
Planning and Optimal Control

Planning and Optimal Control
B.1 Markov Decision Processes

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 54



Planning and Optimal Control

Syllabus

A. Models for Sequential Data
Tue. 22.10. (1) 1. Markov Models
Tue. 29.10. (2) 2. Hidden Markov Models
Tue. 5.11. (3) 3. State Space Models
Tue. 12.11. (4) 3b. (ctd.)

B. Models for Sequential Decisions
Tue. 19.11. (5) 1. Markov Decision Processes
Tue. 26.11. (6) 1b. (ctd.)
Tue. 3.12. (7) 2. Introduction to Reinforcement Learning
Tue. 10.12. (8) 3. Monte Carlo and Temporal Difference Methods
Tue. 17.12. (9) 4. Q Learning
Tue. 24.12. — — Christmas Break —
Tue. 7.1. (10) 5. Policy Gradient Methods
Tue. 14.1. (11) tba
Tue. 21.1. (12) tba
Tue. 28.1. (13) 8. Reinforcement Learning for Games
Tue. 4.2. (14) Q&A
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Planning and Optimal Control 1. Markov Decision Problems

Markov Decision Process (MDP)

An MDP (S ,A,T , p, r) is a controlled stochastic Markov processes:

I finite set S called states,

I finite set A called actions (aka controls, decisions),

I set T ⊆ N called time steps,

I function p : S × A→ ∆(S) called state transition probability and
I usually written p(st+1 | st , at)

I often represented by stochastic transition matrices Pa, a ∈ A

I function r : S × A→ R called reward.
I often represented by vectors ra ∈ RS , a ∈ A
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Note: ∆(S) := {p : S → R+
0 |

∑
s∈S p(s) = 1} probability functions over S.



Planning and Optimal Control 1. Markov Decision Problems

Example: Find a way out of a Labyrinth

I S := {(x , y) | x , y ∈ {1, 2, 3, 4, 5}}
\{(2, 2), (2, 3), (2, 4), (4, 2), (4, 3), (4, 4), (4, 5), (3, 2)}

walkable tiles,
s0 := (1, 1) start location

I A := {(+1, 0), (−1, 0), (0,+1), (0,−1)} movement
right/left/up/down

I p(s + a | s, a) := 1, if (s + a) ∈ S
else p(s | s, a) := 1.

I r(s, a) = 1 if s = (5, 5) (exit),
r(s, a) = 0 for all other s.
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Planning and Optimal Control 1. Markov Decision Problems

MDPs

Markov Decision Processes 5

– S is the state space in which the process’ evolution takes place;
– A is the set of all possible actions which control the state dynamics;
– T is the set of time steps where decisions need to be made;
– p() denotes the state transition probability function;
– r() provides the reward function defined on state transitions.

Figure 1.1 represents an MDP, drawn as an influence diagram. At every time step
t in T , action at is applied in the current state st, affecting the process in its transition
to the next state st+1. Reward rt is then obtained for this transition.

st s t+1

a t

t tr(s  , a  )

t+1 tp( s     | s  ,  a  )t

Figure 1.1. Markov decision process

The set T of decision epochs is a discrete set, subset of N, which can either be
finite or infinite (then we talk, respectively, about finite horizon or infinite horizon).
A third case corresponds to the existence of a set of terminal states (or goal states).
In this case, the process stops as soon as one of these states is encountered. Then, the
horizon is then said to be indefinite. These problems are often related to stochastic
shortest path problems. This case, however, can be seen as a specific case of infinite
horizon MDPs with absorbing states and will not be presented in detail in this chapter
(see Chapter 6, section 6.2.3 and Chapter 15).

In the most general case, the S and A sets are supposed finite, even though many
results can be extended to countable or even continuous sets (see [BER 95] for an
introduction to the continuous case). Generally, the set A of applicable actions can
also depend on the current state: we define a subset As of applicable actions in state
s. Similarly, S and A can change based on the time step t (St and At). However, in
this chapter, for clarity of presentation, we will restrict ourselves to the standard case
where A and S are constant throughout the process.

[source: ?, p.5]
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Planning and Optimal Control 1. Markov Decision Problems

Markov Property

Markov property:

p(st+1 | s0:t , a0:t) = p(st+1 | st , at)
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Planning and Optimal Control 1. Markov Decision Problems

Action Policies
A policy (aka strategy):

π : (S × A)∗ × S → ∆(A)

I π(h, s) chooses a probabilistic action a
if in state s with history h = ((s0, a0), (s1, a1), . . . , (st−1, at−1))

I Markov policy: does not depend on history:

π(h, s) = π(h′, s) ∀h, h′

I but may depend on time (non-stationary)

I then just write as π : T × S → ∆(A)

I deterministic policy: chosen action is deterministic:

∀h, s ∃a : π(h, s)(a) = 1

I then just write as π : (S × A)∗ × S → A

I deterministic Markov policy: choose next action in each state
I π : T × S → A

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 54



Planning and Optimal Control 1. Markov Decision Problems

Action Policies / Policy Spaces
ΠMDS :={π : S → A}

ΠMAS :={π : S → ∆(A)}

ΠMD :={π : T × S → A}

ΠMA :={π : T × S → ∆(A)}

ΠHD :={π : (S × A)∗ × S → A}

ΠHA :={π : (S × A)∗ × S → ∆(A)}
M=Markov vs. H=history-dependent
D=deterministic vs. A=stochastic
S=stationary vs. .=non-stationary

8 Markov Decision Processes in AI

DEFINITION 1.1 (stationary, Markov, deterministic policies). D is the set of all
functions π linking states of S to actions of A:

π : s ∈ S −→ π(s) ∈ A.

Another important set of policies, written as DA, is composed of stationary,
Markov, stochastic policies. The D and DA sets are important because they contain
optimal policies for the most common criteria.

History-dependent,
deterministic

History-dependent, stochastic

Markov, stochastic

Markov, deterministic

Figure 1.2. Relationship between the different sets of policies

1.2.3. Performance criterion

Solving a Markov decision problem implies searching for a policy, in a given set,
which optimizes a performance (or optimality) criterion for the considered MDP. This
criterion aims at characterizing the policies which will provide the best sequences
of rewards. Formally, it corresponds to evaluating a policy based on a measure of
the expected cumulative sum of instantaneous rewards along the trajectory. The main
criteria studied in the theory of MDPs are:

– the finite criterion: E[r0 + r1 + r2 + · · ·+ rN−1 | s0],

– the (γ-)discounted criterion: E[r0 + γr1 + γ2r2 + · · ·+ γtrt + · · · | s0],

– the total reward criterion: E[r0 + r1 + r2 + · · ·+ rt + · · · | s0],

– the average criterion: limn→∞ 1
nE[r0 + r1 + r2 + · · ·+ rn−1 | s0].

[source: ?, p.8]
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Planning and Optimal Control 1. Markov Decision Problems

Stochastic State / Action / Reward Processes for a Policy
For an MDP (p, r),

a start state s0 ∈ S and
a policy π,

let

s0 a0 ∼ π(s0) r0 := r(s0, a0)

s1 ∼ p(s0, a0), a1 ∼ π(((s0, a0)), s1) r1 := r(s1, a1)

...
...

...

st+1 ∼ p(st , at), at+1 ∼ π(( (s0, a0), . . . ,
(st , at)), st+1)

), rt+1 := r(st+1, at+1)

describing three stochastic processes:
I the stochastic process st of states visited,
I the stochastic process at of actions taken and
I the stochastic process rt of rewards gained

by policy π starting in s0 for MDP (p, r).
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Planning and Optimal Control 1. Markov Decision Problems

Example: Walk on a Line

S := {−10,−9,−8, . . . ,−1, 0, 1, 2, . . . , 10}
s0 := 0

A := {+1,−1}

p(s ′ | s, a) :=


1, if s ′ = s + a, (s + a) ∈ S valid move

1, if s ′ = s , (s + a) 6∈ S invalid move

0, else

r(s, a) :=

{
1, if s = 9, a = +1

0, else
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Planning and Optimal Control 1. Markov Decision Problems

Example: Walk on a Line / Go Always Left

πL(s) := −1, go always left

st 0 −1 −2 . . . −8 −9 −10 −10 −10 . . .
at −1 −1 −1 . . . −1 −1 −1 −1 −1 . . .
rt 0 0 0 . . . 0 0 0 0 0 . . .

I deterministic state/action/reward sequence

I total reward
∑

t∈N rt = 0
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Planning and Optimal Control 1. Markov Decision Problems

Example: Walk on a Line / Go Always Right

πR(s) := +1, go always right

st 0 1 2 . . . 8 9 10 10 10 . . .
at +1 +1 +1 . . . +1 +1 +1 +1 +1 . . .
rt 0 0 0 . . . 0 1 0 0 0 . . .

I deterministic state/action/reward sequence

I total reward: 1
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Planning and Optimal Control 1. Markov Decision Problems

Example: Walk on a Line II
a distribution of MDPs:

S := {−10,−9,−8, . . . ,−1, 0, 1, 2, . . . , 10}
s0 := 0

A := {+1,−1}

p(s ′ | s, a) :=


1, if s ′ = s + a, (s + a) ∈ S valid move

1, if s ′ = s , (s + a) 6∈ S invalid move

0, else

every second MDP:

r(s, a) :=

{
1, if s = 9, a = +1

0, else

every other second MDP:

r(s, a) :=

{
1, if s = −9, a = −1

0, else

I deterministic state/action sequence, stochastic reward sequence

I total expected reward E (
∑

t∈N rt) = 0.5
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Planning and Optimal Control 1. Markov Decision Problems

Example: Walk on a Line II / Go Always Left

πL(s) := −1, go always left

every second MDP:

st 0 −1 −2 . . . −8 −9 −10 −10 −10 . . .
at −1 −1 −1 . . . −1 −1 −1 −1 −1 . . .
rt 0 0 0 . . . 0 0 0 0 0 . . .

every other second MDP:

st 0 −1 −2 . . . −8 −9 −10 −10 −10 . . .
at −1 −1 −1 . . . −1 −1 −1 −1 −1 . . .
rt 0 0 0 . . . 0 1 0 0 0 . . .

I deterministic state/action sequence, stochastic reward sequence

I total expected reward: E(
∑

t∈N rt) = 0.5
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Planning and Optimal Control 1. Markov Decision Problems

Example: Walk on a Line II/ Go Always Right

πR(s) := +1, go always right

every second MDP:

st 0 1 2 . . . 8 9 10 10 10 . . .
at +1 +1 +1 . . . +1 +1 +1 +1 +1 . . .
rt 0 0 0 . . . 0 1 0 0 0 . . .

every other second MDP:

st 0 1 2 . . . 8 9 10 10 10 . . .
at +1 +1 +1 . . . +1 +1 +1 +1 +1 . . .
rt 0 0 0 . . . 0 0 0 0 0 . . .

I deterministic state/action sequence, stochastic reward sequence

I total expected reward: 0.5
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Planning and Optimal Control 1. Markov Decision Problems

Example: Walk on a Line II/ Go Left then Right

πLR(t, s) :=

{
−1, if t < 10

+1, else

every second MDP:

st 0 −1 . . . −8 −9 −10 −9 . . . 8 9 10 10 . . .
at −1 −1 . . . −1 −1 +1 +1 . . . +1 +1 +1 +1 . . .
rt 0 0 . . . 0 0 0 0 . . . 0 1 0 0 . . .

every other second MDP:

st 0 −1 . . . −8 −9 −10 −9 . . . 8 9 10 10 . . .
at −1 −1 . . . −1 −1 +1 +1 . . . +1 +1 +1 +1 . . .
rt 0 0 . . . 0 1 0 0 . . . 0 0 0 0 . . .

I deterministic state/action sequence, stochastic reward sequence
I total expected reward: 1
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Planning and Optimal Control 1. Markov Decision Problems

Value Function and Markov Decision Problem
I to evaluate the quality of a policy,

the reward process usually is aggregated by a
scalar performance criterion.

I e.g., expected sum, expected average, expected discounted sum

I each policy π is then described by a
reward value for each initial state s0,
called value function:

V π : S → R
e.g., V π(s) := E (

∞∑
t=0

rt | s0 := s,
at ∼ π(st),
rt := r(st , at)
st+1 ∼ p(st+1 | st , at),

)

I Markov Decision Problem: find the optimal policy π∗ with

V π∗(s) ≥ V π(s) ∀s ∈ S , ∀π ∈ Π
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Planning and Optimal Control 1. Markov Decision Problems

Markov Decision Problem

Given an MDP (p, r) and
a value criterion V : R∗ → R that aggregates rewards

find a policy

π∗ : S → A

s.t. the expected value is maximial, i.e.,

V π∗(s) ≥ V π(s), ∀s ∈ S , π ∈ Π

with V π(s) := E(V ((rt)t∈N) | s0 := s,
at := π(st),
rt = r(st , at),
st+1 ∼ p(st+1 | st , at)

)
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Planning and Optimal Control 2. Value Functions

Value Function for the Finite Criterion

V π
N (s) := E(

N−1∑
t=0

rt | s0 = s) =E(r0 + r1 + r2 + . . .+ rN−1 | s0 = s)

I assumes that the process has to finish within finite horizon of N steps
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Planning and Optimal Control 2. Value Functions

Value Function for the Discounted Criterion

V π
γ (s) := E(

∞∑
t=0

γtrt | s0 = s) =E(r0 + γr1 + γ2r2 . . .+ γtrt + . . . | s0 = s)

I infinite horizon

I assumes that future rewards are discounted by factor γ ∈ (0, 1),
e.g., γ := 1/(1 + inflation rate) for monetary rewards
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Planning and Optimal Control 2. Value Functions

Value Function for the Total Reward Criterion

V π(s) := E(
∞∑
t=0

rt | s0 = s) =E(r0 + r1 + r2 . . .+ rt + . . . | s0 = s)

I assumes that rewards can be summed infinitely, e.g.,
I because they shrink quickly enough (like discounting enforces)

I because they eventually become 0 (as a goal has been reached)
I finite, but unknown horizon; optimal stopping

I etc.
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Planning and Optimal Control 2. Value Functions

Value Function for the Average Criterion

V π
avg(s) := lim

N→∞

1

N
E(

N−1∑
t=0

rt | s0 = s)

= lim
N→∞

1

N
E(r0 + r1 + r2 + . . .+ rN−1 | s0 = s)

I measures average reward per step
I in a potentially infinite horizon
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Planning and Optimal Control 2. Value Functions

Performance Criteria

finite criterion with length N:

E(
N−1∑
t=0

rt | s0) =E(r0 + r1 + r2 + . . .+ rN−1 | s0)

discounted criterion with factor γ ∈ (0, 1):

E(
∞∑
t=0

γtrt | s0) =E(r0 + γr1 + γ2r2 . . .+ γtrt + . . . | s0)

total reward criterion:

E(
∞∑
t=0

rt | s0) =E(r0 + r1 + r2 . . .+ rt + . . . | s0)

average criterion:

lim
N→∞

1

N
E(

N−1∑
t=0

rt | s0) = lim
N→∞

1

N
E(r0 + r1 + r2 + . . .+ rN−1 | s0)
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Planning and Optimal Control 2. Value Functions

Performance Criteria / Properties

1. performance criteria are additive in rt

2. performance criteria are expectations over the policy-specific reward
process

 Bellman optimality principle:
all sub-policies of an optimal policy are optimal sub-policies.
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Planning and Optimal Control 3. Markov Policies

Equivalence of Stochastic Markov Policies and
History-dependent Policies

For

I any MDP (p, r),
I any value criterion V

(either finite, discounted, total reward or average criterion), and
I any stochastic history-dependent policy π

there exists an equivalent

(generally non-stationary) stochastic Markov policy π′,

i.e., with the same value function:

V π′(s) = V π(s), ∀s ∈ S
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Planning and Optimal Control 3. Markov Policies

Equivalence of . . . / Proof
Denote marginals as

Pπ(at = a | st = s ′, s0 = s) :=∑
s1:t−1∈S t+1,a0:t−1∈At pπ(at = a | st = s ′, s1:t−1, a0:t−1, s0 = s)∑

s1:t−1∈S t+1,a0:t−1∈At ,a′∈A pπ(at = a′ | st = s ′, s1:t−1, a0:t−1, s0 = s)

Define (a generally non-stationary) π′ via

π′(at = a | st = s ′) := Pπ(at = a | st = s ′, s0 = s)

and show

Pπ′(st = s ′, at = a | s0 = s) = Pπ(st = s ′, at = a | s0 = s)

via induction over t:

I t = 0: clear.
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Planning and Optimal Control 3. Markov Policies

Equivalence of . . . / Proof

show

Pπ′(st = s ′, at = a | s0 = s) = Pπ(st = s ′, at = a | s0 = s)

via induction over t:

I t > 0:

Pπ(st = s ′ | s0 = s)

=
∑

s̃∈S ,ã∈A
Pπ(st−1 = s̃, at−1 = ã | s0 = s) p(s ′ | s̃, ã)

ind.ass.
=

∑
s̃∈S,ã∈A

Pπ′(st−1 = s̃, at−1 = ã | s0 = s) p(s ′ | s̃, ã)

= Pπ′(st = s ′ | s0 = s)
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Planning and Optimal Control 3. Markov Policies

Equivalence of . . . / Proof

Pπ′(st = s ′, at = a | s0 = s)

= Pπ′(at = a | st = s ′) Pπ′(st = s ′ | s0 = s)

= Pπ(at = a | st = s ′, s0 = s) Pπ(st = s ′ | s0 = s)

= Pπ(st = s ′, at = a | s0 = s)

E(r(st , at) | s0 = s, π) =
∑

s′∈S ,a∈A
r(s ′, a) Pπ(st = s ′, at = a | s0 = s)

=
∑

s′∈S ,a∈A
r(s ′, a) Pπ′(st = s ′, at = a | s0 = s)

= E(r(st , at) | s0 = s, π′)

and thus

V π(s) = V π′(s)
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Planning and Optimal Control 3. Markov Policies

Markov State Process
Although an MDP is Markov,
the stochastic state process st by a policy not necessary will be Markov.

For an
I MDP (p, r) and
I a Markov policy π,

the stochastic state process st is Markov with transition matrix

Pπ,s,s′ := Pπ(st+1 = s ′ | st = s) =
∑
a∈A

π(s, a) p(s ′ | s, a)

Proof:

Pπ(st+1 | s0:t) =
∑
a∈A

Pπ(at = a | s0:t) Pπ(st+1 | s0:t , at = a)

=
∑
a∈A

π(st , a) p(st+1 | st , a)

=Pπ(st+1 | st)
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Planning and Optimal Control 3. Markov Policies

Valued Markov Processes

Such a Markov state process together with its rewards

rπ(s) :=
∑
a∈A

π(s, a) r(s, a)

also is called Valued Markov Process
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Planning and Optimal Control 4. Optimal Policies for the Finite Criterion
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Planning and Optimal Control 4. Optimal Policies for the Finite Criterion

Optimal Policy for the Finite Criterion
optimal value for the last n steps:

V ∗n (s) := max
aN−n, aN−n+1,...,aN−1

E(rN−n + rN−n+1 + . . .+ rN−1 | sN−n = s)

V ∗1 (s) := max
aN−1

E(rN−1 | sN−1 = s) = max
a

rN−1(s, a)

V ∗2 (s) := max
aN−2,aN−1

E(rN−2 + rN−1 | sN−2 = s)

= max
aN−2

rN−2(s, aN−2) + max
aN−1

E(rN−1 | sN−2 = s)

= max
aN−2

rN−2(s, aN−2) +
∑
s′

p(s ′ | s, aN−2) max
aN−1

E(rN−1 | sN−1 = s ′)

= max
a

rN−2(s, a) +
∑
s′

p(s ′ | s, a)V ∗1 (s ′)

...

V ∗n+1(s) = max
a

rN−1−n(s, a) +
∑
s′

p(s ′ | s, a)V ∗n (s ′)
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Planning and Optimal Control 4. Optimal Policies for the Finite Criterion

Optimal Policy for the Finite Criterion
optimal value for the last n steps:

V ∗n (s) := max
aN−n, aN−n+1,...,aN−1

E(rN−n + rN−n+1 + . . .+ rN−1 | sN−n = s)

V ∗1 (s) := max
aN−1

E(rN−1 | sN−1 = s) = max
a

rN−1(s, a)

V ∗2 (s) := max
aN−2,aN−1

E(rN−2 + rN−1 | sN−2 = s)

= max
aN−2

rN−2(s, aN−2) + max
aN−1

E(rN−1 | sN−2 = s)

= max
aN−2

rN−2(s, aN−2) +
∑
s′

p(s ′ | s, aN−2) max
aN−1

E(rN−1 | sN−1 = s ′)

= max
a

rN−2(s, a) +
∑
s′

p(s ′ | s, a)V ∗1 (s ′)

...

V ∗n+1(s) = max
a

rN−1−n(s, a) +
∑
s′

p(s ′ | s, a)V ∗n (s ′)
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∑
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∑
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Planning and Optimal Control 4. Optimal Policies for the Finite Criterion

Optimal Policy for the Finite Criterion

The optimal value functions V ∗1:N (for remaining steps n = 1 : N) are the
unique solutions of the set of equations

V ∗n+1(s) = max
a∈A

(
rN−1−n(s, a) +

∑
s′∈S

pN−1−n(s ′ | s, a)V ∗n (s ′)

)
, s ∈ S ,

n = 0 : N–1

V ∗0 (s) :=0

from which an optimal (generally non-stationary) policy π∗1:N can be
computed via

π∗t (s) ∈ arg max
a∈A

(
rt(s, a) +

∑
s′∈S

pt(s ′ | s, a) V ∗N−1−t(s ′)

)
, s ∈ S ,

t = 0 : N–1
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Planning and Optimal Control 4. Optimal Policies for the Finite Criterion

Optimal Policy for the Finite Criterion / Proof

V ∗n+1(s) = max
a∈A

(
rN−1−n(s, a) +

∑
s′∈S

pN−1−n(s ′ | s, a)V ∗n (s ′)

)
, s ∈ S ,

n = 0 : N–1

For n = 0: just optimize reward of last step:

V ∗1 (s) = max
a∈A

rN−1(s, a), s ∈ S

For n > 0:

I optimize sum of reward rN−1−n(s, a) of current step and

I reward V ∗n (s ′) of future n steps from follow-up state s ′

I weighted by how likely an action will bring us to follow-up state s ′
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Planning and Optimal Control 4. Optimal Policies for the Finite Criterion

Optimal Policy for the Finite Criterion / Idea

I the optimal policy for the finite criterion can be computed recursively
I backwards in time: πN−1, πN−2, . . . , π0

I along with the value functions of remaining steps V1,V2, . . . ,VN

I it can be chosen deterministic and Markov
I but in general, not stationary
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Planning and Optimal Control 4. Optimal Policies for the Finite Criterion

Find Optimal Policy for Finite Criterion

1 opt-policy-finite(p, r ,S ,A,N):
2 for s ∈ S : V0(s) := 0
3 for n := 0 : N − 1:
4 t := N − 1− n
5 for s ∈ S :
6 choose a∗ ∈ arg maxa∈A(rt(s, a) +

∑
s′∈S pt(s ′ | s, a) V ∗n (s ′))

7 π∗t (s) := a∗

8 V ∗n+1(s) := rt(s, a∗) +
∑

s′∈S pt(s ′ | s, a∗)V ∗n (s ′)
9 return V ∗, π∗
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Planning and Optimal Control 5. Optimal Policies for the Discounted Criterion

Outline

1. Markov Decision Problems

2. Value Functions

3. Markov Policies

4. Optimal Policies for the Finite Criterion

5. Optimal Policies for the Discounted Criterion

6. Optimal Policies for the Total Reward Criterion
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Planning and Optimal Control 5. Optimal Policies for the Discounted Criterion

Lπ operator

Given

I an MDP (p, r),
I a discount factor γ ∈ (0, 1) and
I a stationary Markov policy π,

define the Lπ operator on value functions:

LπV := rπ + γPπV , V ∈ RS
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Planning and Optimal Control 5. Optimal Policies for the Discounted Criterion

Value Function of the Discounted Criterion

Given

I an MDP (p, r),
I a discount factor γ ∈ (0, 1) and
I a stationary Markov policy π,

then the value function V π
γ is the only fixpoint of Lπ

V = LπV

and equivalently

V π
γ = (I − γPπ)−1rπ
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Planning and Optimal Control 5. Optimal Policies for the Discounted Criterion

Value Function of the Discounted Criterion / Proof

Stochastic matrix Pπ has all eigenvalues ≤ 1,
 γPπ with γ ∈ (0, 1) has all eigenvalues < 1
 I − γPπ is invertible.

(I − γPπ)−1rπ =
∞∑
k=0

γkPk
π rπ

Remember, if (I − A)−1 exists, then

(I − A)−1 =
∞∑
k=0

Ak

simply as

(I − A)
∞∑
k=0

Ak =
∞∑
k=0

Ak −
∞∑
k=1

Ak = I
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Planning and Optimal Control 5. Optimal Policies for the Discounted Criterion

Value Function of the Discounted Criterion / Proof
On the other hand,

V π
γ (s) = E(

∞∑
t=0

γtrt | s0 = s)

=
∞∑
t=0

γt E(r(st , at) | s0 = s)

=
∞∑
t=0

γt
∑

s′∈S,a∈A
Pπ(st = s ′, at = a | s0 = s) r(s ′, a)

=
∞∑
t=0

γt
∑

s′∈S,a∈A
π(s ′, a) Pπ(st = s ′ | s0 = s) r(s ′, a)

=
∞∑
t=0

γt
∑
s′∈S

Pπ(st = s ′ | s0 = s) rπ(s ′)

= (
∞∑
t=0

γtPt
πrπ)(s)
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Planning and Optimal Control 5. Optimal Policies for the Discounted Criterion

Bellman Equation
Given
I an MDP (p, r) and
I a discount factor γ ∈ (0, 1),

define the dynamic programming operator L on value functions:

LV := max
π∈ΠMAS

LπV = max
π∈ΠMAS

(rπ + γPπV ), V ∈ RS

Theorem (Bellman equation)

The optimal value functions V ∗γ are the only fixpoints of L:

LV = V

or equivalently

V (s) = max
a∈A

(
r(s, a) + γ

∑
s′∈S

p(s ′ | s, a) V (s ′)

)
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Planning and Optimal Control 5. Optimal Policies for the Discounted Criterion

Bellman equation / Proof (Overview)
In 5 steps:

1. stationary Markov policies maximizing the one step expected reward
yield the same value, wether they are deterministic or stochastic:

max
π∈ΠMDS

(rπ + γPπV ) = max
π∈ΠMAS

(rπ + γPπV )

2. value functions being shrunken by L,
upper bound the optimal value function:

LV ≤ V ⇒ V ∗γ ≤ V

3. value functions being inflated by L,
lower bound the optimal value function:

LV ≥ V ⇒ V ≤ V ∗γ

4. thus, any fixpoint of L is an optimal value function.

5. L has fixpoints (because it is a contraction)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

39 / 54



Planning and Optimal Control 5. Optimal Policies for the Discounted Criterion

Find Optimal Policy for Discounted Criterion / LP
I There are several algorithms to find optimal policies for the

discounted criterion.

I The 3 most important:
1. via a linear program (LP)

2. value iteration

3. policy iteration

I idea of 1. via a linear program:
I optimize over all value functions being upper bounds of V ∗γ

I can be encoded via constraints V ≥ LV
(see proof step 2 of Bellman equation)

I within upper bounds, optimal policies minimize
∑

s∈S V (s)

min
V∈RS

∑
s∈S

V (s)

s.t. V (s) ≥ r(s, a) + γ
∑
s′∈S

p(s ′ | s, a) V (s ′) ∀s ∈ S , a ∈ A
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Planning and Optimal Control 5. Optimal Policies for the Discounted Criterion

Find Optimal Policy for Discounted Criterion / LP

1 opt-policy-discounted-lp(p, r ,S ,A, γ):
2 V ∗γ = argmin-solve-lpV∈RS

∑
s∈S V (s)

s.t. V (s) ≥ r(s, a) + γ
∑

s′∈S p(s ′ | s, a) V (s ′) ∀s ∈ S , a ∈ A

3 for s ∈ S :
4 choose π∗(s) ∈ arg maxa∈A(r(s, a) + γ

∑
s′∈S p(s ′ | s, a) V ∗γ (s ′))

5 return V ∗γ , π
∗
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Planning and Optimal Control 5. Optimal Policies for the Discounted Criterion

Find Opt. Policy for Discounted Criterion / Value Iteration

I idea: iterate fixpoint equation for the optimal value function:

V (n+1) := LV (n)

I works from any initialization V (0)

I stop once ||V (n+1) − V (n)|| < ε
for some prescribed threshold ε

I variants:
I use already computed V (n+1)(s) to compute V (n+1)(s ′)

(instead of V (n)(s); called Gauss-Seidel)

I reestimate V (s) in random order of s
(called asynchronous dynamic programming)

I reestimate V (s) proportional to their last change
(also: prune some states s)
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Planning and Optimal Control 5. Optimal Policies for the Discounted Criterion

Find Opt. Policy for Discounted Criterion / Value Iteration

1 opt-policy-discounted-value-iteration(p, r ,S ,A, γ, ε):

2 initialize V (0) arbitrarily
3 n := 0
4 repeat
5 n := n + 1
6 for s ∈ S :

7 V (n)(s) := maxa∈A(r(s, a) + γ
∑

s′∈S p(s ′ | s, a) V (n−1)(s ′))

8 until ||V (n) − V (n−1)|| < ε

9 V ∗γ := V (n)

10 for s ∈ S :
11 choose π∗(s) ∈ arg maxa∈A(r(s, a) + γ

∑
s′∈S p(s ′ | s, a) V ∗γ (s ′))

12 return V ∗γ , π
∗
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Planning and Optimal Control 5. Optimal Policies for the Discounted Criterion

Find Opt. Policy for Discounted Criterion / Policy Iteration

One step look-ahead policy improvement:
Let π ∈ ΠMAS . Then the one step look-ahead policy π′

π′ ∈ arg max
π′∈ΠMAS

(rπ′ + γPπ′V
π
γ )

has a value function V π′
γ that upper bounds / improves π:

V π′
γ ≥ V π

γ

without improvement only if π was already optimal (V π′
γ = V π

γ iff π = π∗).
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Planning and Optimal Control 5. Optimal Policies for the Discounted Criterion

Find Opt. Policy for Discounted Criterion / Policy Iteration

1 opt-policy-discounted-policy-iteration(p, r ,S ,A, γ):

2 initialize π(0) arbitrarily
3 n := 0
4 repeat

5 V (n) := (I − γPπ(n) )−1rπ(n)

6 for s ∈ S :

7 choose π(n+1)(s) ∈ arg maxa∈A(r(s, a) + γ
∑

s′∈S p(s ′ | s, a)V (n)(s ′))
8 n := n + 1

9 until π(n) = π(n−1)

10 return V (n−1), π(n)
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Planning and Optimal Control 6. Optimal Policies for the Total Reward Criterion

Outline

1. Markov Decision Problems

2. Value Functions

3. Markov Policies

4. Optimal Policies for the Finite Criterion

5. Optimal Policies for the Discounted Criterion

6. Optimal Policies for the Total Reward Criterion
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Planning and Optimal Control 6. Optimal Policies for the Total Reward Criterion

Value Functions for Total Reward

I for total reward, value functions are limits.

I for some MDPs these limits may not exist.
I example:

S := {1, 2}, P :=

(
0 1
1 0

)
, A := {1}, r1 :=

(
1
−1

)
π := {(1, 1), (2, 1)}
rt = 1,−1, 1,−1, 1,−1, . . . whose sum does not converge

I specific conditions on the MDP are required for these limits to exist
I positive MDPs

I negative MDPs
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Planning and Optimal Control 6. Optimal Policies for the Total Reward Criterion

Positive MDPs

An MDP (p, r) is called positive, if

i) for all states there exists an action with non-negative reward and

ii) for all policies the positive value function

V π
+(s) := E(

∞∑
t=0

max(0, rt) | s0 = s)

is finite for all states.
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Planning and Optimal Control 6. Optimal Policies for the Total Reward Criterion

Optimal Policies for Positive MDPs under Total Reward

Let operators Lπ and L be defined as before (for γ := 1).
Given a positive MDP (p, r),

i) V π is the minimum solution of V = LπV in (R+
0 )S

(for all policies π ∈ ΠMDS).

ii) V ∗ is the minimum solution of V = LV in (R+
0 )S .

iii) π ∈ ΠHA optimal iff V π is a fixpoint of V = LV .

iv) if π ∈ arg maxπ∈ΠMA(rπ + PπV ∗)
and limN→∞ PN

π V ∗(s) = 0 for all states s,
then π is optimal.
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Planning and Optimal Control 6. Optimal Policies for the Total Reward Criterion

Find an Optimal Policy for Positive MDPs under Total
Reward

I value iteration:
I converges monotonously to V ∗ if 0 ≤ V0 ≤ V ∗

I e.g., V0 := 0 will do.

I policy iteration:
I ensure that its value function stays in (R+

0 )S

I force V (n)(s) := 0 for all recurrent states s in Markov chain Pπ(n)
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Planning and Optimal Control 6. Optimal Policies for the Total Reward Criterion

Find Opt. Policy for Total Reward Criterion, Positive MDP
/ Policy Iteration

1 opt-policy-total-pos-policy-iteration(p, r ,S ,A):

2 initialize π(0) s.t. rπ(0) ≥ 0
3 n := 0
4 repeat

5 V (n) := minimum solution of

6 V (n)(s) = r(s, π(n)(s)) +
∑

s′∈S p(s ′ | s, π(n)(s))V (n)(s ′)
7 for s ∈ S :

8 choose π(n+1)(s) ∈ arg maxa∈A(r(s, a) +
∑

s′∈S p(s ′ | s, a)V (n)(s ′))

9 (choose π(n+1)(s) = π(n)(s) if it is still among maximal actions)
10 n := n + 1

11 until π(n) = π(n−1)

12 return V (n−1), π(n)
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Planning and Optimal Control 6. Optimal Policies for the Total Reward Criterion

Negative MDPs

An MDP (p, r) is called negative, if

i) all rewards are negative and

ii) there exists a policy with value function having finite values for all
states.
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Planning and Optimal Control 6. Optimal Policies for the Total Reward Criterion

Summary
I Markov Decision Processes (MDPs) describe Markov processes

that
I can be controlled/manipulated by actions/decisions

I yield rewards depending on current state and action.

I A policy describes which action to choose in which situation.
I Markov policy: depends only on current state, not on history.
I stationary: does not depend on current time.
I deterministic policy: choose a single action, not stochastic.

I An MDP, a start state and a policy define three stochastic
processes for states, actions and rewards.

I A performance criterion describes how to aggregate a stochastic
reward process to a scalar value.

I sum, sum of first N, discounted sum, average
I expectation
I called total reward, finite, discounted, average criterion.
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Planning and Optimal Control 6. Optimal Policies for the Total Reward Criterion

Summary (2/3)

I The value function of a policy gives the value for a policy for each
start state.

I The Markov Decision Problem, to find the optimal policy for an
MDP, is formalized as finding a policy with maximal value function
(for all states).

I Optimal policies for these four criteria always can be chosen Markov.
I no need for history-dependent policies.
I but they are non-stationary in general.

I The state process of an MDP under a Markov policy is Markov
I together with the reward process called Valued Markov Process.
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Planning and Optimal Control 6. Optimal Policies for the Total Reward Criterion

Summary (3/3)
I Criteria and algorithms for optimal policies differ depending on the

criterion.

I For the finite criterion, an optimal policy can be computed through a
simple recursive scheme backwards in time.

I optimal policy can be chosen deterministic
I but will in general be non-stationary.

I For the discounted criterion,
I optimal policies are the fixpoints of the dynamic programming

operator L (Bellman equation).
I choose best policy according to one step look ahead and value function

of the input policy.

I via linear programming: find policy with maximal sum of values
respecting Bellman equations.

I value iteration: iterate dynamic programming operator on the value
function.

I policy iteration: iterate one step look ahead improvement of current
policy.
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Further Readings

I Markov decision processes:
I Frederick Garica, Emmanuel Rachelson (2010): Markov Decision

Processes, ch. 1 in ?.
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