
Planning and Optimal Control

Planning and Optimal Control
C.3. Reinforcement Learning for Playing Games

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 24

Planning and Optimal Control

Syllabus
A. Models for Sequential Data

Tue. 22.10. (1) 1. Markov Models
Tue. 29.10. (2) 2. Hidden Markov Models
Tue. 5.11. (3) 3. State Space Models
Tue. 12.11. (4) 3b. (ctd.)

B. Models for Sequential Decisions
Tue. 19.11. (5) 1. Markov Decision Processes
Tue. 26.11. (6) 1b. (ctd.)
Tue. 3.12. (7) 1c. (ctd.)
Tue. 10.12. (8) 2. Monte Carlo and Temporal Difference Methods
Tue. 17.12. (9) 3. Q Learning
Tue. 24.12. — — Christmas Break —
Tue. 7.1. (10) 4. Policy Gradient Methods

C. Applications for Sequential Decisions
Tue. 14.1. (11) 1. Cooperative Reinforcement Learning
Tue. 21.1. (12) 2. Learning to Optimize
Tue. 28.1. (13) 3. Reinforcement Learning for Games
Tue. 4.2. (14) Q&A

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 24

Planning and Optimal Control

Outline

1. Introduction

2. Improving a Policy via Monte Carlo Tree Search

3. A Policy Model That Learns to Improve

4. Evaluation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 24

Planning and Optimal Control 1. Introduction

Outline

1. Introduction

2. Improving a Policy via Monte Carlo Tree Search

3. A Policy Model That Learns to Improve

4. Evaluation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 24

Planning and Optimal Control 1. Introduction

Why Games?

I ground truth mechanics
I known and
I simple (rules).

I consequences of actions taken in games can be assessed purely
computationally

I no costly/slow interactions required
I with humans or

I with the physical world.

I unlimited data (self play)

I difficult to win, requires intelligence.

I transition and reward model of the MDP are known,
but its state space is too large to compute the optimal policy with the
methods seen so far.

I unknown strategies of opponents render transitions stochastic.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 24

Planning and Optimal Control 1. Introduction

Go / Rules

I start: board with 19× 19 empty places.

I moves: first black, then white play alternately:
I put an own stone on an empty place and

I remove all sets of connected enemy stones
that are not connected to an empty place (capture).

I remove all sets of connected own stones
that are not connected to an empty place (self capture).

I moves leading back to an earlier position are forbidden.

I end: once both players consecutively passed.

I win: the player owning more places wins, counting
I places occupied with own stones plus
I connected empty places surrounded by own stones (territory).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

2 / 24

Planning and Optimal Control 1. Introduction

Go / Rules / Capture

I put an own stone on an empty place and

I remove all sets of connected enemy stones
that are not connected to an empty place (capture).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

3 / 24

[source: Wikipedia, Rules of Go, https://en.wikipedia.org/wiki/Rules_of_Go.]

https://en.wikipedia.org/wiki/Rules_of_Go

Planning and Optimal Control 1. Introduction

Go / Rules / Capture

I win: the player owning more places wins, counting

I places occupied with own stones plus
I connected empty places surrounded by own stones (territory).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

4 / 24

[source: Wikipedia, Rules of Go, https://en.wikipedia.org/wiki/Rules_of_Go.]

https://en.wikipedia.org/wiki/Rules_of_Go

Planning and Optimal Control 2. Improving a Policy via Monte Carlo Tree Search

Outline

1. Introduction

2. Improving a Policy via Monte Carlo Tree Search

3. A Policy Model That Learns to Improve

4. Evaluation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 24

Planning and Optimal Control 2. Improving a Policy via Monte Carlo Tree Search

AI Search Problem
I problem: find the optimal policy given an MDP model

I search approach: find the optimal action sequence by
1. looking ahead into the state/action space

I usually represented by a search tree

2. computing values at the terminal nodes

3. propagating the values back to the root node

I finally: make decision based on expected values at the root node.

I adversarial search:
I player chooses best action for himself. vs. opponent will choose worst

action for the player.

I minimax algorithm: in every node, alternatively
I choose action with highest value (for the player; player’s move)

I choose action with the lowest value (for the player; opponent’s move)

I most state spaces are too large for such a complete enumeration.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5 / 24

Planning and Optimal Control 2. Improving a Policy via Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) / Idea

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 1

A Survey of Monte Carlo Tree Search Methods
Cameron Browne, Member, IEEE, Edward Powley, Member, IEEE, Daniel Whitehouse, Member, IEEE,

Simon Lucas, Senior Member, IEEE, Peter I. Cowling, Member, IEEE, Philipp Rohlfshagen,
Stephen Tavener, Diego Perez, Spyridon Samothrakis and Simon Colton

Abstract—Monte Carlo Tree Search (MCTS) is a recently proposed search method that combines the precision of tree search with the
generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer
Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a
snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm’s derivation, impart some
structure on the many variations and enhancements that have been proposed, and summarise the results from the key game and
non-game domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for
future work.

Index Terms—Monte Carlo Tree Search (MCTS), Upper Confidence Bounds (UCB), Upper Confidence Bounds for Trees (UCT),
Bandit-based methods, Artificial Intelligence (AI), Game search, Computer Go.

F

1 INTRODUCTION

MONTE Carlo Tree Search (MCTS) is a method for
finding optimal decisions in a given domain by

taking random samples in the decision space and build-
ing a search tree according to the results. It has already
had a profound impact on Artificial Intelligence (AI)
approaches for domains that can be represented as trees
of sequential decisions, particularly games and planning
problems.

In the five years since MCTS was first described, it
has become the focus of much AI research. Spurred
on by some prolific achievements in the challenging
task of computer Go, researchers are now in the pro-
cess of attaining a better understanding of when and
why MCTS succeeds and fails, and of extending and
refining the basic algorithm. These developments are
greatly increasing the range of games and other decision
applications for which MCTS is a tool of choice, and
pushing its performance to ever higher levels. MCTS has
many attractions: it is a statistical anytime algorithm for
which more computing power generally leads to better
performance. It can be used with little or no domain
knowledge, and has succeeded on difficult problems
where other techniques have failed. Here we survey the
range of published work on MCTS, to provide the reader

• C. Browne, S. Tavener and S. Colton are with the Department of Com-
puting, Imperial College London, UK.
E-mail: camb,sct110,sgc@doc.ic.ac.uk

• S. Lucas, P. Rohlfshagen, D. Perez and S. Samothrakis are with the School
of Computer Science and Electronic Engineering, University of Essex, UK.
E-mail: sml,prohlf,dperez,ssamot@essex.ac.uk

• E. Powley, D. Whitehouse and P.I. Cowling are with the School of
Computing, Informatics and Media, University of Bradford, UK.
E-mail: e.powley,d.whitehouse1,p.i.cowling@bradford.ac.uk

Manuscript received October 22, 2011; revised January 12, 2012; accepted
January 30, 2012. Digital Object Identifier 10.1109/TCIAIG.2012.2186810

Fig. 1. The basic MCTS process [17].

with the tools to solve new problems using MCTS and
to investigate this powerful approach to searching trees
and directed graphs.

1.1 Overview

The basic MCTS process is conceptually very simple, as
shown in Figure 1 (from [17]). A tree1 is built in an
incremental and asymmetric manner. For each iteration
of the algorithm, a tree policy is used to find the most ur-
gent node of the current tree. The tree policy attempts to
balance considerations of exploration (look in areas that
have not been well sampled yet) and exploitation (look
in areas which appear to be promising). A simulation2

is then run from the selected node and the search tree
updated according to the result. This involves the addi-
tion of a child node corresponding to the action taken
from the selected node, and an update of the statistics
of its ancestors. Moves are made during this simulation

1. Typically a game tree.
2. A random or statistically biased sequence of actions applied to

the given state until a terminal condition is reached.

[source: Browne et al. 2012]

I nodes = states
I edges = actions

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

6 / 24

Planning and Optimal Control 2. Improving a Policy via Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) / Steps

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 6

Tree
Policy

Default
Policy

Selection Expansion Simulation Backpropagation

Fig. 2. One iteration of the general MCTS approach.

Algorithm 1 General MCTS approach.
function MCTSSEARCH(s0)

create root node v0 with state s0
while within computational budget do

vl ← TREEPOLICY(v0)
∆← DEFAULTPOLICY(s(vl))
BACKUP(vl,∆)

return a(BESTCHILD(v0))

the tree until the most urgent expandable node is
reached. A node is expandable if it represents a non-
terminal state and has unvisited (i.e. unexpanded)
children.

2) Expansion: One (or more) child nodes are added to
expand the tree, according to the available actions.

3) Simulation: A simulation is run from the new node(s)
according to the default policy to produce an out-
come.

4) Backpropagation: The simulation result is “backed
up” (i.e. backpropagated) through the selected
nodes to update their statistics.

These may be grouped into two distinct policies:

1) Tree Policy: Select or create a leaf node from the
nodes already contained within the search tree (se-
lection and expansion).

2) Default Policy: Play out the domain from a given
non-terminal state to produce a value estimate (sim-
ulation).

The backpropagation step does not use a policy itself,
but updates node statistics that inform future tree policy
decisions.

These steps are summarised in pseudocode in Algo-

rithm 1.6 Here v0 is the root node corresponding to state
s0, vl is the last node reached during the tree policy
stage and corresponds to state sl, and ∆ is the reward
for the terminal state reached by running the default
policy from state sl. The result of the overall search
a(BESTCHILD(v0)) is the action a that leads to the best
child of the root node v0, where the exact definition of
“best” is defined by the implementation.

Note that alternative interpretations of the term “sim-
ulation” exist in the literature. Some authors take it
to mean the complete sequence of actions chosen per
iteration during both the tree and default policies (see for
example [93], [204], [94]) while most take it to mean the
sequence of actions chosen using the default policy only.
In this paper we shall understand the terms playout and
simulation to mean “playing out the task to completion
according to the default policy”, i.e. the sequence of
actions chosen after the tree policy steps of selection and
expansion have been completed.

Figure 2 shows one iteration of the basic MCTS al-
gorithm. Starting at the root node7 t0, child nodes are
recursively selected according to some utility function
until a node tn is reached that either describes a terminal
state or is not fully expanded (note that this is not
necessarily a leaf node of the tree). An unvisited action
a from this state s is selected and a new leaf node tl is
added to the tree, which describes the state s′ reached
from applying action a to state s. This completes the tree
policy component for this iteration.

A simulation is then run from the newly expanded
leaf node tl to produce a reward value ∆, which is then

6. The simulation and expansion steps are often described and/or
implemented in the reverse order in practice [52], [67].

7. Each node contains statistics describing at least a reward value
and number of visits.

[source: Browne et al. 2012]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

7 / 24

Planning and Optimal Control 2. Improving a Policy via Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS)

I apply MCTS when the MDP is not known,
but we have just estimates

I for the value function, for the optimal policy

I does not find the optimal policy,
but hopefully will improve the actual estimates.

I given an initial policy π and
estimated value function v

find an improved action value function v ′ by
I averaging over the values of follow-up states of an action a in a state s

(any time step ahead)

and an improved policy π′

I by using the argmax policy of v ′ (“max child”)

I here: by relative frequencies of the actions (“robust child”).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 24

Planning and Optimal Control 2. Improving a Policy via Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS)
I given an initial policy π and

estimated value function v
simulate sequences from a generating policy (called tree policy)

I that initially is π,

I later on shifts towards actions leading to high (estimated) value.

I to accomplish this, measure:
I N(s, a): how often an action a has been taken in state s during

simulation so far.

I V (s, a): the total value seen in follow-up states of action a taken in
state s (any time step ahead)

I a useful such generating policy (“PUCT algorithm”):

π̃(s, a;N,V , π) :=
V (s, a)

N(s, a)
+ c

√∑
a′∈A N(s, a′)

1 + N(s, a)
π(s, a)

I where c is an exploitation/exploration trade-off weight.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 24

Planning and Optimal Control 2. Improving a Policy via Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) / PUCT

π̃(s, a;N,V , π) = (
1 + Na

1 + Na + c
√
N
V̂ (a) +

c
√
N

1 + Na + c
√
N
π(a))

·
1 + c

√
N 1

1+Na

|A|+ c
√
N(

∑
a′∈A

1
1+Na′

)

where Na:=N(s,a), N:=
∑

a′∈A N(s,a′), V̂ (a):= V (s,a)
N(s,a)

, π(a):=π(s,a)

I convex combination of V̂ and π
I π̃ → V̂ with more samples (Na →∞)

I 3rd policy favoring actions taken rarely so far
I weight 1/(1 + Na)
I doing nothing if all actions have been taken equally likely

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

10 / 24

Planning and Optimal Control 2. Improving a Policy via Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS)
1 policy-mcts-improved(s0, π, v ,K , c , τ):
2 create tree with root s0, child indices A and edge attributes p,N,V :
3 p(s0, a) := π(s0, a),N(s0, a) := 0,V (s0, a) := 0 for all a ∈ A
4 for k := 1, . . . ,K :
5 t := 0
6 do
7 at := arg maxa∈A π̃(st , a) := V (st ,a)

N(st ,a) + c

√∑
a′∈A N(st ,a′)

1+N(st ,a) p(st , a)
8 st+1 := execute-action(st , at)
9 t := t + 1

10 while a child node st of st−1 for action at−1 exists already in the tree
11 create child node st of st−1 for action at−1

12 p(st , a) := π(st , a),N(st , a) := 0,V (st , a) := 0 for all a ∈ A
13 vt := v(st)
14 for t ′ := 0, . . . , t − 1:
15 N(st′ , at′) := N(st′ , at′) + 1
16 V (st′ , at′) := V (st′ , at′) + vt

17 π′(a) := N(s0, a)1/τ/
∑

a′∈A N(s0, a
′)1/τ

18 return π′
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 24

where

I s0 ∈ S state to improve policy for.
I π original policy.
I v ∈ RS original value function.
I K ∈ N number of simulation samples.
I τ annealing rate.
I c exploitation/exploration trade-off.
I returns π′ an improved policy for state s0.

Planning and Optimal Control 3. A Policy Model That Learns to Improve

Outline

1. Introduction

2. Improving a Policy via Monte Carlo Tree Search

3. A Policy Model That Learns to Improve

4. Evaluation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 24

Planning and Optimal Control 3. A Policy Model That Learns to Improve

Policy Model π̂

I input: suitable representation of state st

I richer: last t0 states st−t0+1, . . . , st−1, st

I output:
I value function: estimated value v̂ of the input state.

v :=

{
+1, if player wins

−1, else

I improved policy: estimated selection probabilities π̂ ∈ RA of an
look-ahead improved policy of π̂ for this state, e.g.,

π := policy-MCTS-improved(π̂)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

12 / 24

Planning and Optimal Control 3. A Policy Model That Learns to Improve

Policy Model π̂ / Loss

multitask loss/objective function:

`(π̂, v̂ ;π, v) := (v − v̂)2 + πT log◦ π̂ + λ||θ||2

v :=

{
+1, if player wins

−1, else

π := policy-MCTS-improved(π̂),∈ RA

π̂, v̂ := current estimations of optimal policy and value

(=output of DNN)

θ := parameters of DNN

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 24

Planning and Optimal Control 3. A Policy Model That Learns to Improve

Policy Model π̂ / AlphaGo Zero for Go (1/2)

I input:
I board as 19× 19 image with 17 binary channels

I 8 for locations of white stones in last 8 positions

I 8 for locations of black stones in last 8 positions

I 1 for who’s turn (same value for all pixels)

I 1 initial convolutional block:
I convolution (3× 3, stride 1, 256 filters), batch normalization, rectifier.

I 19 residual blocks:
I convolution (3× 3, stride 1, 256 filters), batch normalization, rectifier,

convolution (3× 3, stride 1, 256 filters), batch normalization,
skip connection adding block input, rectifier.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 24

Planning and Optimal Control 3. A Policy Model That Learns to Improve

Policy Model π̂ / AlphaGo Zero for Go (2/2)

I two heads for two outputs:
I scalar v̂ :

I convolution (1 × 1, stride 1, 1 filter), batch normalization, rectifier,
fully connected layer (size 256), rectifier,
fully connected layer (size 1), tanh.

I vectorized (p̂(a))a∈A, where A are all locations and action “pass”.
I convolution (1 × 1, stride 1, 2 filters), batch normalization, rectifier,

fully connected layer (size 192 + 1 = 362), logistic.

I 22.8M parameters

I with 19 residual blocks,
the receptive field of the last block is the whole board.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

15 / 24

Planning and Optimal Control 3. A Policy Model That Learns to Improve

[source:

[source: https://medium.com/@jonathan_hui/alphago-zero-a-game-changer-14ef6e45eba5]

]Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

16 / 24

https://medium.com/@jonathan_hui/alphago-zero-a-game-changer-14ef6e45eba5

Planning and Optimal Control 3. A Policy Model That Learns to Improve

1 learn-policy(N):
2 θ := randomly initialization
3 do until convergence:
4 D := {sample-policy(π̂(θ)) | n = 1, . . . ,N}
5 θ := update-model(θ,D)
6 return θ

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 24

where

I N ∈ N sample size per model update
I returns θ parameters of the policy model π̂ (and value

model v̂)

Planning and Optimal Control 3. A Policy Model That Learns to Improve

Required Computational Resources
data foundation:

I none
I model learns only from generated data,

not from human games.

computational resources:
I 3 days version:

I 192 GPU days (= 3 days on 64 GPUs)

I 4.9M games, 1,600 MCTS simulations/move

I 700,000 minibatches a 2,048 positions each (possibly overlapping).

I network with 20 residual blocks (40+ convolutional layers)

I 40 days version:
I 2560 GPU days

I network with 40 residual blocks (80+ convolutional layers)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

18 / 24

Planning and Optimal Control 4. Evaluation

Outline

1. Introduction

2. Improving a Policy via Monte Carlo Tree Search

3. A Policy Model That Learns to Improve

4. Evaluation

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 24

Planning and Optimal Control 4. Evaluation

Evaluation Criteria

a. Elo rating:
I a score that predicts how likely one player wins over another one

b. accuracy of predicting the next move of a human expert player.

c. accuracy of predicting the outcome of a match between professional
players given a position.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 24

Arpad Elo
(1903-1992)

Planning and Optimal Control 4. Evaluation

Elo Ratings

p(a wins against b) = logistic(
1

400
(ra − rb)) =

1

1 + e−
1

400
(ra−rb)

= logistic(
1

400
(rT (ea − eb)))

I Elo ratings are the weights of a logistic regression model for the
player ID predictor.

I To evaluate alphaGoZero, the Elo ratings of alphaGo are used for
reference.

I and the alphaGo Elo ratings had been computed from its games
against human Go masters.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

20 / 24

Note: ea denotes the a-th unit vector in RN with N the number of players, i.e.,
(ea)n := I(a = n), n = 1, . . . ,N.

Planning and Optimal Control 4. Evaluation

Self-Play RL vs. Supervised Learning

Figure 3: Empirical evaluation of AlphaGo Zero. a Performance of self-play reinforcement learning. The plot

shows the performance of each MCTS player αθi from each iteration i of reinforcement learning in AlphaGo Zero.

Elo ratings were computed from evaluation games between different players, using 0.4 seconds of thinking time per

move (see Methods). For comparison, a similar player trained by supervised learning from human data, using the

KGS data-set, is also shown. b Prediction accuracy on human professional moves. The plot shows the accuracy of the

neural network fθi , at each iteration of self-play i, in predicting human professional moves from the GoKifu data-set.

The accuracy measures the percentage of positions in which the neural network assigns the highest probability to the

human move. The accuracy of a neural network trained by supervised learning is also shown. c Mean-squared error

(MSE) on human professional game outcomes. The plot shows the MSE of the neural network fθi , at each iteration

of self-play i, in predicting the outcome of human professional games from the GoKifu data-set. The MSE is between

the actual outcome z ∈ {−1,+1} and the neural network value v, scaled by a factor of 1
4 to the range [0, 1]. The MSE

of a neural network trained by supervised learning is also shown.

7

[source: Silver et al. 2017]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 24

Planning and Optimal Control 4. Evaluation

Value/Policy Model Architectures

Figure 4: Comparison of neural network architectures in AlphaGo Zero and AlphaGo Lee. Comparison of

neural network architectures using either separate (“sep”) or combined policy and value networks (“dual”), and using

either convolutional (“conv”) or residual networks (“res”). The combinations “dual-res” and “sep-conv” correspond

to the neural network architectures used in AlphaGo Zero and AlphaGo Lee respectively. Each network was trained on

a fixed data-set generated by a previous run of AlphaGo Zero. a Each trained network was combined with AlphaGo

Zero’s search to obtain a different player. Elo ratings were computed from evaluation games between these different

players, using 5 seconds of thinking time per move. b Prediction accuracy on human professional moves (from the

GoKifu data-set) for each network architecture. c Mean-squared error on human professional game outcomes (from

the GoKifu data-set) for each network architecture.

9

[source: Silver et al. 2017]different architectures:

I multitask value/policy model (“dual”)
vs. two separate value and policy models (“sep”)

I residual deep neural network (“res”)
vs. purely convolutional deep neural network (“conv”)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 / 24

Planning and Optimal Control 4. Evaluation

Self-Play RL (AlphaGo Zero) vs. Other Systems

Figure 6: Performance of AlphaGo Zero. a Learning curve for AlphaGo Zero using larger 40 block residual network

over 40 days. The plot shows the performance of each player αθi from each iteration i of our reinforcement learning

algorithm. Elo ratings were computed from evaluation games between different players, using 0.4 seconds per search

(see Methods). b Final performance of AlphaGo Zero. AlphaGo Zero was trained for 40 days using a 40 residual block

neural network. The plot shows the results of a tournament between: AlphaGo Zero, AlphaGo Master (defeated top

human professionals 60-0 in online games), AlphaGo Lee (defeated Lee Sedol), AlphaGo Fan (defeated Fan Hui), as

well as previous Go programs Crazy Stone, Pachi and GnuGo. Each program was given 5 seconds of thinking time

per move. AlphaGo Zero and AlphaGo Master played on a single machine on the Google Cloud; AlphaGo Fan and

AlphaGo Lee were distributed over many machines. The raw neural network from AlphaGo Zero is also included,

which directly selects the move a with maximum probability pa, without using MCTS. Programs were evaluated on

an Elo scale 25: a 200 point gap corresponds to a 75% probability of winning.

13

[source: Silver et al. 2017]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 24

Planning and Optimal Control 4. Evaluation

Go as Testbed for Reinforcement Learning

I simple representation of the state

I simple representation of moves

I easily scalable problem sizes: vary board sizes

I hard task for humans

I easily scalable policy/value model
I deep neural network, complexity scaled by number of layers

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 24

Planning and Optimal Control

Further Readings

I About the policy model and the Go application:
I Silver et al. [2017]

I Some details, esp. about the MCTS used, are described more detailed
in a precursor paper:

I Silver et al. [2016]

I Monte Carlo Tree Search (MCTS):
I a brief summary:

https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

I a survey: Browne et al. [2012]

I The PUCT algorithm is an idiosyncratic combination of
I UCT — UCB applied to trees [Kocsis and Szepesvári, 2006]

I PUCB — Predictors + UCB [Rosin, 2011]

I both extending UCB — Upper Confidence Bounds [Auer et al., 2002]

I Generally about adversarial search:
I Russell et al. 2009, ch. 5

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

25 / 24

https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

Planning and Optimal Control

PUCT

UCB:

π(t)(a) := Q̂(t)(a) +

√
2 logN(t)

N
(t)
a

, with time t = N

UCT:

π(t)(s, a) := Q̂(t)(s, a) + 2c

√√√√2 logN
(t)
s

N
(t)
s,a

, with a constant c

PUCB:

π(t)(a) := Q̂(t)(a) +

√
3 logN(t)

2N
(t)
a

− 2

Ma

√
logN(t)

N(t)
,

with action specific, time-invariant scalar predictors Ma

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

26 / 24

Planning and Optimal Control

References

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem. Machine learning, 47
(2-3):235–256, 2002.

Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling, Philipp Rohlfshagen, Stephen
Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey of monte carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in games, 4(1):1–43, 2012.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European Conference on Machine Learning, pages
282–293. Springer, 2006.

Christopher D. Rosin. Multi-armed bandits with episode context. Annals of Mathematics and Artificial Intelligence, 61(3):
203–230, 2011.

Stuart Jonathan Russell, Peter Norvig, John F. Canny, Jitendra M. Malik, and Douglas D. Edwards. Artificial Intelligence: A
Modern Approach. Prentice hall Upper Saddle River, 3rd edition, 2009.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser,
Ioannis Antonoglou, Veda Panneershelvam, and Marc Lanctot. Mastering the game of Go with deep neural networks and
tree search. nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker,
Matthew Lai, and Adrian Bolton. Mastering the game of Go without human knowledge. Nature, 550(7676):354–359, 2017.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

27 / 24

	1. Introduction
	2. Improving a Policy via Monte Carlo Tree Search
	3. A Policy Model That Learns to Improve
	4. Evaluation
	Appendix

