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Planning and Optimal Control 1. Linear Gaussian Systems

Linear Transformation of a Gaussian
The linear transformation of a Gaussian is again a Gaussian:

p(x) := N (x | µ,Σ), µ ∈ RN ,Σ ∈ RN×N

y := Ax + a, A ∈ RM×N , a ∈ RM

 p(y) = py (Ax + a) = N (y | Aµ+ a,AΣAT )

Proof:

E(y) = E(Ax + a) = AE(x) + a = Aµ+ a

V(y) = E((y − E(y))(y − E(y))T )

= E(A(x − µ)(A(x − µ))T )

= AE((x − µ)(x − µ)T )AT

= AΣAT

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 39



Planning and Optimal Control 1. Linear Gaussian Systems

Product of two Gaussian PDFs

The product of two Gaussian PDFs is again Gaussian:

N (x | µ1,Σ1) · N (x | µ2,Σ2) ∝ N (x | µ,Σ)

with Σ :=(Σ−1
1 + Σ−1

2 )−1

µ :=Σ(Σ−1
1 µ1 + Σ−1

2 µ2)

Proof: elementary:

I log p is quadratic in x .
I complement squares.

Do not confuse this with

I N (x | µ1,Σ1) · N (y | µ2,Σ2) ∝ N (

(
x
y

)
|
(
µ1

µ2

)
,

(
Σ1 0
0 Σ2

)
)

I p(x2) for x ∼ N (x | µ,Σ).
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Planning and Optimal Control 1. Linear Gaussian Systems

Conditional Distributions of Multivariate Normals (Review)

Let yA, yB be jointly Gaussian

y :=

(
yA
yB

)
∼ N (

(
yA
yB

)
|
(
µA
µB

)
,

(
ΣAA ΣAB

ΣBA ΣBB

)
)

then the conditional distribution is

p(yB | yA) = N (yB | µB|A,ΣB|A)

with

µB|A :=µB + ΣBAΣ−1
AA(yA − µA)

ΣB|A :=ΣBB − ΣBAΣ−1
AAΣAB
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Planning and Optimal Control 1. Linear Gaussian Systems

Conditional Distr. of Multiv. Normals / Information Form

Let yA, yB be jointly Gaussian

y :=

(
yA
yB

)
∼ N (

(
yA
yB

)
|
(
µA
µB

)
,Λ =

(
ΛAA ΛAB

ΛBA ΛBB

)
)

then the conditional distribution is

p(yB | yA) = N (yB | µB|A,ΛB|A)

with

µB|A :=µB + Λ−1
BBΛBA(yA − µA)

ΛB|A :=ΛBB
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Planning and Optimal Control 1. Linear Gaussian Systems

Linear Gaussian System

p(x) := N (x | µx ,Σx)

p(y | x) := N (y | Ax + b,Σy )

where
I x a multivariate Gaussian distributed random variable

I µx ∈ RM ,Σx ∈ RM×M

I y a multivariate Gaussian distributed random variable
I µy := Aµx + b ∈ RL,Σy ∈ RL×L

I A ∈ RL×M , b ∈ RL

I y depends linearly on x
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Planning and Optimal Control 1. Linear Gaussian Systems

Linear Gaussian System

I LGS = multivariate multiple regression (y |x)
plus a Gaussian model for x .

I together, a generative Gaussian model.
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Planning and Optimal Control 1. Linear Gaussian Systems

LGS as Joint Gaussian

An LGS p(x) := N (x | µx ,Σx)

p(y | x) := N (y | Ax + b,Σy )

is equivalent to a jointly Gaussian distribution:

p(

(
x
y

)
) = N (

(
µx

Aµx + b

)
,

(
Σ−1
x + ATΣ−1

y A −ATΣ−1
y

−Σ−1
y A Σ−1

y

)−1

)
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Planning and Optimal Control 1. Linear Gaussian Systems

LGS as Joint Gaussian / Information Form

An LGS p(x) := N (x | µx ,Λx)

p(y | x) := N (y | Ax + b,Λy )

is equivalent to a jointly Gaussian distribution:

p(

(
x
y

)
) = N (

(
µx

Aµx + b

)
,

(
Λx + ATΛyA −ATΛy

−ΛyA Λy

)
)
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Planning and Optimal Control 1. Linear Gaussian Systems

LGS as Joint Gaussian / Example
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Planning and Optimal Control 1. Linear Gaussian Systems

LGS as Joint Gaussian / Proof

log p(x , y)

= log p(x) + log p(y | x)

∝ (x − µx)TΛx(x − µx) + (y − Ax − b)TΛy (y − Ax − b)

= (x − µx)TΛx(x − µx)

+ (y − Aµx − b − A(x − µx))TΛy (y − Aµx − b − A(x − µx))

= (x − µx)T (Λx + ATΛyA)(x − µx)

+ (y − Aµx − b)TΛy (y − Aµx − b)

− 2(y − Aµx − b)TΛyA(x − µx)

=

(
x − µx

y − Aµx − b

)T (
Λx + ATΛyA −ATΛy

−ΛyA Λy

)(
x − µx

y − Aµx − b

)
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Planning and Optimal Control 1. Linear Gaussian Systems

Bayes Rule for Linear Gaussian Systems

For an LGS p(x) := N (x | µx ,Σx)

p(y | x) := N (y | Ax + b,Σy )

Bayes’ Rule reads:

p(x | y) = N (x | µx |y ,Σx |y )

with Σx |y := (Σ−1
x + ATΣ−1

y A)−1

µx |y := Σx |y

(
ATΣ−1

y (y − b) + Σ−1
x µx

)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 39



Planning and Optimal Control 1. Linear Gaussian Systems

Bayes Rule for Linear Gaussian Systems / Proof

I LGS is equivalent to joint Gaussian:

p(

(
x
y

)
) = N (

(
µx

Aµx + b

)
,Λ =

(
Λx + ATΛyA ATΛy

ΛyA Λy

)
)

I conditional of a joint Gaussian:

p(x | y) = N (x | µx |y ,Λx |y )

with

Λx |y :=Λx ,x

µx |y :=µx + Λ−1
x ,xΛx ,y (y − µy )

=Λ−1
x ,x(Λx ,xµx + Λx ,y (y − µy ))

=Λ−1
x ,x(Λxµx + ATΛyAµx + ATΛy (y − Aµx − b))

=Λ−1
x ,x(Λxµx + ATΛy (y − b))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 39



Planning and Optimal Control 1. Linear Gaussian Systems

Example: Inference from Noisy Measurements

I underlying quantity x
I prior

p(x) := N (x | µx , λ−1
x )

I L noisy measurements y1:L:

p(y` | x) := N (y` | x , λ−1
y ), ` ∈ 1 : L

I scalar LGS: N = M := 1, A := 1 and b := 0: µy |x = Ax + b = x

I vector LGS: N := 1,M := L, y := y1:L, Λy := λy · IL×L, A := 1L,
b := 0L,

µy|x = Ax + b = x · 1L
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Planning and Optimal Control 1. Linear Gaussian Systems

Example: Inference from Noisy Measurements
I vector LGS: N = M := L, y := y1:L, Λy := λy · IL×L, A := 1L, b := 0L,

µy|x = Ax + b = x · 1L

I Bayes rule:

p(x | y) = N (x | µx |y ,Σx |y )

with Σ−1
x |y := Σ−1

x + ATΣ−1
y A

= λx + Lλy

µx |y := Σx |y

(
ATΣ−1

y (y − b) + Σ−1
x µx

)

= (λx + Lλy )−1(λy

L∑

`=1

y` + λxµx)

=
λx

λx + Lλy
µx +

Lλy
λx + Lλy

1

L

L∑

`=1

y`
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Planning and Optimal Control 1. Linear Gaussian Systems

Example: Inference from Noisy Measurements4.4. Linear Gaussian systems 121
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Figure 4.12 Inference about x given a noisy observation y = 3. (a) Strong prior N (0, 1). The posterior
mean is “shrunk” towards the prior mean, which is 0. (a) Weak prior N (0, 5). The posterior mean is
similar to the MLE. Figure generated by gaussInferParamsMean1d.

as follows:

p(x|D, σ2) = N (x|μN , τ2N ) (4.132)

τ2N =
1

N
σ2 + 1

τ20

=
σ2τ20

Nτ20 + σ2
(4.133)

μN = τ2N

(
μ0

τ20
+

Ny

σ2

)
=

σ2

Nτ20 + σ2
μ0 +

Nτ20
Nτ20 + σ2

y (4.134)

where τ20 = 1/λ0 is the prior variance and τ2N = 1/λN is the posterior variance.
We can also compute the posterior sequentially, by updating after each observation. If

N = 1, we can rewrite the posterior after seeing a single observation as follows (where we
define Σy = σ2, Σ0 = τ20 and Σ1 = τ21 to be the variances of the likelihood, prior and
posterior):

p(x|y) = N (x|μ1,Σ1) (4.135)

Σ1 =

(
1

Σ0
+

1

Σy

)−1

=
ΣyΣ0

Σ0 +Σy
(4.136)

μ1 = Σ1

(
μ0

Σ0
+

y

Σy

)
(4.137)

We can rewrite the posterior mean in 3 different ways:

μ1 =
Σy

Σy +Σ0
μ0 +

Σ0

Σy +Σ0
y (4.138)

= μ0 + (y − μ0)
Σ0

Σy +Σ0
(4.139)

= y − (y − μ0)
Σy

Σy +Σ0
(4.140)

[source: Murphy 2012, p.121]

p(x) := N (x | 0, σ2 ∈ {1, 5}), p(y | x) := N (y | x , 1), y = 3

prior: p(x), MLE: N (x | y , 1), posterior: p(x | y)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 1. Linear Gaussian Systems

Learning LGMs from Data

p(x) := N (x | µx ,Σx)

p(y | x) := N (y | Ax + b,Σy )I data:

D := {(x1, y1), (x2, y2), . . . , (xN , yN)} ⊆ RM × RL

I multivariate linear regression of yn,. on xn,. (over all n):

X := (xTn )n=1:N ∈ RN×M , Y := (yTn )n=1:N ∈ RN×L

Â := (XTX )−1XTY (for b̂ := 0)

Σ̂y :=
1

N −M
Y T (I − X (XTX )−1XT )Y

I multivariate normal density estimation of xn,. (over all n):

µ̂x :=
1

N
1M×NX

Σ̂x :=
1

N − 1
(X − µ̂x)(X − µ̂x)T

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 1. Linear Gaussian Systems

Learning LGMs from Data

1 learn-lgm(D := {(x1, y1), (x2, y2), . . . , (xN , yN)} ⊆ RM × RL):

2 X := (xTn )n=1:N ∈ RN×M , Y := (yT
n )n=1:N ∈ RN×L

3 µ̂x := 1
N 1M×NX

4 Σ̂x := 1
N−1 (X − µ̂x)(X − µ̂x)T

5 X̃ := (1N ,X )

6 Ã := (X̃T X̃ )−1X̃TY

7 b̂ := Ã.,1, Â := Ã.,2:

8 Σ̂y := 1
N−MY T (I − X̃ (X̃T X̃ )−1X̃T )Y

9 return µ̂x , Σ̂x , Â, b̂, Σ̂y

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 1. Linear Gaussian Systems

Learning LGMs from Data with Uncertainties

I cases

xn,Σ
x
n, yn with x true

n ∼ N (xn,Σ
x
n)

I normal equations:

(
∑

n

x true
n x trueT

n )Â =
∑

n

x true
n yTn |E (. . .)

(
∑

n

xnx
T
n + Σx

n)Â =
∑

n

xny
T
n

 Â =(XTX +
∑

n

Σx
n)−1XTY
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Planning and Optimal Control 2. State Space Models

State Space Model

zt = g(zt−1) transition model

xt = h(zt) observation model

zt ∈ RK hidden state

xt ∈ RM observation

I like HMM, but with continuous hidden state zt

I g , h stochastic functions
I = parametric distributions:

I parameters = functions of the arguments
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Planning and Optimal Control 2. State Space Models

Linear-Gaussian State Space Model

p(zt | zt−1) := N (zt | Atzt−1 + at−1,Σz,t) transition model

p(xt | zt) := N (xt | Btzt + bt ,Σx ,t) observation model

zt ∈ RK hidden state

xt ∈ RM observation

At ∈ RK×K transition matrix at time t

Bt ∈ RM×K observation matrix at time t

Σz,t ∈ RK×K state/system noise at time t

Σx ,t ∈ RM×M observation noise at time t

I transition and observation function is linear
I bias term often dropped: at−1 := 0, bt := 0.

I state and observation noise is Gaussian
I also called linear Gaussian system

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 2. State Space Models

Stationary Linear-Gaussian State Space Model

p(zt | zt−1) := N (zt | Azt−1,Σz) transition model

p(xt | zt) := N (xt | Bzt ,Σx) observation model

zt ∈ RK hidden state

xt ∈ RM observation

A ∈ RK×K transition matrix

B ∈ RM×K observation matrix

Σz ∈ RK×K state/system noise

Σx ∈ RM×M observation noise

I stationary, time-invariant:
I transition and observation matrices do not depend on time t

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 2. State Space Models

Initial State Distribution

All models need to be complemented by an initial state distribution:

p(z1) := N (z1 | µz1 ,Σz1)
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Planning and Optimal Control 2. State Space Models

Example
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Fig. 1.1. Johnson & Johnson quarterly earnings per share, 84 quarters, 1960-I to 1980-IV.

1.1 The Nature of Time Series Data

Some of the problems and questions of interest to the prospective time series analyst
can best be exposed by considering real experimental data taken from different subject
areas. The following cases illustrate some of the common kinds of experimental time
series data as well as some of the statistical questions that might be asked about such
data.

Example 1.1 Johnson & Johnson Quarterly Earnings
Figure 1.1 shows quarterly earnings per share for the U.S. company Johnson &
Johnson, furnished by Professor Paul Griffin (personal communication) of the
Graduate School of Management, University of California, Davis. There are 84
quarters (21 years) measured from the first quarter of 1960 to the last quarter of
1980. Modeling such series begins by observing the primary patterns in the time
history. In this case, note the gradually increasing underlying trend and the rather
regular variation superimposed on the trend that seems to repeat over quarters.
Methods for analyzing data such as these are explored in Chapter 2 and Chapter 6.
To plot the data using the R statistical package, type the following:1.1
library(astsa) # SEE THE FOOTNOTE
plot(jj, type="o", ylab="Quarterly Earnings per Share")

Example 1.2 Global Warming
Consider the global temperature series record shown in Figure 1.2. The data are the
global mean land–ocean temperature index from 1880 to 2015, with the base period
1951-1980. In particular, the data are deviations, measured in degrees centigrade,
from the 1951-1980 average, and are an update of Hansen et al. (2006). We note an
apparent upward trend in the series during the latter part of the twentieth century
that has been used as an argument for the global warming hypothesis. Note also
the leveling off at about 1935 and then another rather sharp upward trend at about

1.1 Throughout the text, we assume that the R package for the book, astsa, has been installed and loaded.
See Section R.2 for further details.

[source: Shumway and Stoffer 2017, p.2]
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Planning and Optimal Control 2. State Space Models

Example
I decompose quarterly earnings Et of a company

into a trend Tt and
a seasonal component St :

Et ∼ N (Tt + St , σ
2
E )

Tt ∼ N (βTt−1, σ
2
T )

St + St−1 + St−2 + St−3 ∼ N (0, σ2
S)

I as LGSSM:

xt := Et , zt := (Tt , St , St−1,St−2)T

B := (1, 1, 0, 0)T , b := 0, Σx = (σ2
E )

A :=




β 0 0 0
0 −1 −1 −1
0 1 0 0
0 0 1 0


 , a := 0, Σy := diag(σ2

T , σ
2
S , 0, 0)
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Planning and Optimal Control 2. State Space Models

Example
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Fig. 6.7. Estimated trend component, Tn
t , and seasonal component, Snt , of the Johnson and

Johnson quarterly earnings series. Gray areas are three root MSE bounds.

is about 3% per year, and we began with φ = 1.03. The initial mean was fixed
at µ0 = (.7, 0, 0, 0)′, with uncertainty modeled by the diagonal covariance matrix
with Σ0ii = .04, for i = 1, . . . , 4. Initial state covariance values were taken as
q11 = .01, q22 = .01. The measurement error covariance was started at r11 = .25.

After about 20 iterations of a Newton–Raphson, the transition parameter esti-
mate was φ̂ = 1.035, corresponding to exponential growth with inflation at about
3.5% per year. The measurement uncertainty was small at

√
r̂11 = .0005, compared

with the model uncertainties
√

q̂11 = .1397 and
√

q̂22 = .2209. Figure 6.7 shows
the smoothed trend estimate and the exponentially increasing seasonal components.
We may also consider forecasting the Johnson & Johnson series, and the result of
a 12-quarter forecast is shown in Figure 6.8 as basically an extension of the latter
part of the observed data.

This example uses the Kfilter0 and Ksmooth0 scripts as follows.
num = length(jj)
A = cbind(1,1,0,0)
# Function to Calculate Likelihood
Linn =function(para){
Phi = diag(0,4); Phi[1,1] = para[1]
Phi[2,]=c(0,-1,-1,-1); Phi[3,]=c(0,1,0,0); Phi[4,]=c(0,0,1,0)
cQ1 = para[2]; cQ2 = para[3] # sqrt q11 and q22
cQ = diag(0,4); cQ[1,1]=cQ1; cQ[2,2]=cQ2
cR = para[4] # sqrt r11
kf = Kfilter0(num, jj, A, mu0, Sigma0, Phi, cQ, cR)

[source: Shumway and Stoffer 2017, p.317]
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Planning and Optimal Control 3. Inference I: Kalman Filtering

Infering Posterior State Distributions p(zt | x1:t)

Posterior hidden states can be computed sequentially:

p(zt | x1:t) = N (zt | µαt ,Σα
t )

with Σα
t := ((AΣα

t−1A
T )−1 + BTΣ−1

x B)−1

µαt := Σα
t ((AΣα

t−1A
T )−1Aµαt−1 + BTΣ−1

x xt)

and Σα
1 := (Σ−1

z1
+ BTΣ−1

x B)−1

µα1 := Σα
1 (Σ−1

z1
µz1 + BTΣ−1

x x1)
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Planning and Optimal Control 3. Inference I: Kalman Filtering

Infering p(zt | x1:t) / Proof
I for t = 1:

p(x1 | z1) = N (x1 | Bz1,Σx)

p(z1) = N (z1 | µz1 ,Σz1)

Bayes rule
 p(z1 | x1) = N (zt | µα1 ,Σα

1 )

with Σα
1 := Σz1|x1

= (Σ−1
z1

+ BTΣ−1
x B)−1

µα1 := µz1|x1
= Σα

1 (Σ−1
z1
µz1 + BTΣ−1

x x1)

I for t > 1:

p(xt | zt) = N (xt | Bzt ,Σx)

p(zt | x1:t−1) = N (zt | Aµαt−1,AΣα
t−1A

T )

Bayes rule
 p(zt | x1:t) = N (zt | µαt ,Σα

t )

with Σα
t := Σzt |x1:t

= ((AΣα
t−1A

T )−1 + BTΣ−1
x B)−1

µαt := µzt |x1:t
= Σα

t ((AΣα
t−1A

T )−1Aµαt−1 + BTΣ−1
x xt)
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Planning and Optimal Control 3. Inference I: Kalman Filtering

Precomputing Posterior Variances

I Σα
t does not depend on the observations x1:t

I thus can be precomputed

I Σα
t depends on t only through the time since the initial state
I if we assume states long after the initial state, use

Σα := lim
t→∞

Σα
t

for all t.

I Σα can be computed via fixpoint iterations

(Σα)(0) := (Σ−1
z1

+ BTΣ−1
x B)−1

(Σα)(t) := ((A(Σα)(t−1)AT )−1 + BTΣ−1
x B)−1
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Planning and Optimal Control 3. Inference I: Kalman Filtering

Computing Variances with a Single Matrix Inversion
I in its previous form, computing variances Σα

t requires two matrix
inversions:

Σα
t := ((AΣα

t−1A
T )−1 + BTΣ−1

x B)−1

I more efficient computation with a single matrix inversion:

Σt|t−1 := AΣα
t−1A

T

Σα
t = (I − Σt|t−1B

T (Σx + BΣt|t−1B
T )−1

︸ ︷︷ ︸
=:Kt

B)Σt|t−1

= (I − KtB)Σt|t−1

Proof: apply the matrix inversion lemma

(A− BD−1C )−1 = (I + A−1B(D − CA−1B)−1C )A−1

to (Σ−1
t|t−1 + BTΣ−1

x B)−1
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Planning and Optimal Control 3. Inference I: Kalman Filtering

Computing Means without Additional Matrix Inversion
I also the original mean formula contains a matrix inversion:

µαt := Σα
t (BTΣ−1

x xt + Σ−1
t|t−1Aµ

α
t−1)

I can be simplified, reusing the matrix inversion from the variance:

µt|t−1 := Aµαt−1

µαt = µt|t−1 + Kt(xt − Bµt|t−1)

proof: left term: using 2nd matrix inversion fomula

Σα
t B

TΣ−1
x

= (Σ−1
t|t−1 + BTΣ−1

x B)−1BTΣ−1
x = Σt|t−1B

T (Σx + BΣt|t−1B
T )−1

= Kt

(A− BD−1C )−1BD−1 = A−1B(D − CA−1B)−1

right term:

Σα
t Σ−1

t|t−1 = (I − KtB)Σt|t−1Σ−1
t|t−1 = (I − KtB)
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Planning and Optimal Control 3. Inference I: Kalman Filtering

Kalman Filtering (Single Inversion)

I prediction step:

Σt|t−1 := AΣα
t−1A

T

µt|t−1 := Aµαt−1

I measurement step:

Kt := Σt|t−1B
T (Σx + BΣt|t−1B

T )−1

µαt = µt|t−1 + Kt(xt − Bµt|t−1)

Σα
t := (I − KtB)Σt|t−1
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Planning and Optimal Control 3. Inference I: Kalman Filtering

Kalman Filtering / Algorithm

1 infer-filtering-kalman(x ,A,Σz ,B,Σx , µz1 ,Σz1 ):
2 T := |x |
3 Σα

1 := (Σ−1
z1

+ BTΣ−1
x B)−1

4 µα1 := Σα
1 (BTΣ−1

x x1 + Σ−1
z1
µz1 )

5 for t = 2, . . . ,T :

6 Σt|t−1 := AΣα
t−1A

T

7 µt|t−1 := Aµαt−1

8 Kt := Σt|t−1B
T (Σx + BΣt|t−1B

T )−1

9 µαt = µt|t−1 + Kt(xt − Bµt|t−1)
10 Σα

t := (I − KtB)Σt|t−1

11 return µα1:T ,Σ
α
1:T

where

I x ∈ (RM)∗ observed sequence
I A,Σz ,B,Σx , µz1 ,Σz1 linear-Gaussian state space model

yields p(zt | x1:t) = N (zt | µαt ,Σα
t ), t = 1 : T PDFs of filtered latent states
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Planning and Optimal Control 4. Inference II: Kalman Smoothing
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Planning and Optimal Control 4. Inference II: Kalman Smoothing

Infering Posterior State Distributions p(zt | x1:T )

p(zt | x1:T ) = N (zt | µγt ,Σγ
t )

µγt := µαt + Jt(µ
γ
t+1 − µt+1|t)

Σγ
t := Σα

t + Jt(Σγ
t+1 − Σt+1|t)J

T
t

Jt := Σα
t A

TΣt+1|t backwards Kalman gain matrix

with

p(zt+1 | x1:t) = N (zt | µt+1|t ,Σt+1|t) prediction

µt+1|t = Aµαt

Σt+1|t = AΣα
t A

T + Σx

initialized by p(zT | x1:T ), i.e.,

µγT := µαT , Σγ
T := Σα

T
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Planning and Optimal Control 4. Inference II: Kalman Smoothing

Infering Posterior State Distr. p(zt | x1:T ) / Proof

p(zt | x1:T ) =

∫

zt+1

p(zt+1 | x1:T ) p(zt | x1:t ,����xt+1:T , zt+1)dzt+1

p(zt , zt+1 | x1:t) = N (

(
zt
zt+1

)
|
(

µαt
µt+1|t

)
,

(
Σα
t Σα

t A
T

AΣα
t Σt+1|t

)
)

filtered two-slice posteriors

Gaussian conditioning yields

p(zt | x1:t , zt+1) = N (zt | µαt + Jt(zt+1 − µt+1|t),Σ
α
t − JtΣt+1|tJ

T
t )

and finally

µγt = E(E(zt | zt+1, x1:T ) | x1:T )

= E(E(zt | zt+1, x1:t) | x1:T )

= E(µαt + Jt(zt+1 − µt+1|t) | x1:T )

= µαt + Jt(µ
γ
t+1 − µt+1|t)
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Planning and Optimal Control 4. Inference II: Kalman Smoothing

Infering Posterior State Distr. p(zt | x1:T ) / Proof

Σγ
t = V(E(zt | zt+1, x1:T ) | x1:T ) + E(V(zt | zt+1, x1:T ) | x1:T )

= . . .

= Σα
t + Jt(Σγ

t+1 − Σt+1|t)J
T
t
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Planning and Optimal Control 5. Learning via EM
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Planning and Optimal Control 5. Learning via EM

Learning SSMs from Fully Observed Data

I just estimate
I the LGS / multivar. linear regression p(xt | zt),

I the LGS / multivar. linear regression p(zt+1 | zt) and

I the multivar. normal density p(z1)
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Planning and Optimal Control 5. Learning via EM

Learning LGMs from Fully Observed Data

1 learn-ssm-fully-observed(D := {(x1, z1), (x2, z2), . . . , (xN , zN)} ⊆ (RM × RK )∗):

2 , , B̂, b̂, Σ̂x := learn-lgm({(zn,t , xn,t) | n = 1 : N, t = 1 : Tn})
3 , , Â, â, Σ̂z := learn-lgm({(zn,t , zn,t+1) | n = 1 : N, t = 1 : Tn − 1})
4 µ̂z1 , Σ̂z1 , , , := learn-lgm({(zn,1, xn,1) | n = 1 : N})
5 return µ̂z1 , Σ̂z1 , Â, â, Σ̂z , B̂, b̂, Σ̂x
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Planning and Optimal Control 5. Learning via EM

Learning SSMs via EM
I E-step:

estimate via Kalman smoothing:

p(zn,t | xn,1:T ) = N (µγn,t ,Σ
γ
n,t)

p(zn,t+1, zn,t | xn,1:T ) = N (µξn,t,t+1,Σ
ξ
n,t,t+1)

I M-step:
learn observation model x = Bz + b from

(µγn,t ,Σ
γ
n,t , xn,t) | n = 1 : N, t = 1 : Tn

learn transition model zt+1 = Azt + a from

((µξn,t,t+1)1:K , (µ
ξ
n,t,t+1)K+1:2K ,Σ

ξ
n,t,t+1) | n = 1 : N, t = 1 : Tn − 1

estimate starting density p(z1) from

(µγn,1,Σ
γ
n,1) | n = 1 : N

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

38 / 39

Note: for Σξn,t,t+1 see Ghahramani/Hinton 1996b, eq. 34.



Planning and Optimal Control 5. Learning via EM

Summary

I Linear Gaussian Systems describe linear dependencies between
continuous, normally distributed variables.

I Continuous markov models.

I Linear Gaussian State Space Models (LGSSMs) describe linear
dependencies between observed and latent, continuous normally
distributed variables.

I Continuous hidden markov models.

I For LGSSMs there exist simple algorithms to
I infer the last latent state (Kalman filtering)

I infer any intermediate latent state (Kalman smoothing)

I forecast future observations (using Kalman filtering)

I LGSSMs can be learned via EM.
(not covered by my slides currently.)
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Planning and Optimal Control

Further Readings

I Inference in jointly Gaussian distributions:
I lecture Machine Learning 2, ch. A.2 Gaussian Processes

I Murphy 2012, chapter 4.3.

I Linear Gaussian Systems:
Murphy 2012, chapter 4.4.

I State Space Models:
I Murphy 2012, chapter 18.

I Shumway and Stoffer 2017, chapter 6.
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