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Syllabus

A. Models for Sequential Data
Tue. 22.10. (1) 1. Markov Models
Tue. 29.10. (2) 2. Hidden Markov Models
Tue. 5.11. (3) 3. State Space Models
Tue. 1211, (4) 3b. (ctd.)

Tue. 19.11.  (5) 1. Markov Decision Processes

Tue. 26.11.  (6) 1b. (ctd.)

Tue. 3.12. (7) 2. Introduction to Reinforcement Learning
Tue. 10.12.  (8) 3. Monte Carlo and Temporal Difference Methods
Tue. 17.12.  (9) 4. Q Learning

Tue. 24.12. —  — Christmas Break —

Tue. 7.1. (10) 5. Policy Gradient Methods

Tue. 14.1. (11) tha

Tue. 21.1. (12) tba

Tue. 28.1. (13) 8. Reinforcement Learning for Games
Tue. 4.2, (14) Q&A
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Planning and Optimal Control 1. Markov Decision Problems

B
Markov Decision Process (MDP) A

An MDP (S, A, T, p,r) is a controlled stochastic Markov processes:

> finite set S called states,
» finite set A called actions (aka controls, decisions),
» set T C N called time steps,

» function p: S x A — A(S) called state transition probability and
» usually written p(s;11 | St, ar)

» often represented by stochastic transition matrices P,, a € A

» function r : S x A — R called reward.
» often represented by vectors r, € RS, a € A

Note: A(S):={p:S —R{ | > ,csp(s) =1} probability functions over S.
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Planning and Optimal Control 1. Markov Decision Problems

B
Example: Find a way out of a Labyrinth “

» S:={(x,y) | x,y €{1,2,3,4,5}}
\{(2,2),(2,3),(2,4), (4,2),(4,3),(4,4),(4,5), (3,2)}
walkable tiles,

so := (1,1) start location

> A= {(+17 0)7 (_17 0)7 (07 +1)7 (07 _1)} movement
right/left/up/down

» p(s+als,a):=1,if(s+a)eS
else p(s|s,a) =1

» r(s,a) =1if s =(5,b) (exit),
r(s,a) = 0 for all other s.
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Planning and Optimal Control 1. Markov Decision Problems

MDPs "

(s, a,)

t t+1
p( S1+1| S @ 1)

[source: ?, p.5]
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Planning and Optimal Control 1. Markov Decision Problems

Markov Property

Markov property:

P(5t+1 | S0:t 30:t) = P(5t+1 | St, at)
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Planning and Optimal Control 1. Markov Decision Problems

. .. P2
Action Policies “
A policy (aka strategy):

T (SxA)"xS = A(A)
» 7(h,s) chooses a probabilistic action a
if in state s with history h = ((so, a0), (s1,a1), - - -, (St—1, ar—1))
» Markov policy: does not depend on history:
n(h,s) =m(h',s) VhH
» but may depend on time (non-stationary)
» then just writeas 7 : T x S — A(A)
» deterministic policy: chosen action is deterministic:
Vh,s Ja:7w(h,s)(a) =1
» then just writeas m: (S x A)* xS — A

» deterministic Markov policy: choose next action in each state
»T:TxS—A

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Planning and Optimal Control 1. Markov Decision Problems

NS
Action Policies / Pollcy Spaces i

={r:

I_IMAS ={r
P ={r:
M ={x:
Nt .={r:
N ={r :

M=Markov vs. H=history-dependent
D=deterministic vs. A=stochastic
S=stationary vs. .=non-stationary

S — A}

.S = A(A)}

TxS— A}

T xS— A(A)}

(§x A" xS — A}
(Sx A" xS —= A(A)}

History-dependent, stochastic

History-dependent,
deterministic

Markov, stochastic

Markov, deterministic
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. . N
Stochastic State / Action / Reward Processes for a POI@
For an MDP (p, r),

a start state sp € S and

a policy ,
let
S0 ag ~ m(sp) ro == r(so, ao)
st~ p(s0,a0), a1~ 7(((s0,a0)),51) r = r(s1,a1)
St+1 ~ P(St, at), arr1 ~ m(( (s0,a0);---5 ), rey1 = r(se+1, aey1)

)
(st, at)), Se+1)
describing three stochastic processes:
» the stochastic process s; of states visited,
» the stochastic process a; of actions taken and
» the stochastic process r; of rewards gained
by policy 7 starting in so for MDP (p, r).
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Planning and Optimal Control 1. Markov Decision Problems

Example: Walk on a Line

S:={-10,-9,-8,...,-1,0,1,2,...,10}
S0 =
A= {+1,-1}
1, ifss=s+a,(s+a)eS valid move
p(s'|s,a):=q1, ifs'=s ,(s+a)¢gS invalid move

0, else
1, ifs=9,a=+1
r(s,a):= 0, else
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Planning and Optimal Control 1. Markov Decision Problems

B
Example: Walk on a Line / Go Always Left i

wt(s) := —1, go always left

St o -1 -2 .. -8 -9 -10 —-10 -10
al-1 -1 -1 ... -1 -1 -1 -1 -1
re o 0 o0 ... 0 O 0 0 0

» deterministic state/action/reward sequence

» total reward ), e =0
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Planning and Optimal Control 1. Markov Decision Problems

Example: Walk on a Line / Go Always Right

7R(s) ;== +1, go always right

St o 1 2 ... 8 9 10 10 10
ar|+1 +1 +1 ... +1 +1 +1 +1 +1
re o o O0.. O 1 0 0 O

» deterministic state/action/reward sequence

» total reward: 1
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Planning and Optimal Control 1. Markov Decision Problems

Example: Walk on a Line |l

a distribution of MDPs:

S:={-10,-9,-8,...,-1,0,1,2,...,10}

s0:=0

A= {+1,-1}
1, ifss=s+a,(s+a)eS valid move

p(s'|s,a):=¢1, ifs'=s ,(s+a)¢gS invalid move
0, else
every second MDP:
{1, ifs=0a=+1
r(s,a) =

0, else

every other second MDP:

r(s,a) == {1’

0,

ifs=—-9,a=-1

else
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Planning and Optimal Control 1. Markov Decision Problems

. B2
Example: Walk on a Line Il / Go Always Left i
7h(s) := —1, go always left

every second MDP:

ss| 0 —1 =2 -8 -9 —-10 -10 -10

ar|—-1 -1 -1 -1 -1 -1 -1 -1

rr| 0 0 O 0 0 0 0 0
every other second MDP:

ss| 0 -1 =2 -8 -9 —-10 -10 -10

a|—-1 -1 -1 -1 -1 -1 -1 -1

rr| 0 0 O 0 1 0 0 0

» deterministic state/action sequence, stochastic reward sequence

> total expected reward: E(D,.rt) = 0.5
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Planning and Optimal Control 1. Markov Decision Problems

NN
Example: Walk on a Line 1I/ Go Always Right “

7R(s) == +1, go always right

every second MDP:

St o 1 2 ... 8 9 10 10 10
ar|+1 +1 +1 ... +1 +1 +1 +1 +1
r o o o0.. O 1 0 0 O

every other second MDP:

St o 1 2 ... 8 9 10 10 10
ar|+1 +1 +1 ... +1 +1 +1 +1 +1
r o o o0.. O O o0 o0 O

» deterministic state/action sequence, stochastic reward sequence

» total expected reward: 0.5
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Planning and Optimal Control 1. Markov Decision Problems

. . P2
Example: Walk on a Line 1/ Go Left then Right i
-1 if t <10
wR(esy=4 7 1ES
+1, else
every second MDP:
St o -1 ... -8 -9 —-10 -9 ... 8 9 10 10
| -1 -1 ... —1 —1 41 +1 ... 41 +1 +1 +1
re o o0 ... 0 O o o0 ... 0 1 o0 O
every other second MDP:
St o -1 .. -8 -9 -10 -9 ... 8 9 10 10
a|/-1 -1 ... -1 -1 +1 +1 ... +1 41 +1 +1
re 0O o0 ... 0 1 o o0 ... 0O 0 o0 O

» deterministic state/action sequence, stochastic reward sequence
» total expected reward: 1
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Planning and Optimal Control 1. Markov Decision Problems

Value Function and Markov Decision Problem

» to evaluate the quality of a policy,

the reward process usually is aggregated by a
scalar performance criterion.
» e.g., expected sum, expected average, expected discounted sum

» each policy 7 is then described by a
reward value for each initial state sp,
called value function:

:S—=R
g, V7(5): Zm N )
dg ~ 7['(515)
ry = r(St, at)
Str1 ~ p(Str1 | St, ae),
» Markov Decision Problem: find the optimal policy 7* with
V™ (s) > V™(s) VseS, Yrel

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

54



Planning and Optimal Control 1. Markov Decision Problems

Markov Decision Problem

Given an MDP (p,r) and
a value criterion V : R* — R that aggregates rewards
find a policy

™:S— A
s.t. the expected value is maximial, i.e.,
V™(s) > V™(s), VseS,mell

with V7 (s) i= B(V((r)ien) | 50 = s, )
ar = 7(st),
re = r(st, ar),
St41 ™~ P(5t+1 ‘ St, at)
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2. Value Functions
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Planning and Optimal Control 2. Value Functions

Value Function for the Finite Criterion

N—1
Vi (s) ::E(Zrt]so:s):E(ro—l—rl—i-rg—F...—i-rN,l\so:s)
t=0

» assumes that the process has to finish within finite horizon of N steps
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Planning and Optimal Control 2. Value Functions

Value Function for the Discounted Criterion

[ee]
Vi(s) = E(Zytrt |so=5)=E(ro+vn +7°r...+n+...|s9=25)
t=0

» infinite horizon

» assumes that future rewards are discounted by factor v € (0, 1),
e.g., 7 := 1/(1 + inflation rate) for monetary rewards
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Planning and Optimal Control 2. Value Functions

Value Function for the Total Reward Criterion

o0
Vi(s):=E() re|lso=s)=E(n+n+r..+rn+...|s=s)
t=0

» assumes that rewards can be summed infinitely, e.g.,
» because they shrink quickly enough (like discounting enforces)

» because they eventually become 0 (as a goal has been reached)
» finite, but unknown horizon; optimal stopping

> etc.
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Planning and Optimal Control 2. Value Functions

Value Function for the Average Criterion

N—-1

g’ H 1
Vig(s) = lim SE(D re|so=5)
t=0

X 1
= lim N]E(ro—i-rl—krz—l—...—i-r,v,l|50:s)

N—o0

» measures average reward per step
» in a potentially infinite horizon
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Planning and Optimal Control 2. Value Functions

Performance Criteria

finite criterion with length N:
N—1

E(Z It ‘ 50) :E(ro +n+n+...+rnv-1 | 50)
t=0
discounted criterion with factor v € (0, 1):

oo
E(Z Yire | s0) =E(ro +yr +2r ...+t + ... | s0)
t=0
total reward criterion:

o0
E(Zrt|so):IE(ro+r1—|—r2...+rt+...|so)
t=0

average criterion:

N—1
. ) 1
Nli’noo NE( ;O re | sp) = Nlinoo NIE(ro +n+n+...4+rm-1|s%)
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Planning and Optimal Control 2. Value Functions

o . N
Performance Criteria / Properties i

1. performance criteria are additive in r;

2. performance criteria are expectations over the policy-specific reward
process

~> Bellman optimality principle:
all sub-policies of an optimal policy are optimal sub-policies.
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Planning and Optimal Control 3. Markov Policies

NN
Equivalence of Stochastic Markov Policies and “
History-dependent Policies
For

» any MDP (p,r),
» any value criterion V

(either finite, discounted, total reward or average criterion), and
» any stochastic history-dependent policy =
there exists an equivalent

(generally non-stationary) stochastic Markov policy 7/,

i.e., with the same value function:

/

VT (s)=V"(s), VseS§

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 3. Markov Policies

Equivalence of .../ Proof

Denote marginals as

P (at=a|si=5,5=5):=

_ — </ _
Zsl;t_1€5t+17301t—1eAt pﬂ(at =a | St =S asl:t717 ao:tfla 50 - 5)

i — ! J—
D 1eSt g, seataeaP (@ =3 | st = s1-1, 201,50 = 5)

Define (a generally non-stationary) 7’ via
m(as=a|ss=5) =P (as=al|ss=5,5=:s)
and show
P”/(st =das=a|sp=5)=P (ss=5,ar=a|s)=5s)

via induction over t:
» t =0: clear.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 3. Markov Policies

Equivalence of .../ Proof

show
P”,(st =s,as=a|sp=5)=P (ss=5,ar=a|s)=5s)

via induction over t:
» t>0:

P™(st =s"|so=5)

= > Pst1=5a1=3]5%=5)p(s'|33)
3€5,3€A
ind.:ass. Z Pﬂ'/(st_l =5,a_1=23 | S0 = 5) p(sl | g 5)
5€S5,3cA

= P”,(st =5 |s=5s)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25 / 54



Planning and Optimal Control 3. Markov Policies

Equivalence of .../ Proof

P”/(st:s’,at:a|50:s)
=P (ar=al|se=5)P" (st =5 | s5=5)
=P (as=alst=5,5%=5)P (st =5 | so=5)

=P (ss=5,as=al|s=5s)

E(r(st,at) | so =s,7) = Z r(s',a) PP(ss=5s",ar=a|sp=5)
s’€S,acA

= Z r(s',a) P (s;=s',a; = a| sy =5)
s’e€S,acA
=TE(r(st,at) | so = s,7)
and thus
VT(s) = V™ (s)
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Planning and Optimal Control 3. Markov Policies

Markov State Process
Although an MDP is Markov,

the stochastic state process s; by a policy not necessary will be Markov
For an

» MDP (p, r) and
» a Markov policy T,

the stochastic state process s; is Markov with transition matrix
Prss =P (str1=5"|st =s) = Zw(s, a)p(s’'|s,a)
acA
Proof:

P™(sts1 | s0:4) = P™(ae = a | so:t) PT(st41 | s0:t, ar = a)
acA

= Z (¢, a) p(Se+1 | s¢, a)

acA

=P (st11 | st)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 3. Markov Policies

Valued Markov Processes

Such a Markov state process together with its rewards

rr(s) == Z m(s,a)r(s,a)

acA

also is called Valued Markov Process

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 4. Optimal Policies for the Finite Criterion

Optimal Policy for the Finite Criterion
optimal value for the last n steps:

Vyi(s) := max E(ry—n+ rN-nt1+ .- -+ N1 | SN—n=15)
AN—ny AN—n+15---dN—-1

Vi(s) := g)vaxIE(rN_l | sy_1=5) = max rnv—1(s, a)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 4. Optimal Policies for the Finite Criterion

NN
Optimal Policy for the Finite Criterion “

optimal value for the last n steps:

Vyi(s) := max E(ry—n+ rN-nt1+ .- -+ N1 | SN—n=15)
AN—ny AN—n+15---dN—-1

Vi(s) := g)vaxIE(rN_l | sy_1=5) = max rnv—1(s, a)

V5 (s) = aNn;;?:l 1IE(rN_z +rn—1 | sy—2 =5)
=maxry._ 2(s,an—2) + maxE(rN 1] sn—2=05)
N—2

—gr)Va>2<rN 2(s,an—2 +Zps | s, an— 2)maxIE(rN 1] sv_1=15)
S/

=max ry_a(s,a) + Z p(s' | s, a) Vi (s')

s/

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 4. Optimal Policies for the Finite Criterion

NN
Optimal Policy for the Finite Criterion “

optimal value for the last n steps:

Vyi(s) := max E(ry—n+ rn—n+1 + -

o rN—1 | Sn—n = S)
AN—n; A@N—n+1;---dN—1

Vi(s) := gr)VaTIE(rN_l | sy_1=5) = max rnv—1(s, a)

V5 (s) = aNn;;?:l 1IE(rN_z +rn—1 | sy—2 =5)

—gnaer 2(5 an— 2)+maxE(rN 1 ’5/\/ 2 IS)
N—2

—g;vaz(r,v 2(s,an—2 +Zps | s, an— 2)maxIE(rN 1] sv_1=15)

S/

=max ry_a(s,a) + Z p(s' | s, a) Vi (s')

s/

* _ / *( ./
Via(s) =maxry-1-a(s,3) + 3 p(s' | 5.2) Vi(S))
/
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 4. Optimal Policies for the Finite Criterion

NN
Optimal Policy for the Finite Criterion “

The optimal value functions V', (for remaining steps n = 1: N) are the
unique solutions of the set of equations

V:—l—l(s) = ma/)\( rN—l—n(Sa a) + Z pN—l—n(Sl ‘ S, a) Vr;k(sl) , SE 57
a< s'eS n=0:N-1
Vi (s) =0

from which an optimal (generally non-stationary) policy 77.,, can be
computed via

ni(s) € argmax | ri(s,a) + Y pe(s [ 5,2) Vi1 o(s)) |, s €S,
acA

s'eS t=0:N-1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 4. Optimal Policies for the Finite Criterion

B
Optimal Policy for the Finite Criterion / Proof i

Via(s) =max [ my1a(s,2)+ 3 puoaa(s | 5,a)Vi(s) |, s€S,
acA
s'eS n=0:N-1

For n = 0: just optimize reward of last step:

Vi (s) =maxry_1(s,a), s€S
acA

For n > 0:

» optimize sum of reward ry_1_,(s, a) of current step and

» reward V/(s’) of future n steps from follow-up state s’
» weighted by how likely an action will bring us to follow-up state s’

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 4. Optimal Policies for the Finite Criterion

B
Optimal Policy for the Finite Criterion / ldea i

» the optimal policy for the finite criterion can be computed recursively
» backwards in time: wy_1,TN_2,...,T0

» along with the value functions of remaining steps Vi, Vo,..., Vn

» it can be chosen deterministic and Markov
» but in general, not stationary

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 4. Optimal Policies for the Finite Criterion

Find Optimal Policy for Finite Criterion

1 opt-policy-finite(p, r, S, A, N):

2 for s€S: W(s):=0

3 for n:=0:N—-1:

4 t=N-1-n

5 for se S:

6 choose a* € argmax,c4(r:(s,a) + > cs pe(s’ | s,a) V,y(s'))
7 i (s) = a*

o Vin(s) = r(s.a) + s s |5, a)Vi()

o return V* m*

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 5. Optimal Policies for the Discounted Criterion

L. operator

Given

» an MDP (p, r),
» a discount factor v € (0,1) and
» a stationary Markov policy T,

define the L, operator on value functions:

L.V :=r.+~vP.V, VeR®

Note: Pr and r; are state transition matrix and rewards of the valued Markov process by .

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 5. Optimal Policies for the Discounted Criterion

Value Function of the Discounted Criterion

Given

» an MDP (p,r),
» a discount factor v € (0,1) and
» a stationary Markov policy T,

then the value function VT is the only fixpoint of L

V=LV
and equivalently
T _ -1
V’y - (l_fYPﬂ') Ir

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 5. Optimal Policies for the Discounted Criterion
Value Function of the Discounted Criterion / Proof

Stochastic matrix P, has all eigenvalues < 1,
~» yPr with v € (0,1) has all eigenvalues < 1
~> | — Py is invertible.

(I —yPr) "t = Z'ykPkrﬂ

Remember, if (/ — A)™! exists, then oo
(I-A)=> A
k=0
simply as
(I=A)D A=A - A=
k=0 k=0 k=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Planning and Optimal Control 5. Optimal Policies for the Discounted Criterion

Value Function of the Discounted Criterion / Proof
On the other hand, _

Vi(s) =EQ)_7're|s0=5)
t=0

= ZytE(r(St, a) | so=s)

=0

~+

o

vt Z P™(ss =s',ar =al|so=5s)r(s,a)

t=0 s’€S,acA
o0
= th Z n(s’,a) P (st = s’ | so = s) r(s', a)
t=0 s'€S,acA
[ee]
= Zyt Z P™(s; =" | so = s) rx(s')
t=0 s'eS

= (D_A'Pir)(s)
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Planning and Optimal Control 5. Optimal Policies for the Discounted Criterion

Bellman Equation
Given
» an MDP (p, r) and
» a discount factor v € (0, 1),

define the dynamic programming operator L on value functions:

LV := max LV = max (r, +vP;V), VeR®
mwelMMAS

weMVAS

Theorem (Bellman equation)

The optimal value functions V_ are the only fixpoints of L:
Lv =V

or equivalently

V(s) = ! V(s
(s) max r(s,a)—l—y%p(s | s,a) V(s')
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B
Bellman equation / Proof (Overview) “

In 5 steps:

1. stationary Markov policies maximizing the one step expected reward
yield the same value, wether they are deterministic or stochastic:

maxXx
ﬂ.enMDS

(rr +vPzV) = 7rg]l_laM>i\s(r7r +vPrV)
2. value functions being shrunken by L,

upper bound the optimal value function:
Lv<V=Vv;<V

3. value functions being inflated by L,
lower bound the optimal value function:

LV>V=V<V

4. thus, any fixpoint of L is an optimal value function.

5. L has fixpoints (because it is a contraction)
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B
Find Optimal Policy for Discounted Criterion / LP i

» There are several algorithms to find optimal policies for the
discounted criterion.

» The 3 most important:
1. via a linear program (LP)

2. value iteration

3. policy iteration

» idea of 1. via a linear program:
> optimize over all value functions being upper bounds of V7
» can be encoded via constraints V > LV
(see proof step 2 of Bellman equation)

» within upper bounds, optimal policies minimize ) __s V(s)

min V(s)
VeERS
ses

st. V(s)>r(s,a)+ Z p(s’'|s,a) V(s') VseS,aeA
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Find Optimal Policy for Discounted Criterion / LP

1 opt-policy-discounted-lp(p, r, S, A, ~):
2 VI = argmin-solve-lpycps > s V()
st. V(s)>r(s,a) +72 gesp(s'|s,a) V(s') VseS,acA
3 for seS:
4 choose *(s) € arg max,ea(r(s;a) + 72 s csp(s’ | s,a) Vo (s))
s return V3, 7"
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NS
Find Opt. Policy for Discounted Criterion / Value Iteraﬂﬁn

» idea: iterate fixpoint equation for the optimal value function:

vt = ()

» works from any initialization V(©)

» stop once ||V("D) — V(|| < e
for some prescribed threshold €

> variants:

» use already computed V("*1)(s) to compute V(1) (s")
(instead of V(" (s); called Gauss-Seidel)

» reestimate V/(s) in random order of s
(called asynchronous dynamic programming)

» reestimate V/(s) proportional to their last change
(also: prune some states s)
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NS
Find Opt. Policy for Discounted Criterion / Value Iteraﬂﬁn

1 opt-policy-discounted-value-iteration(p, r, S, A, v, €):

o o A W N

initialize  V(® arbitrarily

n:=0

repeat
n:=n+1
for se€ S:

VN (s) := maxaea(r(s,a) + v, cs P(s" | s, a) VIT~1(s"))
until ||V — v(=1)|| < ¢
V= v
for se S:
choose m*(s) € argmax,ca(r(s,a) + v g csp(s’ | 's,a) V("))
return V7, 7"
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B
Find Opt. Policy for Discounted Criterion / Policy Iteraﬂ{'n

One step look-ahead policy improvement:

Let 7 € MMAS. Then the one step look-ahead policy 7’

7' € argmax(rx + yPr V)

! €MMAS

has a value function VZ/T' that upper bounds / improves 7:
7'('/ ™
Vi >Vv]

without improvement only if = was already optimal (V;r/ = V] iff 7 =7%).
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B
Find Opt. Policy for Discounted Criterion / Policy Iteraﬂ{'n

1 opt-policy-discounted-policy-iteration(p, r, S, A, 7):
2 initialize  7(® arbitrarily

3 n:=0

4 repeat

5 V) = (1 = yPrw) o

6 for se S:

7 choose 7("1)(s) € arg max,c4(r(s,a) + 7>y cs p(s' | s, ) VID(s"))

8 n:=n+1
o until 7(M = 7=1)
0 return V(=D g
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; P2
Outline v

6. Optimal Policies for the Total Reward Criterion
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Planning and Optimal Control 6. Optimal Policies for the Total Reward Criterion

Value Functions for Total Reward

» for total reward, value functions are limits.

» for some MDPs these limits may not exist.
» example:

S:={1,2}, Pr:(? é) A= {1}, “::(—11>
m:={(1,1),(2,1)}

rr=1,-11,—1,1,—1,... whose sum does not converge

» specific conditions on the MDP are required for these limits to exist
» positive MDPs

» negative MDPs
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Planning and Optimal Control 6. Optimal Policies for the Total Reward Criterion

Positive MDPs

An MDP (p,r) is called positive, if

i) for all states there exists an action with non-negative reward and

ii) for all policies the positive value function

Vi(s): ZmaxO re) | so =s)

is finite for all states.
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Planning and Optimal Control 6. Optimal Policies for the Total Reward Criterion

NN
Optimal Policies for Positive MDPs under Total Rewardd

Let operators L, and L be defined as before (for v :=1).
Given a positive MDP (p, r),
i) V™ is the minimum solution of V = L.V in (R{)®
(for all policies m € MMPS),

i) V* is the minimum solution of V = LV in (R{)®.
i) m € N"A optimal iff V™ is a fixpoint of V = LV.

iv) if T € argmax enma(ry + PrV*)
and limy_ PNV*(s) = 0 for all states s,
then 7 is optimal.
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B
Find an Optimal Policy for Positive MDPs under Total “

Reward

» value iteration:
» converges monotonously to V* if 0 < Vp < V*
» eg., Vo :=0 will do.

» policy iteration:
> ensure that its value function stays in (R{)®

» force V(" (s) := 0 for all recurrent states s in Markov chain P,
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Find Opt. Policy for Total Reward Criterion, Positive Mﬁ"

/ Policy Iteration

1 opt-policy-total-pos-policy-iteration(p, r, S, A):
> initialize 7@ s.t. I >0

3 n:=0

4 repeat

5 V(") := minimum solution of

6 V() = r(s,m("(s)) + Lges p(s' | 5,7 (s)) V(s

7 for s € S:

8 choose 7("1)(s) € arg max,c4(r(s,a) + . cs P(s" | 5,a)V()(s"))
9 (choose 7("t1)(s) = (") (s) if it is still among maximal actions)

10 n:=n+1
11 until 7(M = 7(n=1)
12 return V(=1 ()
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B
Negative MDPs “

An MDP (p, r) is called negative, if

i) all rewards are negative and

ii) there exists a policy with value function having finite values for all
states.
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Summary

» Markov Decision Processes (MDPs) describe Markov processes
that
» can be controlled/manipulated by actions/decisions

» yield rewards depending on current state and action.

» A policy describes which action to choose in which situation.
» Markov policy: depends only on current state, not on history.
» stationary: does not depend on current time.
» deterministic policy: choose a single action, not stochastic.

» An MDP, a start state and a policy define three stochastic
processes for states, actions and rewards.

» A performance criterion describes how to aggregate a stochastic
reward process to a scalar value.
» sum, sum of first NV, discounted sum, average
> expectation
» called total reward, finite, discounted, average criterion.
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P2
Summary (2/3) i

» The value function of a policy gives the value for a policy for each
start state.

» The Markov Decision Problem, to find the optimal policy for an
MDP, is formalized as finding a policy with maximal value function
(for all states).

» Optimal policies for these four criteria always can be chosen Markov.

» no need for history-dependent policies.
» but they are non-stationary in general.
» The state process of an MDP under a Markov policy is Markov

» together with the reward process called Valued Markov Process.
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Summary (3/3) YA

» Criteria and algorithms for optimal policies differ depending on the
criterion.

» For the finite criterion, an optimal policy can be computed through a
simple recursive scheme backwards in time.

» optimal policy can be chosen deterministic
» but will in general be non-stationary.

» For the discounted criterion,

» optimal policies are the fixpoints of the dynamic programming

operator L (Bellman equation).
» choose best policy according to one step look ahead and value function
of the input policy.

» via linear programming: find policy with maximal sum of values
respecting Bellman equations.

» value iteration: iterate dynamic programming operator on the value
function.

policy.
» policy iteration: iterate one step look ahead improvement of current
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Further Readings
» Markov decision processes:

» Frederick Garica, Emmanuel Rachelson (2010): Markov Decision
Processes, ch. 1in ?.
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