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NN
Why Games? “

>

>

ground truth mechanics
» known and
» simple (rules).
consequences of actions taken in games can be assessed purely
computationally
» no costly/slow interactions required
» with humans or

» with the physical world.
unlimited data (self play)
difficult to win, requires intelligence.

transition and reward model of the MDP are known,
but its state space is too large to compute the optimal policy with the
methods seen so far.

unknown strategies of opponents render transitions stochastic.
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Go / Rules

» start: board with 19 x 19 empty places.

» moves: first black, then white play alternately:
» put an own stone on an empty place and

» remove all sets of connected enemy stones
that are not connected to an empty place (capture).

» remove all sets of connected own stones
that are not connected to an empty place (self capture).

» moves leading back to an earlier position are forbidden.

» end: once both players consecutively passed.

» win: the player owning more places wins, counting

» places occupied with own stones plus
» connected empty places surrounded by own stones (territory).
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P2
Go / Rules / Capture i

> put an own stone on an empty place and

» remove all sets of connected enemy stones
that are not connected to an empty place (capture).

5

@ -

o “

[source: Wikipedia, Rules of Go, https://en.wikipedia.org/wiki/Rules_of_Go.]
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B
Go / Rules / Capture i

» win: the player owning more places wins, counting

» places occupied with own stones plus
> connected empty places surrounded by own stones (territory).
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[source: Wikipedia, Rules of Go, https://en.wikipedia.org/wiki/Rules_of_Go.]
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Al Search Problem A

» problem: find the optimal policy given an MDP model

» search approach: find the optimal action sequence by
1. looking ahead into the state/action space
» usually represented by a search tree

2. computing values at the terminal nodes
3. propagating the values back to the root node

» finally: make decision based on expected values at the root node.

» adversarial search:
» player chooses best action for himself. vs. opponent will choose worst
action for the player.
» minimax algorithm: in every node, alternatively
> choose action with highest value (for the player; player's move)
> choose action with the lowest value (for the player; opponent’s move)

» most state spaces are too large for such a complete enumeration.
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Monte Carlo Tree Search (MCTS) / Idea

[source: Browne et al. 2012]

» nodes = states
» edges = actions
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B
Monte Carlo Tree Search (MCTS) / Steps i

K—» Selection —> Expansion —— Simulation —> Backpropagation \
(2

Tree Default
Policy Policy

N A y

[source: Browne et al. 2012]
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Planning and Optimal Control 2. Improving a Policy via Monte Carlo Tree Search

MR
Monte Carlo Tree Search (MCTS) v

» apply MCTS when the MDP is not known,
but we have just estimates

» for the value function, for the optimal policy

» does not find the optimal policy,
but hopefully will improve the actual estimates.

» given an initial policy 7 and
estimated value function v
find an improved action value function v/ by
» averaging over the values of follow-up states of an action a in a state s
(any time step ahead)
and an improved policy 7’
» by using the argmax policy of v/ (“max child")

» here: by relative frequencies of the actions (“robust child”).
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Monte Carlo Tree Search (MCTS)

» given an initial policy 7 and
estimated value function v
simulate sequences from a generating policy (called tree policy)

» that initially is m,

» later on shifts towards actions leading to high (estimated) value.

» to accomplish this, measure:
» N(s,a): how often an action a has been taken in state s during

simulation so far.
» V(s,a): the total value seen in follow-up states of action a taken in
state s (any time step ahead)

» a useful such generating policy (“PUCT algorithm”):
% VD aeaN(s, @
(57 a) a'cA (S a )ﬂ'(S, a)

s, aN, V,m) = N(s, a) ‘14 N(s, a)

» where c is an exploitation/exploration trade-off weight.
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Monte Carlo Tree Search (MCTS) / PUCT

1+ N, V) + cvV'N
1+ N,+cVN 1+ N,+cVN
1+C\/>1+N

|A| + C\F(Za 'cA 1+N ,)

where  Na:=N(s,a), N:=>_c,N(s,d), V(a):= Yis.a) m(a):=mn(s,a)

sa)’

f(s,a; N, V,m) = ( m(a))

» convex combination of V and
» 7 — V with more samples (N, — o)
» 3rd policy favoring actions taken rarely so far
» weight 1/(1+ N,)
» doing nothing if all actions have been taken equally likely
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Planning and Optimal Control 2. Improving a Policy via Monte Carlo Tree Search

MR
Monte Carlo Tree Search (MCTS) v

policy-mcts-improved(sy, 7, v, K, ¢, 7):
create tree with root sy, child indices A and edge attributes p, N, V:
p(so, a) := 7(so, a), N(so,a) :==0, V(sp,a) :==0forallac A
for k:=1,...,K:
t:=0
do v S ea NG
a; 1= arg max,c, 7(st, a) = NEZ;; +c 11/€v?st,a)h p(st, a)
St+1 1= execute-action(s;, a;)
ti=t+1
while a child node s; of s;_; for action a;_; exists already in the tree
create child node s; of s;_; for action a;_1
p(st,a) :== m(st, a), N(s¢,a) :=0,V(s;,a) :=0forallac A
ve i= v(st) where
for t':=0,...,t—1:
N(sy,ap) := N(sy,av)+1
V(St/, at/) = V(Sy7 at/) + v
(@) == N(so, )7/ 32 ca N(so, @)/
return 7’
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P 5 € S state to improve policy for.

P 7 original policy.

> v eR® original value function.

P K & N number of simulation samples.
P+ annealing rate.

> exploitation/exploration trade-off.

P returns 7/ an improved policy for state sp.
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Policy Model @

» input: suitable representation of state s;
» richer: last to states S;_y4+1,...,5t—1,St

» output:
» value function: estimated value ¥ of the input state.

41, if player wins
vi=
—1, else

» improved policy: estimated selection probabilities # € R? of an
look-ahead improved policy of @ for this state, e.g.,

7 := policy-MCTS-improved(#)
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Policy Model @ / Loss

multitask loss/objective function:

07, 0w, v) = (v—0)2 + 77 log® & + A||0][?
+1, if player wins
—1, else
7 := policy-MCTS-improved(7), € RA
current estimations of optimal policy and value
(=output of DNN)
0 := parameters of DNN

>
<>
I

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Planning and Optimal Control 3. A Policy Model That Learns to Improve

B
Policy Model & / AlphaGo Zero for Go (1/2) i

> input:
» board as 19 x 19 image with 17 binary channels
» 8 for locations of white stones in last 8 positions
» 8 for locations of black stones in last 8 positions
> 1 for who's turn (same value for all pixels)

» 1 initial convolutional block:
» convolution (3 x 3, stride 1, 256 filters), batch normalization, rectifier.

» 19 residual blocks:

» convolution (3 x 3, stride 1, 256 filters), batch normalization, rectifier,
convolution (3 x 3, stride 1, 256 filters), batch normalization,
skip connection adding block input, rectifier.
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B
Policy Model & / AlphaGo Zero for Go (2/2) i

» two heads for two outputs:
» scalar ¥:

» convolution (1 x 1, stride 1, 1 filter), batch normalization, rectifier,
fully connected layer (size 256), rectifier,
fully connected layer (size 1), tanh.

» vectorized (p(a))aca, where A are all locations and action “pass”.
» convolution (1 x 1, stride 1, 2 filters), batch normalization, rectifier,

fully connected layer (size 192 + 1 = 362), logistic.
» 22.8M parameters

» with 19 residual blocks,
the receptive field of the last block is the whole board.
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Skip connection

3x3 conv. + Rectifier
BN +

| Rectifier

Rectifier

Residual block #1

Residual blocks

1 fully connected
Flatten ’i‘z i .
362
logits Policy:
1x1 conv. + BN 19x19+1 = 362
+Rectfier
Fe
ox 19
-
Flatten 2 fully connected

layers
a1
l

256

1x1 conv. + BN -
+ Rectifier
1
D Value:
scalar in the range [-1, 1]
Fo+
tarh
[
19x19 or
rectifer

[source: https://medium.com/Q@jonathan_hui/alphago-zero-a-game-changer-14ef6e45ebab]
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1 learn-policy(N):

2 6 := randomly initialization

3 do until convergence:

4 D := {sample-policy(#(0)) | n=1,..., N}
6 := update-model(¢, D)

6 return 6

[&]

where

P N € N sample size per model update

P returns 0 parameters of the policy model # (and value

model )
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Required Computational Resources
data foundation:
» none

» model learns only from generated data,
not from human games.

computational resources:
» 3 days version:
» 192 GPU days (= 3 days on 64 GPUs)

» 4.9M games, 1,600 MCTS simulations/move

» 700,000 minibatches a 2,048 positions each (possibly overlapping).

» network with 20 residual blocks (40+ convolutional layers)

» 40 days version:
» 2560 GPU days

» network with 40 residual blocks (80+ convolutional layers)
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Planning and Optimal Control 4. Evaluation

Evaluation Criteria

) Arpad Elo
a. Elo rating: (1903-1992)
» a score that predicts how likely one player wins over another one

b. accuracy of predicting the next move of a human expert player.

c. accuracy of predicting the outcome of a match between professional
players given a position.
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Elo Ratings

1
1 + efﬁ:o(rafrb)

= Iogistic(ﬁ(rT(ea —ep)))

1
p(a wins against b) = Ioglstlc(400( —rp)) =

» Elo ratings are the weights of a logistic regression model for the
player ID predictor.

» To evaluate alphaGoZero, the Elo ratings of alphaGo are used for
reference.
» and the alphaGo Elo ratings had been computed from its games
against human Go masters.

Note: e, denotes the a-th unit vector in RV with N the number of players, i.e.,
(ea)n:=I(a=n),n=1,...,N.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Self-Play RL vs. Supervised Learning

a. b. c.
5000 g , 035
e 3
3 £
4000 ¢ s
3 60 £
3000 £ 3
K] o 03
§ % §
2000 2 kS
2 2 5
£ 3 g
51000 B 0 s
S < 8025
w o 5 30 °
S 5
-1000 8 §
520 5 02
~2000 3 5
© o
3000 ~— Reinforcement Learning S 10 g
- — Supervised Learning 3 — Reinforcement Learning ES — Reinforcement Learning
4000 === AlphaGo Lee S0 — Supervised Learning Foss — Supervised Learning
0 10 20 30 40 50 60 70 © 0 10 20 30 40 50 60 70 $ 0 10 20 30 40 50 60 70
Training time (hours) Training time (hours) Training time (hours)

[source: Silver et al. 2017]
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NS
Value/Policy Model Architectures A :

a. 4500 - b. o053 C. 020
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£ ] i
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& 3500 -| S o049 3
o o a
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8 o 017 4
£ o048 5
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g g ot
2 c
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s
2500 - 0.45 - 015 -
—_—— T T T T T T T T
dualres  sepres dual-conv sep-conv dualres  sep-res dual-conv sep-conv dualres  sep-res  dual-conv sep-conv

different architectures: [source: Silver et al. 2017]

» multitask value/policy model (“dual”)
vs. two separate value and policy models (“sep”)

» residual deep neural network (“res”)
vs. purely convolutional deep neural network (“conv”
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Self-Play RL (AlphaGo Zero)
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[source: Silver et al. 2017]
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Planning and Optimal Control 4. Evaluation

Go as Testbed for Reinforcement Learning

» simple representation of the state
» simple representation of moves
» easily scalable problem sizes: vary board sizes

» hard task for humans

» easily scalable policy/value model
» deep neural network, complexity scaled by number of layers

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Further Readings

» About the policy model and the Go application:
» Silver et al. [2017]

» Some details, esp. about the MCTS used, are described more detailed

in a precursor paper:
> Silver et al. [2016]

» Monte Carlo Tree Search (MCTS):

» a brief summary:
https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

» a survey: Browne et al. [2012]
» The PUCT algorithm is an idiosyncratic combination of
» UCT — UCB applied to trees [Kocsis and Szepesviari, 2006]
» PUCB — Predictors + UCB [Rosin, 2011]
> both extending UCB — Upper Confidence Bounds [Auer et al., 2002]

» Generally about adversarial search:
> Russell et al. 2009, ch. 5
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PUCT

N 2 log N(t)
= a)+ ogﬁ with time t = N
N;
2 log Ns(t)

OBR with a constant ¢
Ns,a

3log N(1) 2 log N(t)
N0 M\ @

with action specific, time-invariant scalar predictors M,
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