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Brief Review

what to learn /
target

value function

VT.S - R

action value function

RT:SxA—=R

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Planning and Optimal Control 1. Basic Q Learning

Brief Review

what to learn /
target

what to learn from / data

episodes

(Monte Carlo)

transitions

(temporal differences)

value function

VT:.S =R

action value function

RT:SxA—=R

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Planning and Optimal Control 1. Basic Q Learning

Brief Review

what to learn /
target

what to learn from / data

episodes

(Monte Carlo)

transitions

(temporal differences)

value function

VT:.S =R

Monte Carlo

Temporal Differences
TD(0)

action value function

RT:SxA—=R

Monte Carlo

SARSA
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Brief Review

what to learn /
target

what to learn from / data

episodes

(Monte Carlo)

transitions

(temporal differences)

value function

VT:.S =R

Monte Carlo

Temporal Differences
TD(0)

action value function

RT:SxA—=R

Monte Carlo

SARSA

optimal action value

function
RQF:SxA—=-R

Q-Learning
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B
Brief Review / SARSA i

» learn the action value function Q™ of the generating policy
(“on policy”):

Qspa0 = Quar + e + 7 Qs oy — Qsiar)
» can be used with any policy 7 to learn its action value function Q™.
» requires next action a;;1 to update @st,af-
» can be used with non-stationary policies such as e-greedy policy:
(s, a; Q, €) 1= (1 — €) Tgreedy (s, a; Q) + € Tuniform(S, @), € € [0,1]

A 1
=(1—¢€)I(a=argmaxQ(s,a)) +e—
acA ‘A‘

with @ — 7* for ¢ — 0,

to learn the optimal action value function @* and optimal policy 7*.
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P2
Update Rule “
SARSA update rule:

QShat - QSt,at + a(rf + ’YQSt+1,at+1 - QSt,at)
Q-Learning update rule:

Qst,at = QSt,at + a(rt + 'YmaaXQstH,a - Qst,at)
» does not require next action ayyi

» does not learn the action value function Q™ of the generating policy !
(“off policy")

» learns the action value function of the policy that
» takes optimal action at next time

— based on current estimates of the action value function

» used with non-stationary policies such as e-greedy policy:
learns optimal action value function Q*.
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Convergence

v

there are finite many states and actions,

the generating policy visits each state/action pair

an infinite number of times,

the learning rates are slowly diminishing

(>, ak(s,a) =00, >, ak(s,a)? < o) and

» y<lor

(if v = 1) there exists an absorbing state with zero reward for any
policy.

then the Q-learning estimates converge almost surely

to the optimal action value function Q*.

v

v

Note: E.g., learning rates a(s,a) = 1/k.
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Q-Learning

1 learn-opt-policy-discounted-g-learning(S, A, 7, Sierm, N, 7, qo, @):
Q= (QO)ses,aeA

2
3 for n:=1,...,N:
4 s := new_process()
5 while s # Sierm:
6 a:=mn(s)
no._ .
7 (r,s’) := execute_action(s, a)
8 Qs,a = Qs,a + oz,,(r + vy mMaXayca Qs’,a’ - Qs,a)
9 s:=5s
o for s€S:
~ where
11 7T 1= argmax,c 4 Q(s, a) > i i
s - acA 9 Sterm terminal state with zero reward.
N oAx P 7 generating policy
12 return Qa i P> gy € R initial value of all state/action pairs.
> ay learning rate for update step k, e.g., ay 1= 1/k.
P new_process() sets up a new process.
>

execute_action(s, a) executes action a in process in
state s.
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NN
Action Value Models @ v

» from an ML perspective, the action value function @ can be
understood as a regression model:

QR:SxA—=R

» with predictors s and a
» for nominal states and actions:

> constant model: just a number for every pair (s, a).

» a factorization model likely would make better use of the data?
» for structured states and actions:

> a proper regression model for values regressed on state and action

properties.

» as for using Q to choose actions, Q(s, a) for all competing actions a

have to be computed, the model could be represented as:
Q:S—=RA
» with structured input and

» with structured output

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Planning and Optimal Control 2. Action Value Models Q

Action Value Models @ / Learning

» Updating the action value model Q:
» constant model:

8 @s,a = Qs,a + OénA(r + vy maxyeca @s’,a’ - C:)s,a)
- (1 - an)Qs,a + Ck,,(f + ymaXyca Qs’,a’)

» general model:
8 D:=DU{(s,a,r+ymaxseca Qv )}
9 Q= update—model(@,D)

> called experience replay in the RL literature

» if the generating policy m depends on Q,
learning can be accelerated by discounting older data.

» e.g., with a discounting case weight.

» or simply by forgetting / removing.
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Planning and Optimal Control 3. Experience Replay / Relabeling

B2
Action Value Models Q / Relabeling (1/2) i

1. label with data generating Q:

8 D:=DU{(s,a,r+ymaxyca Qo )}
9 Q= update—model(@,D)

» sample labels from out-dated O

2. relabel with current Q:

8 D:=DU{(s,a,r,s)}
9 D = {(s,a,r +ymaxyeca Qo ) | (s5,a,r,5') € D}
10 Q= update—model(@,D/)

» sample labels correlate too heavily with current Q [Mnih et al., 2015]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16



Planning and Optimal Control 3. Experience Replay / Relabeling

NS
Action Value Models Q / Relabeling (2/2) A

3. relabel with mildly older Q (target network) [Mnih et al., 2015]:
8 D:=DU{(s,a,r,s)}

9 D' :={(s,a,r +ymaxyea Q;iragft) | (s,a,r,s') € D}
10 every Typdate-target-th step:

11 @target e @

12 Q= update—modeI(Q,D’)
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NN
Action Value Models Q / Relabeling (2/2) A

3. relabel with mildly older Q (target network) [Mnih et al., 2015]:
8 D:=DU{(s,a,r,s)}

9 D' := {(s,a,r+ymaxyea @;,a’ragft) | (s,a,r,s') €D}
= {(s,ar+7QUE") | (s,a,r,s') € D,a := argmax,c, QU5 }
10 every Typdate-target-th step:
11 Otarget - @
12 Q= update—modeI(Q,D’)

» suffers from overestimation as same model is used to estimate the best
action and its value [van Hasselt et al., 2016].
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Action Value Models QCA{ Relabeling 2/|2VP
3. relabel with mildly older @ (target network) [Mnih et al., 2015]:

8 D:=DU{(s,a,r,s)}

o D= {(sar+ymaxgea T | (s,ar,8) €D}
{(s;a,r +vQUE") | (s,a,r,s") € D, a :=argmax, 4 QU'E"}
10 every Typdate-target-th step:
1 (’i)target = @
12 Q= update—model(@,D’)

» suffers from overestimation as same model is used to estimate the best
action and its value [van Hasselt et al., 2016].

4. relabel with mildly older @ but using action based on current (A?
(double Q learning) [van Hasselt et al., 2016]:
8 D:=DU{(s,a,r,s)}

A target X
9 D = {(57 a,r+ VQs?jf’e ) | (Sa a,r, S/) € Da a = argmaXy ca QS'-,B’}
10 every Tipdate-target —th step:

1 Qtarget = o

12 0 := undate-model(Q.D")
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NN
Deep Q Learning [Mnih et al., 2015] v

» task: learn to play atari games
» input: last 4 images

» output: 18 joystick movements
> 9 directions times 2 (button pressed/not pressed)

» use a deep convolutional neural network for @

[source: https://ew.com/article/2013/01/25 /the-10-best-atari-games/]
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Deep Q Learning / Architecture

» state represented by 4 images of 84 x 84 pixels a 1 channel

(luminance)
Convg\u\\on Con\lglu(ion Fully cgnnec\ed Fully cgnnec(ed
}
| .
3
A
]
A
- *
/]
[source: [Mnih et al., 2015, p.2]]
> layers:
> input: 4 X 84 x 84
» conv. layer: 32 patterns 8 x 8 (stride 4), relu
> conv. layer: 64 patterns 4 X 4 (stride 2), relu
» conv. layer: 64 patterns 3 x 3 (stride 1), relu
> fully connected: 512 nodes, relu
> output: fully connected, 4-18 actions, softmax?
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Deep Double Q Learning / Overestimation Effect

Alien Space Invaders Time Pilot Zaxxon
@ il
8 | 4 8 DQN estimate
5]
£ 6
e}
17
o 4
) Double DQN estimate
= 2
< Double DQN true value
> DQN true value

0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Training steps (in millions)

» Wizard of Wor Asterix
]
£ - A
iz
+ O
e 20
o ¥ M LA
== . \
Double DQN
§ ouble DY 5 Double DQN
0 50 100 150 200 0 50 100 150 200

Wizard of Wor Asterix

4000 Double DQN 6000

Double DQN

3000
4000

2000

Score

2000

1000 DQN,

0
0 50 100 150 200 0 50 100 150 200

Training steps (in millions) Training steps (in millions)

[van Hasselt et al., 2016, p.5]
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Deep Double Q Learning / Evaluation

[van Hasselt et al., 2016, p.6]
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Planning and Optimal Control 4. Deep Q Learning

Summary (1/2)

» Q learning learns the optimal action value function Q@* by updating
Q estimates towards current reward plus estimated value of best
follow-up state:

Qst,at = Qst,at + a(rt + ’Ym‘?XQstH,a - Qst,at)

» For finite state and action spaces, tables can be used as models
R:SxA—=R

» Esp. for structured states (and actions), any regression model can be
used.
» e.g., deep neural networks (deep Q learning)

» The Q model should be learned also from past data, not just the
current observation (experience replay vs. online learning).
» Due to a non-stationary policy and the non-stationary labeling process,
old data should be discounted.
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Summary (2/2) WA

» Q Learning can be accellerated by relabeling past data

» with a mildly older model (target network), or even better
» with a mildly older model, choosing best actions by the current model
(double Q learning).

» Deep reinforcement learning plays several video games better than
human players.
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Further Readings

» Reinforcement Learning:

» Olivier Sigaud, Frederick Garica (2010): Reinforcement Learning, ch. 1
in Sigaud and Buffet [2010].

» Sutton and Barto [2018]
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