
Planning and Optimal Control

Planning and Optimal Control
6. Introduction to Reinforcement Learning

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 25

Planning and Optimal Control

Syllabus

A. Models for Sequential Data
Tue. 22.10. (1) 1. Markov Models
Tue. 29.10. (2) 2. Hidden Markov Models
Tue. 5.11. (3) 3. State Space Models
Tue. 12.11. (4) 3b. (ctd.)

B. Models for Sequential Decisions
Tue. 19.11. (5) 1. Markov Decision Processes
Tue. 26.11. (6) 1b. (ctd.)
Tue. 3.12. (7) 1c. (ctd.)
Tue. 10.12. (8) 2. Monte Carlo and Temporal Difference Methods
Tue. 17.12. (9) 3. Q Learning
Tue. 24.12. — — Christmas Break —
Tue. 7.1. (10) 4. Policy Gradient Methods
Tue. 14.1. (11) tba
Tue. 21.1. (12) tba
Tue. 28.1. (13) 8. Reinforcement Learning for Games
Tue. 4.2. (14) Q&A

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 25

Planning and Optimal Control

Outline

1. Introduction

2. Monte Carlo Methods

3. Learning the Value Function: TD(0)

4. Learning the Action Value Function: SARSA

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 25

Planning and Optimal Control 1. Introduction

Outline

1. Introduction

2. Monte Carlo Methods

3. Learning the Value Function: TD(0)

4. Learning the Action Value Function: SARSA

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 25

Planning and Optimal Control 1. Introduction

Policy Inference vs. Policy Learning

I Markov Decision Problem:
I transition model p and reward model r are known.

I compute an optimal policy
(optimal policy inference).

I Reinforcement Learning:
I transition model p and reward model r are not known.

I learn an optimal policy from state/action/reward sequence data
(optimal policy learning).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 25

Planning and Optimal Control 1. Introduction

Problems & Sampling MDP Data

a. state/action/reward Markov process learning:
I learn the

I transition model Pπ of the state/action/reward Markov process or the
I value function V π

of an MDP under a fixed pre-existing policy π.
I called generating policy, explorative policy or sampling policy.
I π does not depend on past samples and current estimates.
I e.g., choose actions in each state uniformly at random

b. MDP learning:
I learn the transition model p and reward model r of an MDP.

I passive sampling: sample with a generating policy that
I does not depend on past samples and current estimates, but should

I guarantee to explore the whole state/action space.

I active sampling: use a generating policy that
I selects actions s.t. informative samples are created.

— e.g., uncertain transitions, uncertain rewards.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 25

Planning and Optimal Control 1. Introduction

Problems & Sampling MDP Data (2/2)

c. reinforcement learning:
I learn an optimal policy π∗,

without knowing the MDP (p, r).
I i.e., a policy with maximal value function.

I the generating policy has to balance
I exploration of actions with uncertain effects (on transitions and

rewards) and

I exploitation of actions with likely best value

to ensure focus on valuable actions.

d. joint process learning and control:
I create state/action/reward sequences with maximal value.

I i.e., learn and execute a policy that overall will lead to maximal value
at the same time.

I such a policy also needs to balance exploration and exploitation
to ensure it realizes a high value.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 25

Planning and Optimal Control 1. Introduction

Reinforcement Learning Approaches

1. model-based reinforcement learning:
I given state/action/reward sequences, learn the MDP model (p, r),

I afterwards use a policy optimization algorithm on the learnt model
to find an optimal policy.

2. direct reinforcement learning:
I given state/action/reward sequences, learn the

I optimal policy π∗ or even only the

I value function V ∗ or the

I action value function Q∗ of the optimal policy.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 25

Planning and Optimal Control 1. Introduction

Generating Policies

I uniform at random policy:

πuniform(s, a) :=
1

|A|

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 25

Planning and Optimal Control 2. Monte Carlo Methods

Outline

1. Introduction

2. Monte Carlo Methods

3. Learning the Value Function: TD(0)

4. Learning the Action Value Function: SARSA

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 25

Planning and Optimal Control 2. Monte Carlo Methods

Observed and Estimated Values

data: N state/action/reward sequences sampled from an MDP with
unknown transition/reward model under a policy π:

D := {((sn,t , an,t , rn,t)t=0:Tn−1, sTn) | n = 1 : N} ⊆ (S × A× R)∗ × S

observed values:

Vn,t := value(rn,t:Tn−1), n = 1 : N, t = 0 : Tn − 1

e.g., for the discounted criterion:

:=
Tn−1∑
t′=t

γt′−t rn,t′

occurrences of state s ∈ S in data D:

Is := {(n, t) | n = 1 : N, t = 0 : Tn − 1, sn,t = s}
estimated value of state s ∈ S :

V̂s :=
1

|Is |
∑

(n,t)∈Is

Vn,t

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 25

Planning and Optimal Control 2. Monte Carlo Methods

Observed Values?

I in general, values cannot be observed.
I as they may depend on infinitely many future rewards.

I to observe values, one needs to ensure/assume that all sequences
terminate in a state of true value zero:

Vn,Tn = 0 n = 1 : N

I e.g., if the state Markov chain has an absorbing state s with reward 0,

∀s ′∃t : p(st = s | s0 = s ′) = 1, p(s | s) = 1, ∀a : r(s, a) = 0

all sequences will be essentially finite (terminal state).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 25

Planning and Optimal Control 2. Monte Carlo Methods

Excursion: Online Update of the Mean
I given: streaming data xt ∈ R, t = 1, 2, 3,
I wanted: mean µT of values received so far (for any T).

I method 1: store data
I store all data:

X0 := ()

XT := XT−1 ⊕ (xT)

I µT := 1
|XT |

∑|XT |
t=1 Xt

I method 2: maintain sum and length (online update)
I maintain sum and length:

s0 := 0, L0 := 0

sT := sT−1 + xT , LT := LT−1 + 1

I µT := sT

LT

I method 3: maintain mean and length (online update)
I maintain mean and length:

µ0 := 0, L0 := 0

µT := µT−1 +
1

LT−1 + 1
(xT − µT−1), LT := LT−1 + 1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 25

Note: ⊕ denotes concatenation of two sequences.

Planning and Optimal Control 2. Monte Carlo Methods

Excursion: Online Update of the Mean
I given: streaming data xt ∈ R, t = 1, 2, 3,
I wanted: mean µT of values received so far (for any T).

I method 1: store data
I store all data:

X0 := ()

XT := XT−1 ⊕ (xT)

I µT := 1
|XT |

∑|XT |
t=1 Xt

I method 2: maintain sum and length (online update)
I maintain sum and length:

s0 := 0, L0 := 0

sT := sT−1 + xT , LT := LT−1 + 1

I µT := sT

LT

I method 3: maintain mean and length (online update)
I maintain mean and length:

µ0 := 0, L0 := 0

µT := µT−1 +
1

LT−1 + 1
(xT − µT−1), LT := LT−1 + 1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 25

Note: ⊕ denotes concatenation of two sequences.

Planning and Optimal Control 2. Monte Carlo Methods

Excursion: Online Update of the Mean
I given: streaming data xt ∈ R, t = 1, 2, 3,
I wanted: mean µT of values received so far (for any T).

I method 1: store data . . .

I method 2: maintain sum and length (online update)
I maintain sum and length:

s0 := 0, L0 := 0

sT := sT−1 + xT , LT := LT−1 + 1

I µT := sT

LT

I method 3: maintain mean and length (online update)
I maintain mean and length:

µ0 := 0, L0 := 0

µT := µT−1 +
1

LT−1 + 1
(xT − µT−1), LT := LT−1 + 1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 25

Planning and Optimal Control 2. Monte Carlo Methods

Recursive Estimation of Values

observed state values:

Vs,k := Vnk ,tk
for Is = {(n1, t1), (n2, t2), . . . , (nK , tK)}

estimated state values from first k occurrences:

V̂s,k :=
1

k

k∑
j=1

Vs,j

= V̂s,k−1 +
1

k
(Vs,k − V̂s,k−1)

V̂s,0 := 0

I does not have to store all values Vs,k for all k,
I but just two values: V̂s,k (for current k) and k itself.

(online update of the mean).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 25

Planning and Optimal Control 2. Monte Carlo Methods

Recursive Estimation of Values

for

V̂s,k = V̂s,k−1 +
1

k
(Vs,k − V̂s,k−1)

and even with

V̂s,k = V̂s,k−1 + αk (Vs,k − V̂s,k−1), αk > 0, αk → 0

we will get

lim
k→∞

V̂s,k = V π(s)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 25

Planning and Optimal Control 2. Monte Carlo Methods

Monte Carlo method update rule

Monte Carlo method update rule:

V̂st := V̂st + αk(st)(rt + γrt+1 + γ2rt+2 + · · ·+ γT−1−trT−1 − V̂st),

t = 0 : T − 1

I update values of all visited states after completion of each sequence
s, a, r ,T := sn, an, rn,Tn.

I as it has to compute the observed value from all future rewards

I k(s) keeps track of the frequency of state s seen so far.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 25

Planning and Optimal Control 2. Monte Carlo Methods

Monte Carlo Value Function Learning Algorithm
1 learn-value-discounted-mc(S ,A, γ, sterm,N, π, v0, α):

2 V̂ := (v0)s∈S , k := (0)s∈S

3 for n := 1, . . . ,N:
4 (s, a, r ,T) := generate-episode(S ,A, sterm, π)
5 for t := 0, . . . ,T − 1:

6 V̂st := V̂st + αk(st)((
∑T−1

t′=t γ
t′−trt′)− V̂st)

7 k(st) := k(st) + 1

8 return V̂
9

10 generate-episode(S ,A, sterm, π):
11 s := (), a := (), r := (),T := 0
12 s0 := new process()
13 while sT 6= sterm:
14 aT := π(sT)
15 (rT , sT +1) := execute action(sT , aT)
16 T := T + 1
17 return (s, a, r ,T)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 25

where

I sterm terminal state with zero reward.
I π generating policy
I v0 ∈ R initial value of all states.
I αk learning rate for update step k, e.g., αk := 1/k.
I new process() sets up a new process.
I execute action(s, a) executes action a in process in

state s.

Planning and Optimal Control 2. Monte Carlo Methods

Unbiased Estimation from First Visit only

I if a state if visited twice in a sequence,
two estimates of its value enter the overall mean (all visits).

I which are not independent and introduce a bias.

I fix: retain only the first occurrence (first visit)
I unbiased

I experimentally said to yield somewhat smaller squared error.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 25

Planning and Optimal Control 3. Learning the Value Function: TD(0)

Outline

1. Introduction

2. Monte Carlo Methods

3. Learning the Value Function: TD(0)

4. Learning the Action Value Function: SARSA

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 25

Planning and Optimal Control 3. Learning the Value Function: TD(0)

Temporal Differences
Monte Carlo: update after completion of a sequence:

V̂st = V̂st + α(rt + γrt+1 + γ2rt+2 + · · ·+ γT−trT − V̂st), t = 1 : T

Temporal differences:

V̂st = V̂st + α(rt + γrt+1 + γ2rt+2 + · · ·+ γT−trT − V̂st)

= V̂st + α((rt +γV̂st+1− V̂st)

+γ (rt+1 +γV̂st+2− V̂st+1)

+γ2 (rt+2 +γV̂st+3− V̂st+2)
...

+γT−t(rT−1+ γV̂sT
−V̂sT−1

))

= V̂st + α(δt + γδt+1 + γ2δt+2 + . . . γT−tδT−1)

δt := rt + γV̂st+1 − V̂st

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 25

Note: Still assuming the sequence terminates in a value 0 state: V̂sT = VsT = 0.

Planning and Optimal Control 3. Learning the Value Function: TD(0)

Temporal Difference update rule TD(0):

V̂st = V̂st + α(rt + γV̂st+1 − V̂st)

I update values of a visited state immediately after action is taken,
reward is received and next state has been determined.

I TD(0) estimates only the value function.
I the value function of the generating policy.

I if the transition model is known,
one easily can estimate a policy from its value function, e.g.,

π∗(s) ∈ arg max
a∈A

(r(s, a) + γ
∑
s′∈S

p(s ′ | s, a)V ∗γ (s ′)), s ∈ S

I but without access to the transition model,
the value function alone does not allow to do so.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 25

Planning and Optimal Control 3. Learning the Value Function: TD(0)

TD(0) Value Function Learning Algorithm

1 learn-value-discounted-td0(S ,A, γ, sterm,N, π, v0, α):

2 V̂ := (v0)s∈S

3 for n := 1, . . . ,N:
4 s := (), a := (), r := (), t := 0
5 s0 := new process()
6 while st 6= sterm:
7 at := π(st)
8 (rt , st+1) := execute action(st , at)

9 V̂st := V̂st + α(rt + γV̂st+1 − V̂st)
10 t := t + 1

11 return V̂

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 25

where

I sterm terminal state with zero reward.
I π generating policy
I v0 ∈ R initial value of all state pairs.
I αk learning rate for update step k, e.g., αk := 1/k.
I new process() sets up a new process.
I execute action(s, a) executes action a in process in

state s.

Planning and Optimal Control 4. Learning the Action Value Function: SARSA

Outline

1. Introduction

2. Monte Carlo Methods

3. Learning the Value Function: TD(0)

4. Learning the Action Value Function: SARSA

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 25

Planning and Optimal Control 4. Learning the Action Value Function: SARSA

Action Value Function
Given

I an MDP (p, r),
I a value aggregation function value(r1, r2, . . .)

I e.g., for discounted criterion: value(r1, r2, . . .) := r1 + γr2 + γ2r3 + . . .)

I a policy π:

value function (review):

V π(s) := E(value(r0, r1, . . . , rt , . . .) | s0 = s, π), s ∈ S

action value function:

Qπ(s, a) := E(value(r0, r1, . . . , rt , . . .) | s0 = s, a0 = a, π)

I value when taking action a in state s
I regardless what policy π would do

I and afterwards following policy π.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 25

Planning and Optimal Control 4. Learning the Action Value Function: SARSA

Optimal Action Value Function

action value function:

Qπ(s, a) := E(value(r0, r1, . . . , rt , . . .) | s0 = s, a0 = a, π)

Bellman equation for optimal action value function:

Q∗(s, a) = r(s, a) + γ
∑

s′

p(s ′ | s, a) max
a′

Q∗(s ′, a′), s ∈ S , a ∈ A

Optimal value function from optimal action value function:

V ∗(s) = max
a

Q∗(s, a), s ∈ S

Optimal policy from optimal action value function:

π∗(s) = arg max
a

Q∗(s, a), s ∈ S

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

18 / 25

Planning and Optimal Control 4. Learning the Action Value Function: SARSA

Monte Carlo for the Action Value Function

Monte Carlo method Action Value update rule:

Q̂st ,at := Q̂st ,at +αk(st ,at)(rt +γrt+1 +γ2rt+2 +· · ·+γT−1−trT−1−Q̂st ,at),

t = 0 : T − 1

I update values of all visited state/action pairs after completion of
each sequence s, a, r ,T := sn, an, rn,Tn.

I as it has to compute the observed value from all future rewards

I k(s, a) keeps track of the frequency of the state/action pair (s, a)
seen so far.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 25

Planning and Optimal Control 4. Learning the Action Value Function: SARSA

Monte Carlo Action Value Function Learning Algorithm

1 learn-action-value-discounted-mc(S ,A, γ, sterm,N, π, q0, α):

2 Q̂ := (q0)s∈S,a∈A, k := (0)s∈S,a∈A

3 for n := 1, . . . ,N:
4 (s, a, r ,T) := generate-episode(S ,A, sterm, π)
5 for t := 0, . . . ,T − 1:

6 Q̂st ,at := Q̂st ,at + αk(st ,at)((
∑T−1

t′=t γ
t′−trt′)− Q̂st ,at)

7 k(st , at) := k(st , at) + 1

8 return Q̂

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 25

where

I sterm terminal state with zero reward.
I π generating policy
I q0 ∈ R initial value of all state/action pairs.
I αk learning rate for update step k, e.g., αk := 1/k.

Planning and Optimal Control 4. Learning the Action Value Function: SARSA

Generating Policies II

I uniform at random policy:

πuniform(s, a) :=
1

|A|
I maximally explores all actions.

I greedy policy:
πgreedy(s; Q̂) := arg max

a∈A
Q̂(s, a)

I maximally exploits current estimates; does not guarantee exploration.

I ε-greedy policy:

π(s, a; Q̂, ε) := (1− ε)πgreedy(s, a; Q̂) + ε πuniform(s, a), ε ∈ [0, 1]

I Boltzmann at random policy:

π(s, a; Q̂, τ) :=
eQ̂(s,a)/τ∑

a′∈A eQ̂(s,a′)/τ
, τ → 0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 25

Note: πgreedy(s, a; Q̂) := I(a = arg maxa′∈A Q̂(s, a′))

Planning and Optimal Control 4. Learning the Action Value Function: SARSA

How to Learn the Optimal Policy

I let the sampling policy π approach the greedy policy.
I e.g., ε-greedy with ε→ 0

I or Boltzmann at random with τ → 0.

I then Q̂π → Q∗

Monte Carlo Optimal Policy Learning Algorithm:

1 learn-opt-policy-discounted-mc(S ,A, γ, sterm,N, π, q0, α):

2 Q̂ := learn-action-value-discounted-mc(S ,A, γ, sterm,N, π, q0, α)
3 for s ∈ S :

4 π̂∗s := arg maxa∈A Q̂s,a

5 return Q̂, π̂∗

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 25

where

I sterm terminal state with zero reward.
I π generating policy, depending on Q̂, approaching the

greedy policy.
I q0 ∈ R initial value of all state/action pairs.
I αk learning rate for update step k, e.g., αk := 1/k.

Planning and Optimal Control 4. Learning the Action Value Function: SARSA

Temporal difference update rule for action value function (SARSA):

Q̂st ,at = Q̂st ,at + α(rt + γQ̂st+1,at+1 − Q̂st ,at)

I update values of a visited state after an action is taken, a reward is
received and the next state and next action has been determined.

I requires (st , at , rt , st+1, at+1), therefore name SARSA.

I SARSA estimates the action value function,
thus allows to infer the generating policy (“on policy”).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 25

Planning and Optimal Control 4. Learning the Action Value Function: SARSA

SARSA Algorithm

1 learn-opt-policy-discounted-sarsa(S ,A, γ, sterm,N, π, q0, α):

2 Q̂ := (q0)s∈S,a∈A

3 for n := 1, . . . ,N:
4 s ′ := new process()
5 a′ := π(s ′)
6 while s ′ 6= sterm:
7 s := s ′

8 a := a′

9 (r , s ′) := execute action(s, a)
10 a′ := π(s ′)

11 Q̂s,a := Q̂s,a + α(r + γQ̂s′,a′ − Q̂s,a)
12 for s ∈ S :
13 π̂∗s := arg maxa∈A Q(s, a)

14 return Q̂, π̂∗

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 25

where

I sterm terminal state with zero reward.
I π generating policy, depending on Q̂, approaching the

greedy policy.
I q0 ∈ R initial value of all state/action pairs.
I αk learning rate for update step k, e.g., αk := 1/k.
I new process() sets up a new process.
I execute action(s, a) executes action a in process in

state s.

Planning and Optimal Control 4. Learning the Action Value Function: SARSA

Summary

I Reinforcement learning aims to learn the optimal policy for an
unknown MDP (that can be sampled from / operated).

I Monte Carlo Methods estimate the value function V π of a policy
based on single, complete episodes.

I Temporal Difference Methods update the value function faster
already after each individual action / step.

I The optimal action value function Q∗ allows to reconstruct the
optimal policy without knowledge of the transition model.

I while the optimal value function V ∗ requires the transition model, too.

I Both, Monte Carlo and Temporal Difference Methods can also be
used to learn the action value function Q (SARSA algorithm).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25 / 25

Planning and Optimal Control

Further Readings

I Reinforcement Learning:
I Olivier Sigaud, Frederick Garica (2010): Reinforcement Learning, ch. 1

in Sigaud and Buffet [2010].

I Sutton and Barto [2018]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

26 / 25

Planning and Optimal Control

References

Olivier Sigaud and Olivier Buffet, editors. Markov Decision Processes in Artificial Intelligence. Wiley, 2010.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. MIT Press, 2nd edition edition, 2018.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 25

	1. Introduction
	2. Monte Carlo Methods
	3. Learning the Value Function: TD(0)
	4. Learning the Action Value Function: SARSA
	Appendix

