̂, π̂∗
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where

I sterm terminal state with zero reward.
I π generating policy, depending on Q̂, approaching the

greedy policy.
I q0 ∈ R initial value of all state/action pairs.
I αk learning rate for update step k, e.g., αk := 1/k.
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Temporal difference update rule for action value function (SARSA):

Q̂st ,at = Q̂st ,at + α(rt + γQ̂st+1,at+1 − Q̂st ,at )

I update values of a visited state after an action is taken, a reward is
received and the next state and next action has been determined.

I requires (st , at , rt , st+1, at+1), therefore name SARSA.

I SARSA estimates the action value function,
thus allows to infer the generating policy (“on policy”).
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Planning and Optimal Control 4. Learning the Action Value Function: SARSA

SARSA Algorithm

1 learn-opt-policy-discounted-sarsa(S ,A, γ, sterm,N, π, q0, α):

2 Q̂ := (q0)s∈S,a∈A

3 for n := 1, . . . ,N:
4 s ′ := new process()
5 a′ := π(s ′)
6 while s ′ 6= sterm:
7 s := s ′

8 a := a′

9 (r , s ′) := execute action(s, a)
10 a′ := π(s ′)

11 Q̂s,a := Q̂s,a + α(r + γQ̂s′,a′ − Q̂s,a)
12 for s ∈ S :
13 π̂∗s := arg maxa∈A Q(s, a)

14 return Q̂, π̂∗
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where

I sterm terminal state with zero reward.
I π generating policy, depending on Q̂, approaching the

greedy policy.
I q0 ∈ R initial value of all state/action pairs.
I αk learning rate for update step k, e.g., αk := 1/k.
I new process() sets up a new process.
I execute action(s, a) executes action a in process in

state s.
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Summary

I Reinforcement learning aims to learn the optimal policy for an
unknown MDP (that can be sampled from / operated).

I Monte Carlo Methods estimate the value function V π of a policy
based on single, complete episodes.

I Temporal Difference Methods update the value function faster
already after each individual action / step.

I The optimal action value function Q∗ allows to reconstruct the
optimal policy without knowledge of the transition model.

I while the optimal value function V ∗ requires the transition model, too.

I Both, Monte Carlo and Temporal Difference Methods can also be
used to learn the action value function Q (SARSA algorithm).
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Further Readings

I Reinforcement Learning:
I Olivier Sigaud, Frederick Garica (2010): Reinforcement Learning, ch. 1

in Sigaud and Buffet [2010].

I Sutton and Barto [2018]
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