
Planning and Optimal Control

Planning and Optimal Control
8. Policy Gradient Methods

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 25

Planning and Optimal Control

Syllabus

A. Models for Sequential Data
Tue. 22.10. (1) 1. Markov Models
Tue. 29.10. (2) 2. Hidden Markov Models
Tue. 5.11. (3) 3. State Space Models
Tue. 12.11. (4) 3b. (ctd.)

B. Models for Sequential Decisions
Tue. 19.11. (5) 1. Markov Decision Processes
Tue. 26.11. (6) 1b. (ctd.)
Tue. 3.12. (7) 1c. (ctd.)
Tue. 10.12. (8) 2. Monte Carlo and Temporal Difference Methods
Tue. 17.12. (9) 3. Q Learning
Tue. 24.12. — — Christmas Break —
Tue. 7.1. (10) 4. Policy Gradient Methods
Tue. 14.1. (11) tba
Tue. 21.1. (12) tba
Tue. 28.1. (13) 8. Reinforcement Learning for Games
Tue. 4.2. (14) Q&A

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 25

Planning and Optimal Control

Outline

1. The Policy Gradient Theorem

2. Monte Carlo Policy Gradient (REINFORCE)

3. TD Policy Gradients: Actor-Critic Methods

4. Deterministic Policy Gradients

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 25

Planning and Optimal Control 1. The Policy Gradient Theorem

Outline

1. The Policy Gradient Theorem

2. Monte Carlo Policy Gradient (REINFORCE)

3. TD Policy Gradients: Actor-Critic Methods

4. Deterministic Policy Gradients

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 25

Planning and Optimal Control 1. The Policy Gradient Theorem

I Q Learning: learn the action value function.

I Policy Gradient Methods

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 25

Planning and Optimal Control 1. The Policy Gradient Theorem

Example: Continuous Mountain Car

S := [−1.2, 0.5]× [−0.07, 0.07], s =: (x , v) (position and velocity)

A := [−1,+1] (acceleration)

xt+1 := clip(xt + vt)

vt+1 := clip(vt + 0.001at − 0.0025 cos(3xt))

p(x0) := unif([−0.6,−0.4]), v0 := 0
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 25

Planning and Optimal Control 1. The Policy Gradient Theorem

Idea

I let π be a parametrized policy with parameters θ:

π(a | s; θ)

I i.e., a neural network with input s and output a

I view its value function V π of the unique starting state s0 as a
function of θ:

V (θ) := V π(s0; θ)

I finding the optimal policy maximize V w.r.t. θ
I e.g., by gradient ascent:

θ(t+1) := θ(t) + αt∇θV (θ(t))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 25

Planning and Optimal Control 1. The Policy Gradient Theorem

State Distribution of a Policy

state visiting frequencies of a policy π:

ηπ(s) := E(|{St = s | t = 1 : T}|)
consistency:

ηπ(s) = p(S0 = s) +
∑

s′∈S

ηπ(s ′)
∑

a∈A

π(a | s ′) p(s | s ′, a)

 ηπ = (I − ((Pπ)T)−1)p0

with Pπ := (
∑

a∈A

π(a | s ′) p(s | s ′, a))(s′,s)∈S2 state transition under π

p0 := (p(S0 = s))s∈S initial states

state distribution of policy π (on-policy distribution):

µπ(s) :=
ηπ(s)∑

s′∈S η
π(s ′)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 25

Note: With I the identity matrix.

Planning and Optimal Control 1. The Policy Gradient Theorem

Discounted State Distribution of a Policy

discounted state visiting frequencies of a policy π:

ηπ(s) := E(
∑

t

γt I(St = s))

I visiting a state at time t contributes weight γt .
I = visiting frequency for γ = 1.

consistency:

ηπ(s) = p(S0 = s) +
∑

s′∈S

ηπ(s ′)γ
∑

a∈A

π(a | s ′) p(s | s ′, a)

 ηπ = (I − γ((Pπ)T)−1)p0

discounted state distribution of policy π:

µπ(s) :=
ηπ(s)∑

s′∈S η
π(s ′)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 25

Planning and Optimal Control 1. The Policy Gradient Theorem

Policy Gradient Theorem

∇θV π(s0) ∝
∑

s

µπ(s)
∑

a

∇π(a | s; θ)Qπ(s, a)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 25

Planning and Optimal Control 1. The Policy Gradient Theorem

Policy Gradient Theorem / Proof

∇V π(s) = ∇
∑

a

π(a | s)Qπ(s, a)

=
∑

a

∇π(a | s)Qπ(s, a) + π(a | s)∇Qπ(s, a)

=
∑

a

∇π(a | s)Qπ(s, a) + π(a | s)∇
∑

s′,r

p(s ′, r | s, a)(r + γV π(s ′))

=
∑

a

∇π(a | s)Qπ(s, a) + π(a | s)
∑

s′,r

p(s ′ | s, a)γ∇V π(s ′)

=
rec.

∑

a

∇π(a | s)Qπ(s, a) + π(a | s)
∑

s′

p(s ′ | s, a)γ

(
∑

a′

∇π(a′ | s ′)Qπ(s ′, a′) + π(a′ | s ′)
∑

s′′

p(s ′′ | s ′, a′)γ∇V π(s ′′))

=
rec.

∑

s′

∞∑

k=0

Pr(s → s ′, k , π)γk
∑

a

∇π(a | s ′)Qπ(s ′, a)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 25

Note: γ is missing in [Sutton and Barto, 2018, p.325].

Planning and Optimal Control 1. The Policy Gradient Theorem

Policy Gradient Theorem / Proof

∇V π(s) =
∑

s′

∞∑

k=0

Pr(s → s ′, k , π)γk
∑

a

∇π(a | s ′)Qπ(s ′, a)

∇V π(s0) =
∑

s

∞∑

k=0

Pr(s0 → s, k , π)γk
∑

a

∇π(a | s)Qπ(s, a)

=
∑

s

ηπ(s)
∑

a

∇π(a | s)Qπ(s, a)

∝
∑

s

µπ(s)
∑

a

∇π(a | s)Qπ(s, a)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 25

Planning and Optimal Control 2. Monte Carlo Policy Gradient (REINFORCE)

Outline

1. The Policy Gradient Theorem

2. Monte Carlo Policy Gradient (REINFORCE)

3. TD Policy Gradients: Actor-Critic Methods

4. Deterministic Policy Gradients

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 25

Planning and Optimal Control 2. Monte Carlo Policy Gradient (REINFORCE)

Monte Carlo Policy Gradient (REINFORCE)

∇V π(s0) ∝
∑

s

µπ(s)
∑

a

∇π(a | s)Qπ(s, a)

= E(
∑

a

∇π(a | St)Qπ(St , a))

= E(
∑

a

∇π(a | St)

π(a | St)
π(a | St)Qπ(St , a))

= E(
∇π(At | St)

π(At | St)
Vt)

= E(Vt∇ log π(At | St))

 update rule:

θ :=θ + αvt∇ log π(at | st)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 25

Note: Observed value Vt also called return in the literature.

Planning and Optimal Control 2. Monte Carlo Policy Gradient (REINFORCE)

Monte Carlo Policy Gradient (REINFORCE) / Alg.

1 learn-opt-policy-discounted-mc-policygrad(S ,A, γ, sterm,N, α):
2 initialize parameters θ of policy π
3 for n := 1, . . . ,N:
4 (s, a, r ,T) := generate-episode(S ,A, sterm, π)
5 for t := 0, . . . ,T − 1:

6 vt :=
∑T

t′=t γ
t′−trt′

7 θ := θ + αvt∇ log π(at | st)
8 return π

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 25

where

I sterm terminal state with zero reward.I α learning rateI returning π actually means to return its parameters θ

Planning and Optimal Control 2. Monte Carlo Policy Gradient (REINFORCE)

Example

13.1. Policy Approximation and its Advantages 323

A second advantage of parameterizing policies according to the soft-max in action
preferences is that it enables the selection of actions with arbitrary probabilities. In
problems with significant function approximation, the best approximate policy may be
stochastic. For example, in card games with imperfect information the optimal play is
often to do two di↵erent things with specific probabilities, such as when blu�ng in Poker.
Action-value methods have no natural way of finding stochastic optimal policies, whereas
policy approximating methods can, as shown in Example 13.1.

Example 13.1 Short corridor with switched actions

Consider the small corridor gridworld shown inset in the graph below. The reward
is �1 per step, as usual. In each of the three nonterminal states there are only
two actions, right and left. These actions have their usual consequences in the first
and third states (left causes no movement in the first state), but in the second
state they are reversed, so that right moves to the left and left moves to the right.
The problem is di�cult because all the states appear identical under the function
approximation. In particular, we define x(s, right) = [1, 0]> and x(s, left) = [0, 1]>,
for all s. An action-value method with "-greedy action selection is forced to choose
between just two policies: choosing right with high probability 1 � "/2 on all steps
or choosing left with the same high probability on all time steps. If " = 0.1, then
these two policies achieve a value (at the start state) of less than �44 and �82,
respectively, as shown in the graph. A method can do significantly better if it can
learn a specific probability with which to select right. The best probability is about
0.59, which achieves a value of about �11.6.

probability of right action

-11.6

0.1 0.2

-20

-40

-60

-80

-100
0.3 0.40 0.6 0.7 0.8 0.90.5 1

�-greedy left

�-greedy right

optimal
stochastic

policy

J(✓) = v⇡✓
(S)

GS

Perhaps the simplest advantage that policy parameterization may have over action-
value parameterization is that the policy may be a simpler function to approximate.
Problems vary in the complexity of their policies and action-value functions. For some,
the action-value function is simpler and thus easier to approximate. For others, the policy
is simpler. In the latter case a policy-based method will typically learn faster and yield a
superior asymptotic policy (as in Tetris; see Şimşek, Algórta, and Kothiyal, 2016).

[source: [Sutton and Barto, 2018, p.323]]

I assume all states are indistinguishable; reward −1 per step
I ε := 0.1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 25

Planning and Optimal Control 2. Monte Carlo Policy Gradient (REINFORCE)

Example

328 Chapter 13: Policy Gradient Methods

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for ⇡⇤

Input: a di↵erentiable policy parameterization ⇡(a|s,✓)
Algorithm parameter: step size ↵ > 0

Initialize policy parameter ✓ 2 Rd0
(e.g., to 0)

Loop forever (for each episode):
Generate an episode S0, A0, R1, . . . , ST�1, AT�1, RT , following ⇡(·|·,✓)
Loop for each step of the episode t = 0, 1, . . . , T � 1:

G PT
k=t+1 �

k�t�1Rk (Gt)
✓ ✓ + ↵�tGr ln⇡(At|St,✓)

The second di↵erence between the pseudocode update and the REINFORCE update
equation (13.8) is that the former includes a factor of �t. This is because, as mentioned
earlier, in the text we are treating the non-discounted case (�=1) while in the boxed
algorithms we are giving the algorithms for the general discounted case. All of the ideas
go through in the discounted case with appropriate adjustments (including to the box on
page 199) but involve additional complexity that distracts from the main ideas.

⇤Exercise 13.2 Generalize the box on page 199, the policy gradient theorem (13.5), the
proof of the policy gradient theorem (page 325), and the steps leading to the REINFORCE
update equation (13.8), so that (13.8) ends up with a factor of �t and thus aligns with
the general algorithm given in the pseudocode. ⇤

Figure 13.1 shows the performance of REINFORCE on the short-corridor gridworld
from Example 13.1.

↵ = 2�13

↵ = 2�12

Episode
10008006004002001

-80

-90

-60

-40

-20

-10

Total reward
on episode

averaged over 100 runs

G0

v⇤(s0)

↵ = 2�14

Figure 13.1: REINFORCE on the short-corridor gridworld (Example 13.1). With a good step
size, the total reward per episode approaches the optimal value of the start state.[source: [Sutton and Barto, 2018, p.328]]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 25

Planning and Optimal Control 2. Monte Carlo Policy Gradient (REINFORCE)

Monte Carlo Policy Gradient (REINFORCE w. Baseline)

I baseline b : S → R, not depending on actions a.

∇V π(s0) ∝
∑

s

µπ(s)
∑

a

∇π(a | s)Qπ(s, a)

=
∑

s

µπ(s)
∑

a

∇π(a | s)(Qπ(s, a)−b(s))

as ∑

a

∇π(a | s)b(s) = b(s)∇
∑

a

π(a | s) = b(s)∇1 = 0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 25

Planning and Optimal Control 2. Monte Carlo Policy Gradient (REINFORCE)

Monte Carlo Policy Gradient (REINFORCE w. Baseline)

∇V π(s0) ∝
∑

s

µπ(s)
∑

a

∇π(a | s)(Qπ(s, a)−b(s))

= E(
∑

a

∇π(a | St)(Qπ(St , a)−b(St)))

= E(
∑

a

∇π(a | St)

π(a | St)
π(a | St)(Qπ(St , a)−b(St)))

= E(
∇π(At | St)

π(At | St)
(Vt−b(St)))

= E((Vt−b(St))∇ log π(At | St))

 update rule:

θ :=θ + α(vt−b(st))∇ log π(at | st)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 25

Planning and Optimal Control 2. Monte Carlo Policy Gradient (REINFORCE)

Monte Carlo Policy Gradient (REINFORCE w. Baseline)

I often a current estimate of the value function V̂ is used as baseline:

b(s) := V̂ (s; η)

I updates for parameters η of V̂ :

η := η + α2(vt − V̂ (st))∇V̂ (st)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 25

Planning and Optimal Control 2. Monte Carlo Policy Gradient (REINFORCE)

Monte Carlo Policy Gradient (REINFORCE w. Basline) /
Alg.

1 learn-opt-policy-discounted-mc-policygrad-base(S ,A, γ, sterm,N, α):

2 initialize parameters η of value function V̂
3 initialize parameters θ of policy π
4 for n := 1, . . . ,N:
5 (s, a, r ,T) := generate-episode(S ,A, sterm, π)
6 for t := 0, . . . ,T − 1:

7 vt :=
∑T

t′=t γ
t′−trt

8 v̂t := V̂ (st)
9 η := η + α2(vt − v̂t)∇V (st)

10 θ := θ + α1(vt − v̂t)∇ log π(at | st)
11 return π

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 25

where

I sterm terminal state with zero reward.I α1, α2 learning rates for π and V̂ , resp.I returning π actually means to return its parameters θ

Planning and Optimal Control 2. Monte Carlo Policy Gradient (REINFORCE)

Example

330 Chapter 13: Policy Gradient Methods

Because REINFORCE is a Monte Carlo method for learning the policy parameter, ✓,
it seems natural to also use a Monte Carlo method to learn the state-value weights, w.
A complete pseudocode algorithm for REINFORCE with baseline using such a learned
state-value function as the baseline is given in the box below.

REINFORCE with Baseline (episodic), for estimating ⇡✓ ⇡ ⇡⇤

Input: a di↵erentiable policy parameterization ⇡(a|s,✓)
Input: a di↵erentiable state-value function parameterization v̂(s,w)
Algorithm parameters: step sizes ↵✓ > 0, ↵w > 0

Initialize policy parameter ✓ 2 Rd0
and state-value weights w 2 Rd (e.g., to 0)

Loop forever (for each episode):
Generate an episode S0, A0, R1, . . . , ST�1, AT�1, RT , following ⇡(·|·,✓)
Loop for each step of the episode t = 0, 1, . . . , T � 1:

G PT
k=t+1 �

k�t�1Rk (Gt)
� G� v̂(St,w)
w w + ↵w �rv̂(St,w)
✓ ✓ + ↵✓ �t �r ln⇡(At|St,✓)

This algorithm has two step sizes, denoted ↵✓ and ↵w (where ↵✓ is the ↵ in (13.11)).
Choosing the step size for values (here ↵w) is relatively easy; in the linear case we have

rules of thumb for setting it, such as ↵w = 0.1/E
⇥
krv̂(St,w)k2µ

⇤
(see Section 9.6). It is

much less clear how to set the step size for the policy parameters, ↵✓, whose best value
depends on the range of variation of the rewards and on the policy parameterization.

↵ = 2�13

Episode
10008006004002001

-80

-90

-60

-40

-20

-10 v⇤(s0)

REINFORCE

REINFORCE with baseline
↵ = 2�9

↵✓ = 2�9, ↵w = 2�6

Total reward
on episode

averaged over 100 runs

G0

Figure 13.2: Adding a baseline to REINFORCE can make it learn much faster, as illus-
trated here on the short-corridor gridworld (Example 13.1). The step size used here for plain
REINFORCE is that at which it performs best (to the nearest power of two; see Figure 13.1).

[source: [Sutton and Barto, 2018, p.330]]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 25

Planning and Optimal Control 3. TD Policy Gradients: Actor-Critic Methods

Outline

1. The Policy Gradient Theorem

2. Monte Carlo Policy Gradient (REINFORCE)

3. TD Policy Gradients: Actor-Critic Methods

4. Deterministic Policy Gradients

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

18 / 25

Planning and Optimal Control 3. TD Policy Gradients: Actor-Critic Methods

TD Policy Gradients: Actor-Critic Methods

To derive MC policy gradient / REINFORCE:

E(
∑

a

π(a | St)Qπ(St , a)) = E(Vt)

To derive TD policy gradient / Actor Critic:

E(
∑

a

π(a | St)Qπ(St , a)) = E(Rt + γVt+1)

then plug in V̂ (St+1) for Vt+1:

∇V π(s0) ∝
approx .

E((Rt + γV̂ (St+1))∇ log π(At | St))

and subtract baseline V̂ (St):

∇V π(s0) ∝
approx .

E((Rt + γV̂ (St+1)− V̂ (St))∇ log π(At | St))

 update rule:

θ :=θ + α(rt + γV̂ (st+1)− V̂ (st))∇ log π(at | st)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

18 / 25

Planning and Optimal Control 3. TD Policy Gradients: Actor-Critic Methods

TD Policy Gradients (Actor Critic)

1 learn-opt-policy-discounted-td-policygrad(S ,A, γ, sterm,N, α):

2 initialize parameters η of value function V̂
3 initialize parameters θ of policy π
4 for n := 1, . . . ,N:
5 s := new process()

6 v̂ := V̂ (s)
7 while s 6= sterm:
8 a := π(s)
9 (r , s ′) := execute action(s, a)

10 v̂ ′ := V̂ (s ′)
11 δ := r + γv̂ ′ − v̂
12 η := η + α2δ∇V (s)
13 θ := θ + α1δ∇ log π(a | s)
14 s := s ′, v̂ := v̂ ′

15 return π

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 25

where

I new process() sets up a new process.
I execute action(s, a) executes action a in process in

state s.

limitations:

I online replay memoryI gradient descent general model update algorithm

Planning and Optimal Control 3. TD Policy Gradients: Actor-Critic Methods

TD Policy Gradients (Actor Critic) / Replay Memory

1 learn-opt-policy-discounted-td-policygrad′(S ,A, γ, sterm,N, α):

2 initialize parameters η of value function V̂
3 initialize parameters θ of policy π
4 D := ∅
5 for n := 1, . . . ,N:
6 s := new process()
7 while s 6= sterm:
8 a := π(s)
9 (r , s ′) := execute action(s, a)

10 D := D ∪ {(s, a, r , s ′)}
11 D′1 := {((s, a), r + γV̂ (s ′)) | (s, a, r , s ′) ∈ D}
12 D′2 := {(s, a, caseweight = r + γV̂ (s ′)− V̂ (s)) | (s, a, r , s ′) ∈ D}
13 V̂ := update-model(V̂ ,D′1)
14 π := update-model(π,D′2)
15 s := s ′

16 return π

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 25

where

I new process() sets up a new process.
I execute action(s, a) executes action a in process in

state s.

Planning and Optimal Control 4. Deterministic Policy Gradients

Outline

1. The Policy Gradient Theorem

2. Monte Carlo Policy Gradient (REINFORCE)

3. TD Policy Gradients: Actor-Critic Methods

4. Deterministic Policy Gradients

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 25

Planning and Optimal Control 4. Deterministic Policy Gradients

Policy Value

I for non-finite MDPs, use expected value over starting states (policy
value) to define optimality of a policy:

V (π) := Es0∼p(V π(s0)) =

∫

s0

V π(s0)p(s0)ds0

= Es∼µπ ,a∼π(r(s, a))

I policy gradient theorem is for stochastic policies

π : S × A→ [0, 1]

I is there a corresponding result for deterministic policies?

π : S → A

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 25

Planning and Optimal Control 4. Deterministic Policy Gradients

Deterministic Policy Gradients

I stochastic policy gradient:

∇V (π) = Es∼ηπ ,a∼π(∇θ log π(s, a; θ)Qπ(s, a))

I deterministic policy gradient:

∇V (π) = Es∼ηπ(∇θπ(s; θ)∇aQ
π(s, a)|a=π(s))

I determinisitc policy gradient is limit of stochastic one:

lim
π′→π

∇θV (π′) = ∇θV (π), π′ stochastic policy, π deterministic policy

I see Silver et al. [2014]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 25

Planning and Optimal Control 4. Deterministic Policy Gradients

Overview

from what to learn
from episodes from transitions

value
function

V π Monte Carlo for V π Temporal Differences TD

action value
function

Qπ Monte Carlo for Qπ SARSA

optimal
action value
function

Qπ∗ . Q Learning

w
h
at

to
le
ar
n

optimal
policy

π∗
Monte Carlo Policy
Gradient / REINFORCE

TD Policy Gradient /
Actor Critic

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 25

Planning and Optimal Control 4. Deterministic Policy Gradients

Summary
I Policy gradient methods parametrize the policy directly: π(s; θ)

I instead of parametrizing the action-value function Q(s, a; θ)
and then deriving the policy as π(s) := arg maxa Q(s, a; θ).

I Gradients of the value function can be computed from gradients of
the policy via the policy gradient theorem:

∇θV π(s0) ∝
∑

s

µπ(s)
∑

a

∇π(a | s; θ)Qπ(s, a)

I Combined with observed values (Monte Carlo approach), gradient
ascent for the (implicit) value function leads to a simple update rule
for the policy parameters θ called REINFORCE:

θ :=θ + αvt∇ log π(at | st)

I any baseline for the observed value can be used and often accelerates
convergence
I esp. using a current estimate for the value function as baseline.

θ :=θ + α(vt − V̂ (st))∇ log π(at | st)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 25

Planning and Optimal Control 4. Deterministic Policy Gradients

Summary (2/2)

I Instead of using observed values (MC approach), one also can
combine policy gradients with temporal differences (called actor
critic methods):

θ :=θ + α(rt + γV̂ (st+1)− V̂ (st))∇ log π(at | st)

I then besides the policy model (actor),
a second model for the value function (critic) is required.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25 / 25

Planning and Optimal Control

Further Readings

I Reinforcement Learning:
I Olivier Sigaud, Frederick Garica (2010): Reinforcement Learning, ch. 1

in Sigaud and Buffet [2010].

I Sutton and Barto [2018]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

26 / 25

Planning and Optimal Control

References

Olivier Sigaud and Olivier Buffet, editors. Markov Decision Processes in Artificial Intelligence. Wiley, 2010.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic policy gradient
algorithms. In ICML, 2014.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. MIT Press, 2nd edition edition, 2018.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 25

	1. The Policy Gradient Theorem
	2. Monte Carlo Policy Gradient (REINFORCE)
	3. TD Policy Gradients: Actor-Critic Methods
	4. Deterministic Policy Gradients
	Appendix

