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Planning and Optimal Control 1. Linear Gaussian Systems

Linear Transformation of a Gaussian
The linear transformation of a Gaussian is again a Gaussian:

p(x) = N(x | p,X), peRY ¥ e RN
y = Ax + a, AecRM*N 5 c RM
~  p(y) = py(Ax+a) = N(y | Au+ a, AZAT)

Proof:

(Ax +a) = AE(x) +a=An+a
V(y) =E((y —E()(y —E(¥))")
(
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Planning and Optimal Control 1. Linear Gaussian Systems

M
Product of two Gaussian PDFs v

The product of two Gaussian PDFs is again Gaussian:

N(x | p1, Z1) - N(x | pz, X2) o N(x | p, X)
with ¥ :=(X;t+x,h)7?
o= (T 4+ 55 o)
Proof: elementary:

» log p is quadratic in x.
» complement squares.

Do not confuse this with

> N(le,zl)-/\/(yqu,Zz)ow\/(< ; ) | ( Z; >< 201 202 ))
> p(x2) for x ~ N(x | 1, ).
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Planning and Optimal Control 1. Linear Gaussian Systems

Conditional Distributions of Multivariate Normals (Revuﬁ)

Let ya, yg be jointly Gaussian

()G ) (2 20 )

then the conditional distribution is

P(ye | ya) = N(ye | 1Bja; ZB|A)
with
figia =g + Zealaa(ya — pa)
Ypia =88 — LBAY 4 T AB
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Planning and Optimal Control 1. Linear Gaussian Systems

B
Conditional Distr. of Multiv. Normals / Information For@

Let ya, y5 be jointly Gaussian

= () () (e )= (v )

then the conditional distribution is

p(ys | ya) = N(ys | i1sja; Npja)
with
1gia =pe + NggNalya — 11a)
Ngja =NBB
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Planning and Optimal Control 1. Linear Gaussian Systems

. . N
Linear Gaussian System “

p(x) = N(x | fx Ex)
ply | x) =N(y | Ax+b,x,)
where

» x a multivariate Gaussian distributed random variable
> 1y € RM Y, € RMXM

» y a multivariate Gaussian distributed random variable
> = Aux +beREE, e REXL
» Ac REXM pc RE

» y depends linearly on x
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Planning and Optimal Control 1. Linear Gaussian Systems

Linear Gaussian System

» LGS = multivariate multiple regression (y|x)
plus a Gaussian model for x.

» together, a generative Gaussian model.
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Planning and Optimal Control 1. Linear Gaussian Systems

LGS as Joint Gaussian

An LGS p(x) == N(x | pix, Xx)
ply | x) :==N(y | Ax+b,xy)

is equivalent to a jointly Gaussian distribution:

X . YL+ ATYIA —ATEE N\ 7Y
p( 0 =N, ) T ey
y Aux + b L CA Py
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Planning and Optimal Control 1. Linear Gaussian Systems

LGS as Joint Gaussian / Information Form

An LGS p(x) = N(x | pix, Ax)
p(y | x) :=N(y | Ax + b,A))

is equivalent to a jointly Gaussian distribution:

() (M)
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Planning and Optimal Control 1. Linear Gaussian Systems

B
LGS as Joint Gaussian / Example i
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Planning and Optimal Control 1. Linear Gaussian Systems

B
LGS as Joint Gaussian / Proof i

log p(x, y)
= log p(x) + log p(y | x)
o (x — ﬂX)TAX(X = px) + (y — Ax — b)T/\y(y — Ax —b)
= (x = ) T As(x = 1)
+ (¥ = Atx = b= Alx = 1)) AV (y = Apix = b = Ax — j1x))
=(x— IUX)T(/\X + ATAyA)(X = Iix)
+(y = Apx — b)TA (y — Apx — b)
— 2y — Apx — b)TALA(x — 1)

o x—me [ MHATAA —ATA, X — i
\y—Aux—»b —N\/A A, y —Aux — b

Note: With A, := Z;l,/\y = ):;1 precision matrices.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
10 / 39



Planning and Optimal Control 1. Linear Gaussian Systems

Bayes Rule for Linear Gaussian Systems

For an LGS p(x) = N(x | px, Lx)
ply | x) :=N(y [ Ax+ b, X))

Bayes' Rule reads:

p(x | y) =N(x | bxy, Zxiy)
with %, = (I 1+ ATE A

N Ty -1 -1
Px|y = ZX|y (A Zy (y - b) + Zx :ux>
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Planning and Optimal Control 1. Linear Gaussian Systems

Bayes Rule for Linear Gaussian Systems / Proof

» LGS is equivalent to joint Gaussian:

x ), fix [ AHATAA ATA
p(<Y>)_N(<Aux+b>’A_< /\yAy /\yy>)

» conditional of a joint Gaussian:
pix | y) = N (x| tixy: Axy)
with

Ay =Nxx

Lty =hx + NPy (y = 1y)
:A;i(AX,Xﬂx + /\ny(y - My))
=N (Axtix + ATA Ap + AT (y — Ay — b))
=N X (Axix + ATA(y — b))
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Planning and Optimal Control 1. Linear Gaussian Systems

. N
Example: Inference from Noisy Measurements “

» underlying quantity x
> prior

p(x) = N(x | 11, A1)

» L noisy measurements yj.;:

plye | x) =Ny | x, A1), €el:L

» scalar LGS: N=M:=1, A:=1and b:=0: py|x =Ax+b=x
» vector LGS: N:=1,M =Ly =y, Ny =X, - lix1, Ai=1y,
b:= 01_,
Mylx =Ax+b=x-1;

Note: Inxn := (I(n = m))p me1:n identity matrix.
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Planning and Optimal Control 1. Linear Gaussian Systems

Example: Inference from Noisy Measurements .
» vector LGS: N=M =L y:=y1.1, \y ;=X l1x1, A:i=11, b:=0y,
Hylx =Ax+b=x-1;
» Bayes rule:
p(x | y) = N(x | 1ixy Zuy)
with =1 =3 1+ ATE A
= A+ L),
pixty = Tty (AT My = b) + )

= (A + LAy)THA Zwmx)
=1
L

\ Ly, 1
T TN, ;”
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Planning and Optimal Control 1. Linear Gaussian Systems

Example: Inference from Noisy Measurements

prior variance = 1.00 prior variance = 5.00

— s FIOF
= u ik ==k
06| w mm 1 post 1 067 = ==« post

0.5F

0.4

0.3r

0.2r

[source: Murphy 2012, p.121]

p(X) ::N(X’07U2€{175})7 p(ylx) ::N(Y|X71)7 y=3

prior: p(x), MLE: N (x | y, 1), posterior: p(x | y)
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Planning and Optimal Control 1. Linear Gaussian Systems

Learning LGMs from Data

p(x) = N (x| px; Tx)
> data: ply [ x) =N(y [ Ax+ b, L))

D := {(X]-?yl)v (X27Y2)7 ey (XN7yN)} g RM X RL

» multivariate linear regression of y, on x,_ (over all n):

X = (XT)nzl:N € RNXM: Y = (.yr;r)nzl:N S RNXL

n
A:=(X"X)IXTY (for b:=0)
S, =
YUON-M
» multivariate normal density estimation of x, . (over all n):

YT —X(X"X)"1xT)y

R 1

fix == NIMXNX

o 1 N N
2xi= g (X = (X = )’
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Planning and Optimal Control 1. Linear Gaussian Systems

Learning LGMs from Data

learn-lgm(D := {(x1, 1), (2, y2); - - -, (xns yn) } € RM x RL):
X = (XT),,:LN S RNXM, Y = (ynT)nzl:N S RNXL

n

fix = F X

);X = Nfl(X - ﬁX)(X - NX)T

X = (1n, X)

A= (XTR)IKTY

B = /’Z\.yl, A = /~4_72

S, = iy YT = X(XTX)IXT)Y
return ﬂx,fx,ﬁ\, B,fy
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Planning and Optimal Control 1. Linear Gaussian Systems

Learning LGMs from Data with Uncertainties

> cases
Xny X5y Yn  With x5 ~ N (X, )

» normal equations:

thrue trueT A thrue T E()
ZX,,X 4+ ¥ )A Zx,,yn

~ A= TX+ZZ) IxTy

Note: formula for A looks wrong. Where is the mistake?
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Planning and Optimal Control 2. State Space Models
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2. State Space Models
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Planning and Optimal Control 2. State Space Models

State Space Model

z = g(z4-1) transition model
x¢ = h(z) observation model
z: € RK hidden state
Xt € RrRM observation

» like HMM, but with continuous hidden state z;

» g, h stochastic functions
» = parametric distributions:
» parameters = functions of the arguments

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 2. State Space Models

Linear-Gaussian State Space Model

p(zt | zi—1) == N(zt | Aeze—1 + ar—1, 22 t) transition model
p(x¢ | z¢) == N(x¢ | Beze + by, i t) observation model
z € RK hidden state

Xt € RrRM observation

A; € REXK transition matrix at time t

B, € RMxK observation matrix at time t

2, € RKXK state/system noise at time t

2t € RM*M observation noise at time t

» transition and observation function is linear
» bias term often dropped: a;_1 := 0, b; := 0.

» state and observation noise is Gaussian

» also called linear Gaussian system

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 2. State Space Models

Stationary Linear-Gaussian State Space Model

p(z: | ze—1) = N(z: | Aze—1, %) transition model
p(xt | zt) == N(x¢ | Bz, Z) observation model
z: € RK hidden state

x¢ € RM observation

A e RKXK transition matrix

B € RM*K observation matrix

Y, € RFxK state/system noise

Y, € RMxM observation noise

» stationary, time-invariant:
» transition and observation matrices do not depend on time t

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 2. State Space Models

Initial State Distribution v

All models need to be complemented by an initial state distribution:

p(Zl) = N(Zl | /J’Zl?zzl)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 2. State Space Models

Example
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Fig. 1.1. Johnson & Johnson quarterly earnings per share, 84 quarters, 1960-1 to 1980-1V.

[source: Shumway and Stoffer 2017, p.2]
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Planning and Optimal Control 2. State Space Models

Example

» decompose quarterly earnings E; of a company
into a trend T; and
a seasonal component S;:

E: ~ N(T;+ S;,0%)
T ~ N(BTi_1,0%)
St + Se-1+ Se—a + Se—3 ~ N(0,0%)
» as LGSSM:
x¢ = Er, z:=(T¢ Se,St-1,Se-2)"
B:=(1,1,0,0)", b:=0, X, =(0%)

g 0 0 O
. 0O -1 -1 -1 . o > 2
A= o 1 o ol 2= 0, X, :=diag(c%,0%,0,0)
0O 0 1 o0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 2. State Space Models

Example
Trend Component

n _|

-

o _|
-
f=4
g
=

0

[ I I I [
1960 1965 1970 1975 1980
Time
Data & Trend+Season

wn _|

-
<
©
< O _|
nd
|
(o4
& 10—
3

o

T T T T I
1960 1965 1970 1975 1980

Time

[source: Shumway and Stoffer 2017, p.317]
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Planning and Optimal Control 3. Inference I: Kalman Filtering
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3. Inference I: Kalman Filtering
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Planning and Optimal Control 3. Inference I: Kalman Filtering

Infering Posterior State Distributions p(z; | xi.¢)

Posterior hidden states can be computed sequentially:
P(Zt ’ Xl:t) = N(Zt | M?v z(t)é)

with X% := ((Ax¢ ;AT 1+ BTy 1B)!
pe =T (AT AT) A + BT T )

and XI§:= (I '+B'x;'B)!
ps =T (5 e + BTE M)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 3. Inference I: Kalman Filtering

Infering p(z; | x1.¢) / Proof \
» fort =1:
p(x1 | z1) = N(x1 | Bz1, Zx)
p(z1) = N(z1 | pizy, X)

PR bz | x) = Nz | ig, E9)
with ¥§:=%,, = (' +B7='B)™!
M% =z = Z?(Zz_llluzl + BTZ;lxl)
» for t > 1:

p(xe | zt) = N(xt | Bz, 2x)
p(ze | xue-1) = N(ze | Apg 1, AXE 4 AT)
p(ze | x1:t) = N(Zt | ,u?‘,Z?)
with X3 = ZZt|X1;r = ((Az?flAT)il + BTZ;lB)il
/’L(tl = lu’Zt|X1:t = Z?((AzltlflAT)ilAM?fl =+ BTZ;IXt]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 3. Inference I: Kalman Filtering

Precomputing Posterior Variances

» X does not depend on the observations xi.¢
» thus can be precomputed

» > ¢ depends on t only through the time since the initial state
» if we assume states long after the initial state, use

¥*:= lim ¢

t—o0

for all t.

» Y% can be computed via fixpoint iterations
(MO = (' +BTL'B)!
(za)(t) = ((A(za)(tfl)AT)fl + BTZ;lB)71

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 3. Inference I: Kalman Filtering

Computing Variances with a Single Matrix Inversion

» in its previous form, computing variances X requires two matrix
inversions:

Y& = ((AZ¢ AT 14 BTE 1B) !
» more efficient computation with a single matrix inversion:
zt\t—l = Az(tl—lAT
Z? = (/ - Zt|t—1BT(Zx + th|t—1BT)_1 B)Zt|t—1

:ZKt

= (I - KtB)Zt\t—l
Proof: apply the matrix inversion lemma
(A-BD'C)t=(+A'B(D-CA'B)TC)A™?

to (X2, +B'T'B)!

t|t—1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 3. Inference I: Kalman Filtering

Computing Means without Additional Matrix Inversion
» also the original mean formula contains a matrix inversion:

pe = THBTE e + Ty Aug )

» can be simplified, reusing the matrix inversion from the variance:

Hijg—1 = Apg_y
P = peje—1 + Ke(xe — Biigje—1)

proof: left term: using 2nd matrix inversion fomula

YoBTy 1
= (T, + BTEB) BT = 5y 1 BT (Su + BEe1BT)
= Kt
(A—BD™'C)*BD ' =A"'B(D—- CA'B)!
right term:
Zazf\g 1 = (I = KeB)Eyje 1Zt\t , = (I —K:B)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 3. Inference I: Kalman Filtering

Kalman Filtering (Single Inversion)

» prediction step:
Yipo1 = AZ?—lAT
Ht|t—1 ‘= Apgq
> measurement step:
Ke = Sye-1BT (T 4+ BLye1BT)

py = pieje—1 + Ke(xe — Bpigje—1)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 3. Inference I: Kalman Filtering

Kalman Filtering / Algorithm

1 infer-filtering-kalman(x, A, X, B, %4, f17, X2 ):
> T :=|x]|

3 Y= (Et+ BT B) !

u§ = TR(BTE x4+ 5l

5 for t=2,...,T:

6 T = AZt;lAT

7 Ht|t—1 = Apgq

8 K: = ):t|t,1BT():X + BZt|t,1BT)_1
9 pe = Peje—1 + Ki(xe — Bﬂt\t—l)

10 Y= (I - KiB)Xye—1

11 return pufo, X4

where

» x € (RM)* observed sequence
» A Y, B, Y, iz, %, linear-Gaussian state space model

yields p(z; | x1.¢) = N(z¢ | p$, £¢),t = 1: T PDFs of filtered latent states

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 4. Inference II: Kalman Smoothing
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4. Inference Il: Kalman Smoothing
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Planning and Optimal Control 4. Inference Il: Kalman Smoothing

Infering Posterior State Distributions p(z; | x1.7)

p(ze | x1.1) = N(z | pi, X)
pd = pg + Jt(/i’terl - Nt+1\t)
Y =20+ Jt(z’tYJrl - zt+1|t)J1:T
Ji = Z?ATZHW backwards Kalman gain matrix
with
p(zt41 | x1:t) = N(zt | Heq1|t Zt-|—1|t) prediction
M1t = Apg
zH—l\t = AZ?AT +3x

initialized by p(z7 | x1.7), i.e.,

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 4. Inference Il: Kalman Smoothing

Infering Posterior State Distr. p(z; | xi.7) / Proof

Pz | xur) = / p(zee1 | x07) P2t | Xtts XerrTs Zern)dzenn
Zt+1

. Zt Ity 2y Z?AT
p(ze; ze11 | x1:t) —N(< Zei1 ) | ( Hepile )( AT T, )

filtered two-slice posteriors

Gaussian conditioning yields

p(zt | X1t ze41) = N(ze | p + Je(ze1 — prerae), T8 — JeZerqe )
and finally
= E(E(z | zt41, x1:7) | x1:7)
(E(Zt | Zt+laX1:t) | Xl:T)
(u + Je(zer1 — Hegape) | x0:T)
= pf + Jt(u’ty+1 - Mt+1\t)

E
E

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 4. Inference Il: Kalman Smoothing

Infering Posterior State Distr. p(z; | xi.7) / Proof

Y = V(E(z¢ | ze41, x1.7) | x1:7) + E(V(2t | Zeq1,x0.7) | x1.7)

=3¢+ (T, - zt+1|t)JtT

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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5. Learning via EM
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Planning and Optimal Control 5. Learning via EM

Learning SSMs from Fully Observed Data

» just estimate
» the LGS / multivar. linear regression p(x; | z:),

» the LGS / multivar. linear regression p(z:11 | z:) and

» the multivar. normal density p(z;)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 5. Learning via EM

NN
Learning LGMs from Fully Observed Data “

1 learn-ssm- fuIIy observed(D := {(x1,z1), (x2, 22), - - -, (xw, zn) } € (RM x R¥)*):
LB, b3, = learn-lgm({(znt, Xnt) [n=1: N, t =1: T,})

LLA S, Zz = learn-lgm({(znt, Znt+1) [ n=1: N, t =1: T, —1})

ﬂzl,le,,, _ = learn-lgm({(zp,1,%n1) | n=1: N})

return ﬂzl,izl,/z\ﬁ,iz,é B )A:

Note: where T, := |xs| denotes the length of sequence n.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 5. Learning via EM

NN
Learning SSMs via EM “

» E-step:
estimate via Kalman smoothing:

P(zn,t ‘ Xn,l:T) = N(Mz,tv zz,t)
p(zn,t+1azn,t ‘ Xn71:T) = N(Mi,t,t—s—l? zg,t,t-i—l)

> M-step:
learn observation model x = Bz + b from

(W e TheXne) [ n=1:N,t=1:T,
learn transition model z;1 = Az; + a from
((Mi,t,t—i—l)l:Kv (Mi7t7t+1)K+1:2K7 z§77t,t+1) ‘ n=1:N,t=1:T,-1

estimate starting density p(z1) from

(p1,Zpe) [n=1:N
Note: for Zg,t,:ﬂ see Ghahramani/Hinton 1996b, eq. 34.
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Summary

» Linear Gaussian Systems describe linear dependencies between
continuous, normally distributed variables.

» Continuous markov models.

» Linear Gaussian State Space Models (LGSSMs) describe linear
dependencies between observed and latent, continuous normally
distributed variables.

» Continuous hidden markov models.
» For LGSSMs there exist simple algorithms to
» infer the last latent state (Kalman filtering)
» infer any intermediate latent state (Kalman smoothing)

» forecast future observations (using Kalman filtering)

» LGSSMs can be learned via EM.
(not covered by my slides currently.)
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Further Readings

» Inference in jointly Gaussian distributions:
» lecture Machine Learning 2, ch. A.2 Gaussian Processes

» Murphy 2012, chapter 4.3.

» Linear Gaussian Systems:
Murphy 2012, chapter 4.4.

» State Space Models:
» Murphy 2012, chapter 18.

» Shumway and Stoffer 2017, chapter 6.
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